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Commutators based on the Calderén reproducing formula

Ly

KRZYSZTOF NOWAK (Wroctaw)

Abstract. We prove the Schatten-Lorentz ideal criteria for commutators of multipli-
cations and projections based on the Calderén reproducing formmula and the decomposition
theorem for the space of symbols corresponding to commusators in the Schatten ideal.

1. Introduction and summary. This paper is devoted to the study
of commutators of multiplications and projections based on the Calderdn
reproducing formula. Commutators of multiplications and projections are
usually defined in the context of a Hilbert space with reproducing kernel.
Let H < L*(X,dp) be such a space, I : 12 — H the orthogonal projection
tromn, 12 onto I, and let b be a function defined on X. The commutator of
My, and P is

Cy = My, P] = MyP — PM,y,
where M; denotes the operator of multiplication by b. The function b is
called the symbol of Cy. The commutator C), is closely related to the Hanlkel
operator
Hy= (I - P)MP,
namely M, = Cp P, Oy = Hy — Hj.

The Calderén reproducing formula defines a class of Hilbert spaces with
reproducing kernels. For a particular choice of the wavelet function which
appears in the Calderén reproducing formula (and after a minor modifi-
cation) the conunutators based on the Calderén reproducing formula are
uniterily equivalent to the comnutators on weighted Dergman spaces on
the upper half-plane, There has been an extensive study of Hankel opera-
tors on Bergman spaces ([Ax], [AFP], [BBCZ], [J}, [Stxl, [Z22]). We refer to
Zhw's book [Z1] for the background and more references. Our method of
studying commutators does not rely on complex analytic tools nor on the
formulas for reprocducing kemnels as is often done in the case of Bergman
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spaces. However, the choices of questions we consider and results we prove
are strongly influenced by the model of Hankel operators on Bergman spaces.
Also, our results apply to Bergman spaces and give various known and some
new results.

We next describe the Calderdn reproducing formula and we discuss our
results.

We denote by & the “az + b"-group, i.e. G = {¢ = (v,t) 1 v € R¢, t > 0}
with the group law (u, s)(v,t) = (sv + u, st) and the left-invariant measure
d¢ = t=%=1dv dt. The group G acts on L2(R%) via translations and dilations,
ie for { = (v, 1)

(L) U f(s) = fo(o) = t-dﬂf('“"—;"—”)

15 a unitary representation of G. The left-invariant metric d on G is given
by the length element ds® = 1~2(dv® + dt?).

The Calderdn reproducing formula is the following resolution of the iden-
tity:

(9= [ (fwc)lbe,g)dC,  where f,g & L*(RY),

a
and ¥ € L*(R%) is an admissible wavelet, i.e. for almost every £ € R%,

< -~ ds
(12) Jiator =,

Q

where ¢ is the Fourier transform of 1, i.e.

V(&)= [ la)e ™ ds,
Rd
It is not hard to check that the above admissibility condition is not only
sufficient but also necessary for the Calderdn reproducing formula to hold.
For a fixed ¢, the functions on G of the form {f, ), where f ¢ L*(R%),
form a Hilbert space with reproducing kernel and a subspace of L*(G).
The orthogonal projection P onto this subspace, called the space of wavelet

transforms or Calderdn transforms, is given by integration against the re-
producing kernel

K(Com) = (¢, %) -
A commutafor € is an integral operator given by the kernel
(1.3) (6(C) — b{m)) (g, 1)

The general question is to find the relations between the singular num-
bers of commutators and their symbols. We use Schatten—Lorentz ideals to
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describe the behavior of the singular numbers. We recall that for a compact
operator " acting on a Hilbert space its nth singular number is defined as

s (T) = inf{|T — A,|| : Ay is n-dimensional} .

The Schatten-Lorentz ideal consists of those compact operators T which
satigly
HT gre = “{Sn(T)}H;pq < o0,

where P9 denotes the Lorentz space, and 0 < p < oo, 0 < ¢ £ oo. The
symbol §°°¢ denotes the set of bounded operators and 5% = S*7 the Schatten
ideal. ¥or the background for Schatten-Lorentz ideals we refer to [GK], [Si].

In most of our results we need to agsume a certain decay of the repro-
ducing kernel. A convenient condition of this sort is

(1.4) g, )| < eage™MHEM

where M is some positive constant., In Section 2 we discuss the question when
this condition is satisfied. In particular, if ¢ is a Schwartz class function and
# is compactly supported in R%\ {0}, then (1.4) is satisfied for all positive
M. We do not try to sort out the optimal condition for the wavelet, but
rather concentrate on the question what happens with commutators when
the wavelet is sufficiently smooth, has good decay at infinity, and a sufficient
number of vanishing moments.

