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On supportless absorbing convex subsets
in normed spaces

by

V.P. FONF (Kharkov)

Abstract. It is proved that a separable normed space contains a closed bounded
convex symmebric absorbiug supportless subset if and only if this space may be covered
{in its completion) by the range of a nonisomorphic operator.

According to the Hahn-Banach theorem every boundary point z of a
solid {i.e. with nonempty interior) closed bounded convex subset A4 of a
normed space X is a support point, ie. there exists a linear functional
£ € X*\ {0} such that f(z) = sup f(A). If A is not solid then the complete-
ness of the space X hegins to play a role. Namely, in 1958 V. Klee (3] gave
an example of an (incomplete) dense subspace of £ which contains a closed
bounded convex absorbing subset with no support peints (a supportless sub-
set). In 1961 E. Bishop and R. Phelps [1] showed that in a Banach space
such an example is impossible: the support functionals of closed bounded
convex subsets of a Banach space are always dense in the dual space. In 1985
J. Borwein and D. Tingley [3], developing the ideas of V. Klee, constructed
in every infinite-dimensional separable Banach space a dense linear subspace
which contains a closed bounded convex absorbing supportless subset.

The purpose of this paper is a full description of the class of (incomplete)
separable normed spaces which contain closed bounded convex absorbing
supportless subseks.

We use the standard Banach space theory notation. By U(E) we denote
the unit ball of a normned space E; if A C E then [A] is the closed linear
span of A and lin A is the linear span of A. :

We begin with an auxiliary proposition.

PROPOSITION. Let X be a separable Banach space, M be a dense sub-
space of X amd T : Y = X be a one-to-one linear bounded operator f@;om
¢ Banach space Y into X such that TY D M, the inverse mapping T s

1991 Mathematics Subject Glassificationi: Primary 46B20.
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unbounded and the subspace T*X* is norming. Then there exists a funda-
mental minimal system {z,} C M with conjugate system {hn} C X* such
that ||l&,|| < 277, [Tk, £27", n=1,2,...

Proof. By the density of M in X we can find an M-basis {v;} of X such
that
—4i-1

2 e
{uibc M, Jul < 1T ]| < 27°F,

— i==1,2,...
il

Let {e;} be a stability sequence of the M-basis {v;}. Set L = T~"(M). It is
easily verified that the restriction 7'z is also nonisomorphic and hence by a
standard process we can construct a basic sequence {w;} C S(L) with basis
constant C' < 3/2 such that

—di—1

17204 < g, 1=1,2,...

i!
Let z0 = w; + T 'v;, i = 1,2,... Then by the Krein-Milman-Rutman
stability theorem, {z{} is a basic sequence with basis constant Cy < 2 and
{T2[} is an M-basis of X. Obviously, {T2} C M, |iz{]| £ 1+ 1/32 and
[Tz < 2%/, i =1,2,... Denote by {hi} a conjugate system in ¥* to
the basic system {z]} such that |h}|| £ 2Cy < 4 for all i =1,2,... Without
loss of generality we can assume that T*X™* is 1-norming and hence for all
n = 1,2,... there exists a functional g/, € 4U(T*X*) such that

~Tn—1
(1) ez — ghli=gell € T
Define
o—4n
Zn =nl2%2 g, = o gh>  An=det(gr(z))k,i=1,. n-
Using (1) we get
2—7‘11 2—7n

® el g 1gi<m () -1 T
In particular,
(3) lgr(z)| <2,  kil=12,...
Let us expand the determinant A, according to the last line:

ke n--1

Ap = Zgn(zl){““l)n-HMﬂl = Z gn(zl)(_l)nﬂﬂ’—fnl + gnlzn) An-1-

le=1 =1

Hence using (2) and (3) we have for alln =1,2,...,
2~7n 9-Tn 9-=Tn
|4, — Apal < (n— 1)W(n — 1)!W + W(n —1)l2nTt < 9,
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But it is obvious that 1 ~2"7 < A; < 14277 and thus foralln = 1,2,.. .,
(4) 1/2 € 4, <3/2.

