

## STUDIA MATHEMATICA 105 (1) (1993)

## Some estimates concerning the Zeeman effect

by

## WIESLAW CUPALA (Wrocław)

Abstract. The Itô integral calculus and analysis on nilpotent Lie grops are used to estimate the number of eigenvalues of the Schrödinger operator for a quantum system with a polynomial magnetic vector potential. An analogue of the Cwikel–Lieb–Rosenblum inequality is proved.

**Introduction.** In an external magnetic field there occurs a splitting of energy levels. This phenomenon is known as the Zeeman effect. According to the Hamilton theory, the energy of a classical system with an electric potential V and a vector magnetic potential  $A = (A_1, \ldots, A_d)$  is, in the traditional notation,

(1) 
$$E = \frac{1}{2} \left( p - \frac{eA}{c} \right)^2 - V(q).$$

If, when studying the Zeeman effect, we neglect the spin and concentrate only on the splitting which results from the existence of the orbital momentum (this is possible in a strong magnetic field and called the Panchen-Back effect), then the behaviour of a quantum system in the external magnetic field can be described in terms of the spectral characteristics of the quantum-mechanical hamiltonian, the symbol of which is the right-hand side of the equation (1). Assuming that the electron charge e and the speed of light e are both equal to one, we can reduce the study of the Zeeman effect to the spectral analysis of the Schrödinger operator

$$H = -\frac{1}{2} \sum_{j=1}^{d} (\partial_j - iA_j)^2 + V.$$

Let P be the spectral measure of the operator H, and let  $N(H,\lambda)$  mean the dimension of the spectral projection  $P(-\infty,\lambda)$ . Let us consider the same quantum system without the external magnetic field. Let  $S=-\Delta+V$  be

<sup>1991</sup> Mathematics Subject Classification: Primary 35P15.

Key words and phrases: estimation of eigenvalues, Schrödinger operator.

the corresponding hamiltonian. The physical reality of the Zeeman effect allows us to ask whether or not

(2) 
$$N(H,\lambda) \le N(S,\lambda).$$

The aim of this paper is to demonstrate the following estimate, which is weaker than inequality (2): for  $V \geq 0$ ,

(3) 
$$N(H, \lambda)$$
  
 $\leq C|\{(q, p) : \max_{k, j} |\partial_k A_j(q) - \partial_j A_k(q)| \leq c(\lambda + 1), \ p^2 + V(q) < \lambda + 1\}|,$ 

where  $|\cdot|$  denotes the Lebesgue measure, the constant C depends only on the dimension d, and the constant c depends on d and on  $\max\{\deg(A_1),\ldots,\deg(A_d)\}$ . In the case A=0, this estimate is the well-known Cwikel-Lieb-Rosenblum inequality [10].

If we denote the right side of (3) by  $M(H, \lambda)$  then we get a "substitute" of inequality (2):

(4) 
$$M(H,\lambda) \le M(S,\lambda).$$

All the theorems of this paper are concerned with electric potentials V and magnetic vector potentials for which  $C_c^{\infty}$  is the essential domain of H (this condition has been thoroughly explored in [9]).

The Feynman–Kac formula. Let us consider a nilpotent Lie group G with Lie algebra  $\mathfrak{g}$ . Let  $X, \ldots, X_d$  be left-invariant vector fields on G such that

$$\operatorname{Lie}\{X_1,\ldots,X_d\}=\mathfrak{g}.$$

If the dimension of G is n then, in fixed coordinates  $(x_1, \ldots, x_n)$ , we can write

$$X_j = \sum_{i=1}^n q_{ji} \partial_i$$

with  $q_{ji}$  (j = 1, ..., d, i = 1, ..., n) being polynomials on G. Let us set (for i = 1, ..., n)

$$a_i = \frac{1}{2} \sum_{j=1}^d X_j q_{ji}$$
.

DEFINITION 1. The weak Wiener process (generated by the fields  $X_1, \ldots, X_d$ ) starting from the point  $x_0 \in G$  is the diffusion process  $\xi(t) = (\xi_1(t), \ldots, \xi_n(t)), t \geq 0$ , defined as the strong solution of the stochastic differential equation

(1) 
$$d\xi_i = a_i(\xi(t)) dt + \sum_j q_{ji}(\xi(t)) dW_j(t),$$

where  $W_1(t), \ldots, W_d(t)$  are independent copies of the standard Wiener process on the real line,  $i = 1, \ldots, n$ , and the initial condition is  $\xi(0) = x_0$ .