Singular numbers of commutators are closely related to the oscillation
numbers

(1.5) oscp,.b(m)=6( [ flb(g)wb(n”?d(dn)l/?}

i Dy D

where D, denotes the hyperbelic ball with radius r centered at e = (0, ...
...,0,1). The above relation is the main theme of this paper.

We prove that for 0 < p < 00, 0 < g < 09, if {n;} is a hyperbolic lattice
(ie. 7;: D, are pairwise disjoint if r i gmall, 9, D, cover G if r is large) then
for any suitably large r

[Culigma & Ylosep, b(ni) lies -
The inspiration for the proof of the direct estimate comes from the paper by
Rochberg and Semmes [RS1), and for the converse for 0 <p < 1 from the
paper by Semmes [Se]. The converse for 1 < p < oo holds for all admissible
wavelets. The proof relies on the properties of the Fourier algebra of Eymard.
The background for the oscillation spaces and the SP results for p > 2 for
the Bergman space case are presented in Zhu'’s book [Z1].

Tn the case of a harmonic b and p > d

lloscpb(ni)llirs 2 {18l are
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(see [RS1], [RS2]). Thus our results extend the ST criteria for Hankel opera-
tors with harmonic symbols proved by Arazy-Fisher-Peetre in [AFP]. Our
results also imply that there is a cut-off for harmonic symbols at S%°. That
is, if Cp belongs to 5%, g < oo, and b is harmonic, then b is constant, At
the end point we have

\lch:o y

[1Cy | guoo = [losenb{n:)

and this shows that the nature of the cut-off is the same as in the case stud-
ied by Rochberg and Semmes in [RS2]. In particular, the space of symbols
corresponding to 5% commutators contains B™ and is contained in B,

We also show that for a general symbol b, if €y € S, 1 < p < oo, then
there is unique decomposition of b,

(16) bzbh+bc:

where by, is a harmonic function satislying

llosepbn (vi)lin < o0,
and

1/2
Iliriey = | ([ et ac) ] < oo,
iy
Such a decomposition result was known in the case of welghted Bergman
spaces for p = 2 (see [AFP]).
After this work was done the author received a copy of Luecking’s paper

[Lu] which contains, in the case of Hankel operators on Bergman spaces on
the disc, some similar results,

We recall the relation between weighted Bergman spaces on the upper
half-plane and the Calderén transforms of Hardy space functions with re-
spect to Bergman wavelets . Let ¥ be the Bergman wavelet, Le. for a > 0,

Tarer | ca%eTIE for £ >0,
(1) e = {0 for £ < 0,

o0 172
Ca = (f |g¥e 2|2 f’ﬁ) .
0 ¢
Let Cy= denote the space of the Calderén transforms of functions in the
Hardy space H*(R) with respect to ¢®. Let A® stand for the weighted
Bergman space, i.e. the holomorphic functions on the upper half-plane sat-
isfying

o0 o 1/2
| Flige = (j [ 1F(u+is)|?s8 duds) < o0,

0 —0

(1.8)

icm
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where 8 > —1, and let V' denote the map given as
(1.9) VP(u,s) =8~ Y2 F(u,s).

The map V is a unitary map from Cye onto A%l and it provides a uni-
tary equivalence between commutators defined by the wavelet ¥® and their
Bergman space analogues (see [GMP] for details about * and V).

9. Preliminaries and technical lemmas. This section contains some
technical results which for the sake of clarity are separated from the main
part of the paper. We begin by stating basic facts related to lattices in t.he
hyperbolic metric, Next we discuss conditions on the wavelet that provide
the decay of the reproducing kernel described in (1.4). The part that fol-
lows describes different normns on the oscillation spaces and the mixed norm
spaces and some of their properties. We end this section by recalling the
description of the spectrum of the Fourier algebra.

The left-invariant metric d is given by the length element ds® = t~2(dv®+
dt?). This metric is also Mobius invariant, and satisfies

i -l

cosh(d(¢,m) =1+ -,

where ¢ = (u, 8), n = (v,1). This shows that for e = (0,...,0,1),
M 2y~ M f <1
Mdlee) o ) S (LA |ul®) ors <1,
1) eTMAHO) 2 {s“M(l /s M fors> 1,

and for M > d, e~ M) ig integrable on G. We refer to [Bl, [HI, [T for the
background in hyperbolic geometry.
A sequence {v;} C G is a § « lattice if {viDs} cover G and {y; Dy} are
pairwise disjoint. A sequence is a lattice if it is a 8, & lattice for some 6, &.
It {7} € G is a lattice then

(2.2) Ze—Md(’Y«:,C) <e,
1" .