Define 41 = 21,

g1(zn)
i A 92(2'11.)
(5) U, == -ZW n~1 ,
]
g?:.v-l(zra)
Zy e . Zn,
n
TR e el ,
In o s
gn(z) o gn(En-1) g
and estimate ||T'yn|| expanding the determinant (5) according to the last
line:
1 n ) .
Tyall = ||T ~1)" M, z)‘ < n2" 3 (n— 1! £ nl2
ol = T 1= S ) | € o
(we have used (3), (4) and |Tz4|| €1, k= 1,2,...}. For f, we have
1 [ | " A},—l
fn = _A—'r: = ("’1)7' Hgn(zvﬁ)ani =+ *j:gn
1 -1 =1 bl A L
Hig (o 1)kt g Zn
= Z,: : (“'1)n 1911(21) Z( 1) Mk,n—lgk'l' An gn
i=1 k=1
1 n-1 n-l - . A'n.—-—l
— 1y n-bhebie- ) ;
= A 2 (;( 1) gn(zl)Mk,n~—1)Qk+ A 9n
hence,
1 ey et —4n 2~—4'n.+3
1) S = D = D (= 2)27 8 € =
Let
Zwﬂn

2L g —
By, = 7"0)' Tyn ) h'n = 71’12 ! T fn ] n= 1’ 2: e

Then |lz,| < 27" and [T*h,| < 27" It is easily verified that {2n} is
a fundamental minimal system with conjugate system {hs}. The proof is
complete.

THEOREM. Let M be an incomplete separable normed space and X be the
completion of M. Suppose there exists a linear bounded one-to-one- operator
A:Z — X from some Banach space Z into X such that AZ > M and
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the inverse mapping A~1 is unbounded (i.e. AZ # X). Then M contains a
closed bounded convex symmetric absorbing supportless subset. Conversely,
if o normed space M contains a closed bounded convex absorbing supportless
subset then there exists a linear bounded one-to-one operator A : Z -+ X
from some Banach space Z into the completion X of M such that AZ D M
and the inverse mapping A1 is unbounded.

Proof. Since A~! is unbounded the set V' = clx(AU(Z) N M) has
empty interior. Denote by Y the Banach space lin V with V' ag unit ball
and let T : Y — X be the natural injection. Tt is obvious that 1Y O M,
TUY) = V, clx(VN M) =V and it is easily verified (with the help
of the Hahn-Banach theorem) that 7*X™* is a l-norming subspace. Then
by the Proposition there exist sequences {2z} C M and {hi} C X~ such
that ||me] < 27%, |T*hall < 27%, k = 1,2,... Let us introduce a compact
operator F : ¢y — X by Fu, = s, k= 1,2,..., where {1y} is the canonical
basis of ¢o. Set Q = {3_ axzr : {an} € Uloo)}-

We now verify the inclusion

(6) QNTY c FU(c)).

Let = S apox € QN TY. Then ay = hy(z), z = Ty, y € ¥. So for all
k=12,

Ja] = [he(Zy)] = {T*Ra) ()] < 1Tl -l < 27 ]l

Hence 5 agzy, € F(U(cp))-

Now set E = (Y @ co)oo and define an operator B : E — X by B(y +u)
= Ty+ Fu,y €Y, u € co. It is clear that E* = (¥* @ £1)1 and that
K = (U{Y™*) + B*U(X*)) N 4 is symmetric, convex and compact. Indeed,
let f € K; then f = S éie; = g+ hy g € U(Y*), A= B*, t € U(X*), where
{e;} is the canonical basis of £y; so for all 4 =1,2...,

&) = [ (ua)| = |hlus)] = (B9 (ui)l = le(x)| <277
It is obvious that (Y* + B*X*) N {, = [Jo_;nK and by a category

argument there exists e} & ¢, with ||e] — eal Sn“l—’“l such that [ej] N (Y +
B*X*) = 0. Let Ky = co{&e}, K'}. Then using a category argument again
one can find &) € #; with l|leh — ez|l < 272 such that [eb] N U, nK1 = 0,
and hence, [e],e;) N (Y* + B*X*) = 0. Continuing in this way we construct
a sequence {e;} C £, with the following properties:

lef —esfl €27%, i=1,2,...,
(7 ErN¥*+B*X*} =0, n=12,...
Define Uy = w*-clco{£e}}; and let U be the corresponding unit ball of ¢q.