(2.3) Z XyiDn(Q) S Gy
i

(24) Y " Xeupuie) Z 2
i

provided that M > d and r is large enough: The constan’_cs e, c1, tn do not
depend on ¢. The letter x denotes the characteristic function of a set. .

A sequence {(2¥m,2%)}, where k € Z, m € 74, is called a standard lattice
and is denoted as {nma} or {n:}. It induces 2 standard partition {Ums} of
G, where m = (my, ..., mg) and

. . ‘ bo— k
Unls = [2km,1,2k (rmq A 1) =...x [2-kmcl:2k("nal +1)) % [2)\' 172 )
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All the elements of this partition have the same measure d¢. For many
purposes this partition plays the same role as the covering {9, D}

The next lemma relates the exponential decay of the kernel (y¢, %) to
the decay, smoothness and vanishing moment properties of the functions «,
¥. It is taken from the paper [FJ2] by Frazier and Jawerth.

Lemma 2.1 (Lemuna Bl in [FJ2]). Suppose that 0 < 8 € |, R > d,
0<8<1,5>L+d+0,Lis anonnegative integer. If o, ¥ € L*(RY)
satigfy

(2.5) |D7g(z)] < e{l+|z))™® i |y <L,
|D7g(x) — DYg(y)} < |x - yi”‘ |il\lp l(l +lz—w))" " if |y =
z|sy—x
(2.7) lg(a)| < (1 + fa])~medBS5T
(2.8) f tVglz)de=0 if |v| <L,

Rd
ond M < R/2, M < L+4+8-+d/2, then

KTJ)(, 'If) | < ce"ﬂ’[d(Cac)

The following lemma, shows that it is also possible to get the decay of
the kernel (v, ¥) by requiring that W s supported in a ring centered at 0
and that the behavior of ¢ is properly controled on rings centered at the

o.rig'in. The proof follows by integration by parts on the Fourier transform
side and it is omitted.

LeMMA 2.2, Let 1, ¢ € L*(R?), $(€) = [€]°B(£), and let ¥ be a Schuartz
a<l|f] <

<

cla;s Function satisfying supp ¥ C {¢ : } Ifdj24+p8>M,n>M
an
(2.9) su sCAR(s
P kZ ) < o0,
k<n
(2.10) sup sMHA/2HE 40(5) < o,
821
(2.11) sup s~ M*d/2+8 kA
| q>1:13.z? Z §"AY(s) < o0,
ki
k<n
where
Af(s)=s"" [ |DFa(¢)| de,
sas|€|<sb
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then
(e, 7)] € ce™MHES)

Remark 2.3. In the case of the Bergman wavelet 1%, given in (1.7), the
condition
‘(w(x ,pcv)l < Ca B—Mdi((,n)

ig satisfied for M = o 4 1/2. For a Schwartz cla,ss function ¥ with ¥ com-
pactly quppoued in R\ {0}, also
|<$W’ T])l < CaﬁwMﬂ!(qm) ’

where M = a4 1/2 (see [N]). In the scale of weighted Bergman spaces AP,
M = a+1/2 corresponds to M = (8+2)/2. We recall that § = 2 —1, and
that the space A is defined in (1.8).

The above statements show that our results apply to the Bergman space
case provided  is large enough,

For b a locally square integrable function defined on (G and a hyperbolic
ball B centered at e the oscillation of b with respect to B at "f is defined as

(|B|—1 / o151~ f b(mnl a¢) "

.. = (Jjusr-l J B [ -
B yB

For {y} a & & lattice, u > 0, B = Ds4y and 0 < p,g < o0,
16|l 22 = ||{cacsb(vi)}illis -

For a nonnegative function F' with | F| z:(g) = 1 and for b a function on
G such that for any v € G,

f|b OPF(y¢) d¢ < o,

(2.12)  oscpb(y) =

1/2
b(n) 2d¢ d)

we define the Fmoscitmtzon of b by
([ por- femre
« e}
2 —1 -1 1/2
= (3 ] f 1O WP PG ) ddn)
G o

(2.13)  oscp(y) = ~'n) d??rF("Y—lC) dC) 2

For {v;} a lattice we set
1]l goa ey = [ {05CEb(7) Yailiwe -
If F = |B|~Yx3, then oscp(y) = oscpblr)-
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ProprosITION 2.4. (i) Different laltices and parameters give equivalent
BP1 norms (quasi-norms).

() If F(¢) < ce~MUCe) gnd M > 2d/min{1, p}, then

”bHqu(F,{’y.,_}) S CHb”qu .

Proof. We omit the elementary but tedious proof of this fact.

For m = (my,...,mg), my,...,mq, k integers, @ > 1, b > 0 let U be
a modified version of the standard paxrtition of G,
(2.14) Uk = [afbmy, afb(my + 1)) x ...
x [a®bmg, a®b(mg + 1)) x [@®71, a") .

For a function b defined on G, @ > 1, b > 0 and Ub% given in (2.14) we

define b
lleg,o = (5 wtcieac)™)™
kU

We refer to the papers by Feichtinger [F] and Fournier—Stewart [FS] for the

background on the mixed norm spaces. The following two propositions are
standard.

PROPOSITION 2.5. For different a, b the norms | ||;p(z2 ) are equivalent.
For {~} o lattice in G and D o ball centered at e, if {v.D} cover G, then

the norm
(S [ worpa)™y™

i omD
s equivalent to || HIP(LS,,,)'

ProrosiTioN 2.6. (i) Let 1 < pg,p1 €00, 0<0 <1, 1/p = (1-8)/po
+8/p1. If T is a bounded operator on I7°(L} ) and on (P*(L} ), then it is
bounded on IP(LE,) and

1L—8
(215) HTII"'P(L%!M) S ”T”“m(Lg‘u)HT”fm(Liu}'

_ (ii) The dual space of lP(Lﬁ,u’), 1 <p<oo,is l”'(Lﬁ‘a) and the pairing
18 given by

[ e d;.
)

By A(G) we denote the Fourier algebrnon G, i.e.
AG)={H«K:H K e I}q)}

icm
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(see [E]), where H(C) = H({Z"1) and the convolution on G is. defined as

FeGm)= [ PTG dr.
G

PROPOSITION 2.7. If 1(¢) = F{d(C,e)), where f is a O°° function com-
pactly supported in [0,00), then F € A(G).

Proof. This follows by a standard application of the spherical transform
to hi-invariant functions. For details about the spherical transform see (I1].

The {ollowing fact is included in the paper [E] of Eymard.

LumMMa 2.8, The spectrum of the commutative Banach algebro A@) P
{xe} is G0 {oc}.

3. Direct estimates. Let ¢ be an admissible wavelet, and b a locally
square integrable [unction defined on G, A commutator Cy, = [Mp, P) is well
defined on C\{G), the compactly supported continuous functions on G, and
for F, H € C.(G),

(O By = [ [ (B(C) = blm)) by, ) P H (L) dn dC
&

]
"

We need the following discrete version of the Calderén reproducing formula:

PROPOSITION 3.1 ([FJ1]). There is o Schwartz class function ¥ such that
T is compactly supported in RéA {0} and for f,g € LA(RY),

(3.1) (Fog) =3 AFs W0, )P0}

n

The next theorem provides the estimate on singular values in terms of
the oscillation numbers.

THEOREM 3.2. Suppose that a Schwartz class function ¥ satisfies (3.1),
el

| (e, )] = ce MG where M > d.
Let N
Py = ([ e 1de) el
¢t

If oscpb(nn) — 0 as d(nm,e) — 0o, then Cy may be deaompased as a sum
of two compact operators and after relabeling the lottice points so that t'he
numbers oscpb(ny,) are written in nonincreasing order, each operator satis-
fies the following estimate on its singular values:

(32) &y < COSG}F‘b(’l’]n) :
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Proof. Let b(n;) = Ie b(~)F(n; ) dy. An application of (3.1) gives

(B(C) — b{m)) Wy ) = (BE) ~ b(m)) > _ (8, g, ) (Wi i)

T

= Z(b(g) - 5(77"3))<¢"]1 !pmﬂg”n,?/k)
= D (bl) — b)) (g, 9, Y Py )
= 3 oserb(:)(thg, T) ((0) = Blme) osorb(mi)) ™ (T ic)

- Z oscrb(n:) (b(n) — D(ni)) (oserb(ns)) ™ (4hy, ¥y, ) (T, )

= Ku({,n} — Ka{(om)-
To prove (3.2) for K, it is enough to show that

” Z oscpb(n;) {1, P, ) (B(() — 3(771))

3=

x(oserb(m)) ™ (B, )| < coserb(m).