It is clear that 3U(co) C Uy C 2U(ep), where U(eo) is the unit ball of ¢o in
the usual norm. :

icm
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Let ng show that W = (V +F(U1))NAM is closed in M. Let v, +¢n € V+
F(UL), limg (vn + () = x € M. By a compactness argument we can assume
that the sequence {gn} converges to some go. Since F(U) C 2F(U{e)) C
90 we have qu € 2Q. So {v,} also converges to some vg € V (since V is
closed). Thus & = vy + go. But by assumption z € M and M < TY, so
qo = =~ vy € TY. Consequently, by the inclusions gg € 2Q and (G) we have
a0 € 2F(U(cq)). Tt is easily verified that w-lim F ~dg, = F~lgy and by the
weak closedness of the ball U we have F~lgy € U1. Soz € V + F(Uy) and
the closedness of W in M is proved.

Tt is obvious that [W] = X. Let us show that supp W = (. Assume to the
contrary that there exists a linear functional f € X\ {0} and @ € W such
that f(z) = sup fF(W) # 0. Since cly (M NV) =V and clx(M N F{U)) 2
P(Uy) we have cly W D V + F(Uy) and so sup FW) = sup f(V + F(UL)).
Thus the functional B*f attaivs its supremum on the subset V + U, c FE
and therefore B*f = g + Y10, i}, g € Y. Consequently,

m

S tel=g-B Y +BX

imel,
and by (7), & = 0, i = 1,...,m. Then B*f = g; but B*f|,, = 0, which
gives f(2y) = 0, 4 = 1,2,..., and by the completeness of the system {z;}
we have f = 0. This contradicts sup f(W) # 0 and completes the proof of
the first part of the theorem.

Let us prove the second part. Let W be a closed bounded convex ab-
sorbing supportless subset of a normed space M, and let X be the com-
pletion of M. It is obvious W = 0 (otherwise by the Hahn-Banach theo-
rem supp W # ) and by the Bishop-Phelps theorem M is incomplet?, ie.
M#X. Let Wy =cly W, V=W, N-Wp.ltis casily verified that V =0
and linV o M. Denote hy Z the Banach space linV with V' ag unit ball
and let A : Z — X be the canonical injection. Then AZ D M and (by
V = ) the inverse mapping A" is unbounded. The proof of the theorem is
complete.
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Commutators based on the Calderén reproducing formula

Ly

KRZYSZTOF NOWAK (Wroctaw)

Abstract. We prove the Schatten-Lorentz ideal criteria for commutators of multipli-
cations and projections based on the Calderén reproducing formmula and the decomposition
theorem for the space of symbols corresponding to commusators in the Schatten ideal.

1. Introduction and summary. This paper is devoted to the study
of commutators of multiplications and projections based on the Calderdn
reproducing formula. Commutators of multiplications and projections are
usually defined in the context of a Hilbert space with reproducing kernel.
Let H < L*(X,dp) be such a space, I : 12 — H the orthogonal projection
tromn, 12 onto I, and let b be a function defined on X. The commutator of
My, and P is

Cy = My, P] = MyP — PM,y,
where M; denotes the operator of multiplication by b. The function b is
called the symbol of Cy. The commutator C), is closely related to the Hanlkel
operator
Hy= (I - P)MP,
namely M, = Cp P, Oy = Hy — Hj.

The Calderén reproducing formula defines a class of Hilbert spaces with
reproducing kernels. For a particular choice of the wavelet function which
appears in the Calderén reproducing formula (and after a minor modifi-
cation) the conunutators based on the Calderén reproducing formula are
uniterily equivalent to the comnutators on weighted Dergman spaces on
the upper half-plane, There has been an extensive study of Hankel opera-
tors on Bergman spaces ([Ax], [AFP], [BBCZ], [J}, [Stxl, [Z22]). We refer to
Zhw's book [Z1] for the background and more references. Our method of
studying commutators does not rely on complex analytic tools nor on the
formulas for reprocducing kemnels as is often done in the case of Bergman
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