A similar estimate holds for K.
Let f,g € L*(G). Then

’J J 3 erbon) o ) £

L=t

o~

x (6(€) = Blme)) (oscrblns))™ (B, wc)g(C) dm ¢
< oscpb(nn) Z [ (s T )| £ ()] iy
i=n

X Of 16(¢) — B(m:)] (0serb(m:)) ™| (o, )] (O] dC

< OSCFb(Wn.)(Z f e—Mcl(T)i.'ﬂ)d.,? f e"“"’"”””‘"”|f(r;)\Bdn)l/z
' G

G

X (Z &;f (<) bg(m)iz [{@,,, )| dC(oscpb(n)) ™2

x [ eMm0lgioac)”
G

< coscrb(m )£l 9l
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We may conclude the estimate of the Schatten-Lorentz norm in the
following corollary.

COROLLARY 3.3, Suppose that there is o Schwartz class function ¥ sat-
isfying (3.1) for which

[{he, ¥)] < o~ MAlCe)
M = od/min{1,p}, p < oo, then
HC‘”

Hra S ﬂ“b“ﬁpq .

Prool. This follows directly from Proposition 2.4 and Theorem 3.2.

4. Converse estimates. In the first part we study the case p > 1, and
we obtain converse estimates for commutators for all admissible wavelets.
The proof relies on the Fourier algebra and Schur multipliers. However, these
techniciues are not necessary and a modification of the proof of Theorem 4.4
also gives such a result. But for the method of Theorem 4.4 to work we need
to asswne sufficient decay of the reproducing kernel. In the second part we
discuss the case 0 < p < L.

We recall the notion of a Schur multiplier, and we state some basic facts
about Schur multipliers related to our context.

A function A(C,7) defined on G x @ is called a Schur multiplier on Sra
if for any kernel A'(¢,n) representing an 54 operator on L3*(@), the product
M{C,mK(C.n) also represents an 577 operator, and the above operaticn is
bounded.

ProposTION 4.1, (i) If ¢ is an admissible wavelet, H(¢) = h(d((,€)),
where h is a compactly supported C™ function, and suppH C {¢ : Re{te, )
> ||[9f|2/2}, then - :

H({)
4 ol YA
(4.1 o) e A(GF).
(i) If B e A(C) then F((™'n) is @ Schur multiplier on P, 1< p< o0,
on compact operators and on SP4, 1 < p <00, 0<g<oco. :
(i) If for some v > 0, {y 2.} arc poiruise disjoint then for any hyper-
bolic ball 1) centered at ¢,

Zmp(n)xw(@

is ¢ Schur multiplier on 87,1 < p < 0o, and on Sre 1 <p<oo,0<g= 0.

Proof. (i) We consider the commutative Banach algebra with identity
A(GY&{ e}, By Lemma 2.8 its spectrum is GU{o0). Take G(() = g(d(<, €))s
9 € 0([0,00)), such that ¢ — G({) = 0 on the support of H and

Re(c — G(¢) + (e ¥) > leli?/2 forallCEG.
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By Proposition 2.7, G(¢) € A(G). Cleatly {4¢,¥) is an idempotent with
respect to convolution on G and is in L*(G), thus also in A(G). So
c— G(0) + (we,9) € AG) @ {Ae}.
Since it is different from zero on G U {co} it is invertible in A(GY) & {Ae).
Thus
H{()
c—G(C) + (e, )

& A(G) @ {Ae} .
Clearly
B Q)
=GO+ eyt o)’
and H(C)/{d¢, ¢) = 0 if d((, e) is large enough, Thus H(()/ (v, ) € A(G).

The statements (i), (iil) follow directly for 9 and 5°°, and then by
interpolation for the other indices.

The next lemnma provides the converse estimate for singular values of the
perturbed commutator.

EaMMA 4.2, Let b be o locally square integroble funclion, and D o hy-
perbolic disc with center e. Assume that the operator C given by the kernel

(4.2) > 0(C) = b)) xn (Mixn(C),

i
is compact and that the sets {v,D} are pairwise disjoini. Then there is o

constant ¢ depending only on I such that the singular values {s.} of C
sotisfy '

(4.3) $n 2 coscpb(yy)  for all n.

The latiice points are relabeled so that {oscpb{vn}} form a nonineressing
sequence.

Proof. Let C; be given by the kernel (6(¢) - b(n))x~. 0 (M) xvp{(€)
Clearly

Csxv pll = coscpb(y;),
thus C; hag a singular value s; such that

sy 2 coscpb(y),

and an eigenvector F; corresponding to the eigenvalue s? of C}Cj is in
L*(v; D). We obtain

C*C=3CiC; and C*CFp=Y CICiFy = s}Fr,
i : i

s0 8y, are distinct singular values of C' and (4.3) foliows.
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In the next theorem we get the converse estimate for the Schatten—
Lorentz norm of the commutator ¢ for the case p > 1.

TurorEM 4.3, Lel b be o locally square integrable function, and ¢ any
admissible wavelet. If Cp & §%, pg=1,0r 1 <p< oo, 0 << 00, then
b e B and

[bllgre S e |Chllses -

Proof. We take a hyperbolic ball Dy with center (0,...,0,1) and a
function I, H = 1 on Dy, 5o that the requirements of Proposition 4.1(i) are
satisfied, By Proposition 4.1(1), (i),

H(¢n)
W’m"/’d
is a Schur multiplier on all the spaces in question. Let D be a hyperbolic ball
with center (0,...,0,1) and radiug smaller than half of thel radius of Dy, We
take a lattice {r}i}'ﬁ‘;“l""’N such that {ri D'}, cover G, {7{ D} are pairwise
disjoint for fixed 4, D' is centered at e and has radius slightly smaller than
the radius of D).
Since 325, X o (1)Xry p{S) 0 only if (~n € Do, we have
Y xeioMxain(Q)  HETM T, X7i p{m)X-; p(S)
{45 e - ("f”’n:'@[)C)
and this function is a Schur multiplier on the trace class and on SP? by
Proposition 4.1(iii). Thus if C is trace class (in S??) then also
S0(C) = b Xatn(Oxein M)
k
is trace clags (in 579). Lemme 4.2 finishes the proof.

Now we formulate the converse result for 0 < p < 1and 0 < g< oo In
this case we need to assume sufficient decay of the reproducing kexnel, We
do not know what is the optimal condition on the wavelet which gives this
converse result, |

THROREM 4.4. Let 0 < p <1, 0 < ¢ S 00 Suppose there s a Schwartz
class function W salisfying (3.1) and for some M > d(p+2) /(2p),

e, ¥)] < ce~MAlSel  Jorall (€G.
If Cy € 8P4, then b e B and
|Bllzen < cliCol se - -

Proof. We sketch the proof of this result by indicating the main steps.

Step 1. We pick a hyperbolic lattice {7} and a hyperbolic b.a,ll D
centered at ¢ such that Re(us; v} = [¢l?/2i ¢ € 3D and for every suitably
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large r if 7,7 € D, then there are
Tkl(l):-~-1TkI(P) E {Tk}mD‘F‘z PS CCJ(TﬁHTJ)v

the distance of each 7, (j) to the geodesic joining 7y and 7 is smaller than
§, each 7 may appear at most K times in the sequence {7 {1)},

[T (3D N7 (41D >e fori=0,...,P, 1',1‘,;(0) = Tp, Tk;(f’~i"l) = T].

The constants K,c,¢,6 depend only on the parameters of the lattice {y}.
Next we divide {7} into L pieces

{7 b A I

s0 1§h_a,t for every 0 = 1,...,L, {rf D}, are pairwise disjoint. For a large
positive number N each {7} is divided into C(N) pieces

(e A7
so that d(77™D,77™D) > N whenever k # [,
Step 2. For fixed r, 0 and N we define

(N
Cf = Zl(b(c> —b) ) S xeemn(Q) S xeemp(n),
Tﬁ“‘e]f?(w) 'r[”“efB(em)
(N)
D’ = Zﬂ(bm = b)) Y Xegmn(Oxramn (1),
- e Be )
C(N)
?\J = Zl (b(o - b(ﬁ))(*/)m ¢§> Z XT;:""D(C)XT["'"‘D(T}) .
m= hotl

e T EB e,r)
Clearly C% = D°+ R, and {|C%|[s0e < Cn[[Chl| 0.
Step 3. We prove that for some 8 > 0,
1B llsee < ce™V||xx, (§)oscpb(r;)lims,
o=1,...,L K, ={j:1; € D,}.
Step 4. We show that

L
Xz (Floscpb(ry)liwe < ¢ ||D°||va .

o==]
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Ytep 5. We are ready to finish the proof. We get
L

I, (3)oscnb(r)|lm: <) D
1

iz ]

I L
Jgne < ¢S [ C%fisra +¢ 3 IR s
o=1 o=1

< ey |[Chllses + 06"V |xx. (F)osepb(r;)|ws -
Now we take N large enough and get
i, (F)osepb{ry)lwe < enl|Ch
for all = large enough. This concludes the proof.

S

Remark 4.5 Results similar to those for C are true for Cp M., where
M., denotes multiplication by w({) = s, « € R, (= (u,s). Namely, if the
wavelet 1 satisfies the condition

(e, 1)) < e M,

where W is a Schwartz class function for which (3.1) holds, and M is large
enough (how large depends on &, p and d), then
M| gve = e (i) oscp b{i)llima -
The lattice {v;} and the ball D satisfy the usual conditions.

Remark 4.6. For {vi} a8 « lattice, u > 0, and D = Dy, the norm
in the space BMO is defined as

[l ate = [[{osonblyi)}illie=

and VMO is the subspace of BMO consisting of those functions b for which

oscpb{v) — 0 as d(vi,e) — o0

It is not hard to check that Cy is bounded if and only if b € BMO, and it
is compact if and only if b € VMO.

Using the characterization of compact commutators we describe the es-
sential spectrum of a Toeplitz operator

_ Ty = PMyP _
with bounded continuons symbol in VMO, where P is the orthogonal pro-
jection from L2((}) onto the space of Calderén transforms of square inte-
grable functions. Toeplita operators ancd Hankel operators are related in the
following way:
Tooby — Too Thy = Hyj Hi, - |

The ideas presented here are based on [Str] and [Z2]. In 1-3 below we as-
same that b is o bounded function uniformly continuous with respect to the
hyperbolic metric.

1. Let T denote the set of all possible limits of nets {re.} C© (BG)
such that d((a,€) — oo, where 7¢(7) = ¢y and BG denotes the Cech-Stone

G
s
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compactification of G. If 7o, — 7 € 7, then bo 7, — bo 7 uniformly on
compact sets.

9 Tt follows from the comments above that O is compact if and only if
for every 7 € T, bo 7 is constant.

3. If C} is compact, then

oo(Ty) = [ B(G\ D) =

w0

{e(r) rhor=c(r), 7€ T},

where ¢, denotes the essential spectrum.

4. If € is compact, then b is uniformly continuous with respect to the
hyperbolic metric, and T;,_j is compact.

5. Summarizing, for every bounded continuous function b for which C)
is compact,

ou(h) = (V5@ D) = {efr) :For = efr), 7 € T}

>0

5. A decomposition of oscillation spaces. In the following section
we show a decomposition theorem for the space BP = BPP for 1 < p < co.

For a hyperbolic ball D centered at ¢ we define the averaging operator
Ap with respect to D as

(5.1) Apb({) = D™ xp + b()
where b is a locally integrable function on G.
We want to prove that the operator norm of Ap on P(L ) is smaller

than 1 if a is close to 1 and b is close to 0. To be able to do that we need
the following two lemmas.

LeMMA 5.1. For every € > 0 there are a > 1, b > 0 such that the operator
norms of Ap on (L} ) and on I'(L3 ) are bounded by 1 +¢.

Proof. We prove the case {°(Lf ,); the other case follows by duality.
To simplify notation we write {U;} instead of {U2%}. Let

Fii(¢,m) = | DI xu, (Oxn (¢ n)xu, (m) -
‘We have

1/2
[ADblleezs 3 = SL‘}P( f iADblng")
]
U

< S‘;P Z 1 Fisll aquy, 2oy Hblhw(Lg'“) .
J

By the Schur lemma it is enough to show that there are ¢ > 1, # > 0 such
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that
(5.2) supz sup f Fy(C,nmydn<1l+e,
ey,
(5.3) suprup fF” ¢,md¢ <1l+e
; net); s

We prove (5.2). The proof of (5.3) is the same. Clearly
sup ff'” ¢,m)dn < | DM,
Ceti )
and

sup wa Gn)dp=0 ifd(U;,Us) > R,
Cel; U,

where R is the radius of the ball 2. We obtain
> sup f Fiy(¢,mdn <D™t > U] D17 Dryas
i ey, i
I
d(Us U )<R
where § = sup, diamU;. Since § — 0 as a — 1 and b — 0, the lemma follows.

LEMMA 5.2. The operator norm of Ap on L*(G) is strictly smaller
than 1.

Proof. The operator Ap is given by integration against the kernel
D[ xp (¢ ) -

Let w(¢) = 592, where ¢ = (u, 5). By the Schur lemma it is enough to prove
that

(5.4) DI~ [ xp(¢ n)w(n) dn < a(()
G!
for some ¢ < 1. Substituting variables in (5.4) we reduce it to
(5.5) DI [ win)dn<1.
D

To prove (5.5) we show that the functiqn
o |p|T? f s?d¢

attains a strict minimum at § = d/ 2. T].’llS glves (5. 5) gince the above func«
tion attains value 1 at 0. ‘ L :
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Tt is not hard to check that for D = Dg,

d
D= {C ={u,8) €G: guf + (s —coshR)? € sinhZR}

(see [B]). We cbtain

R
f sPd¢ =¢ f e6=4/23 (cosh R — cosha)¥? de
D -R

where the constant ¢ does not depend on . We compute the first two deriva-
tives of [, s7d(. We have

d R
a8 1{ sPd¢ = c_£ pelf=4/2)%(coshR - cosha)?/? dx

2 }:2
»&%—5 f sPd¢=c¢ f 228~/ (cosh R — cosha) /2 dz.
D ~R

Since the first derivative vanishes at # = d/2 and the second is positive, the

function [, s7d( attains a strict minimum at 8 = d/2, and (5.5) follows.

THEOREM 5.3. Let 1 < p < co. If a is sufficiently close fo 1 and b is
sufficiently close to 0, then the operaior norm of Ap on Ip(Lﬁ,a) s smaoller
than 1.

Proof. This statement follows immediately from Proposition 2.6 and
Lemmas 5.1, 5.2.

ProrosITION 5.4. If b€ BP, then
(i) |4pblsr < cllb]s»,
(i) 116~ Apbllin(zy < cf|b]|5=.
Proof. We omit the easy proof. .
THEOREM 5.5. Let 1 < » < oo and b € B?. There are by, € BF and

be € IP(L%) such that by, is harmonic, ||by/(gr < c|b[/», e |lin(ry S cfibllse
and

b=b, —~}~.Dc .
Moreover, this decomposition is unigque.

Proof. We show first the decomposition relative to a ball D, i.e. for b €

B there are b, b2 such that Apbf = b2, |25 < ||bllge, |62 |rirey <
CHE)HBP, and '

(5.6) o b= +8D .

Later we observe that b2 does not depend on D.
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By Proposition 5.4, b~ Apb € IP(L?). We write

n—1
b Apb= > Ah(b— Apb).
k=0

Theorem 5.3 shows that the series

> Ab (b~ Apb)
k

is absolutely convergent in i?’(Li“) if o and & are properly chosen. This
shows thal b — A%b converges in IP(L%) to some function b7 € IP(L?).
Clearly b-- A%b also converges in B?, thus A%b converges to some function
bP. Taking the limit with respect to » in the expression

b=ARKb+b— ARb

gives (5.6). The operator Ap is bounded on B?, s0 A pbf = b2 . The unique-
ness of the decomposition follows by an application of A} to both sides of
the equation and passing to the limit. _

We show that the decomposition b = b2 + b does not depend cn D.
Take two hyperbolic discs Dy, Dy centered at e. The operators Ap,, Ap,
commute since the corresponding functions are bi-invariant (see Corollary
5.2 in [H]). Let '

b=bj +b;
be the decomposition corresponding to Dy. We write

1,12, 112
bh — bh + bh,c

for the decomposition of b}, with respect to Dé. Since

1,2 _ . " :
Ap,Bh% = Ap, lim AD, b = lim Ap, A}, b}
s : : 1,2

= 11?1;1:1 A Ap, by, = hvrln Ap by = by
we have 4 leﬁ’?‘ = b}l’g and Ap, ib'lll’2 = bi’g. We may write
be=bp? b2, where by? € IP(L%).

By the uniqueness of the decomposition we obtain

bill == b:"-]’g .

Similarly we get bﬁ = b}l’z. This shows b = e, and we may drop the
dependence on D in the decomposition. Since by has the mean value property
with respect to all hyperbolic discs, it is harmonic. -

. Summarizing, if ¢ satisfies the assumption in Corollary 3.3 with M > 2d,
then for I < p < o0, Cp € S? if and only if b € B?, and this happens if and
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only if

K. Nowak

b=by + be

with by a P harmonic function and b, in IP(L?).
In particular, for Hankel operators on the classical weighted Bergman
spaces AP the above is true if § > 2.
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