In order to prove the existence of the strong solution we choose triangular coordinates on G (which exist by the Engel theorem [2]). In such coordinates,  $q_{ji}$  and  $a_i$  depend only on the variables  $x_1, \ldots, x_{i-1}$ , for all  $j = 1, \ldots, d$ ,  $i = 1, \ldots, n$ , and equation (1) can be solved "step by step". The resulting solution is independent of the choice of coordinates. To prove this we use the Itô formula [1]. A simple calculation shows that for any twice differentiable function  $\phi$  on G, we have the stochastic differential equation

(2) 
$$d\phi(\xi(t)) = \mathcal{L}\phi(\xi(t))dt + \sum_{j} X_{j}\phi(\xi(t)) dW_{j}(t),$$

where  $\mathcal{L} = \frac{1}{2} \sum_{j} X_{j}^{2}$ . If  $\phi$  is a coordinate on G, then (2) reduces to (1).

The diffusion  $\xi(t)$  is a time-homogeneous Markov process. If we denote by  $\xi_x(t)$  the weak Wiener process starting from  $x \in G$ , then the operators defined by the equation

(3) 
$$T_t f(x) = E f(\xi_x(t))$$

form a semigroup (because of the homogeneity in time). From (2) and (3) we obtain

$$T_t f(x) = \int\limits_0^t E \mathcal{L} f(\xi_x(s)) \, ds \, .$$

Thus  $\mathcal{L}$  is the infinitesimal generator of the semigroup  $T_t$ .

The term "Wiener process" is justified here by the properties of the semigroup  $T_t$  which are parallel to those of the heat semigroup. For example,  $T_t f = f * p_t$  with a certain smooth function  $p_t$ , the differential and growth properties of which are similar to those of the Gaussian kernel [4].

If  $\pi$  is a unitary representation of the group G and  $\xi(t)$  is the weak Wiener process starting from the unity of G, then

$$\pi_{p_t} = E \pi_{\xi(t)} \,.$$

If we set  $\pi_{\mathcal{L}} = H$ , then (4) may be symbolically rewritten as

$$\exp(-tH) = E\pi_{\xi(t)}.$$

Let us assume that  $\pi$  is monomial, i.e., it is the representation induced by a one-dimensional representation of a subgroup  $G_1$  of G. If we denote by S the space of right cosets of  $G_1$  in G and by  $L^2(S)$  the space of square integrable functions on S (relative to the G-invariant measure), then we can express  $\pi_x f$ , where  $x \in G$  and  $f \in L^2(S)$ , using the formula

(5) 
$$\pi_x f(s) = \exp(i\phi(s, x)) f(sx),$$

where sx denotes the action of  $x \in G$  on  $s \in S$  and  $\phi$  is a function defined on  $S \times G$  with the property

(6) 
$$\phi(s,x) + \phi(sx,y) = \phi(s,xy).$$

LEMMA 1. If  $\xi(t)$  is the weak Wiener process starting from the unity of the group G, and V is a function on S such that  $\int_0^t V(s\xi(u)) du \ge a$  for  $t \ge 0$ ,  $s \in S$  and some  $a \in \mathbb{R}$  with probability 1, then the equation

$$T_t f(s) = E \pi_{\xi(t)} f(s) \exp \Big( - \int\limits_0^t V(s \xi(u)) \, du \Big)$$

defines a semigroup with generator  $\pi_{\mathcal{L}} + V$ .

Proof. Let  $(\xi_1(r))_{r\geq 0}$  and  $(\xi_2(r))_{r\geq 0}$  be two independent copies of the Wiener process starting from the unity. Because  $\mathcal{L}$  commutes with left translations, the Markovian property and time-homogeneity imply that the random element  $\xi_1(r_1)\xi_2(r_2)$  has the same distribution as  $\xi_1(r_1+r_2)$ . Therefore

$$T_{t}T_{r}f(s) = E \exp(i\phi(s,\xi_{1}(t))T_{r}f(s\xi_{1}(t)) \exp\left(-\int_{0}^{t} V(s\xi_{1}(u)) du\right)$$

$$= E \exp(i\phi(s,\xi_{1}(t)\xi_{2}(r)))f(s\xi_{1}(t)\xi_{2}(r))$$

$$\times \exp\left(-\int_{0}^{t} V(s\xi_{1}(u)) du - \int_{0}^{r} V(s\xi_{1}(t)\xi_{2}(u)) du\right)$$

$$= E \exp(i\phi(s,\xi_{1}(t+r)))$$

$$\times \exp\left(-\int_{0}^{t+r} V(s\xi_{1}(u)) du\right)f(s\xi_{1}(t+r)) = T_{t+r}f(s).$$

It follows that the operators  $(T_t)_{t\geq 0}$  form a semigroup. Applying the Itô formula to the process defined on  $G\times \mathbb{R}$  by the stochastic differential equations

$$d\eta_i = d\xi_i$$
 for  $i = 1, \dots, n$ ,  $d\eta_{n+1}(t) = V(s\xi_1(t)) dt$ 

and to the function  $F(g,r) = \pi_g f(s) \exp(-r)$  we can prove that the generator of this semigroup is  $\pi_{\mathcal{L}} + V$ .

According to the Campbell–Hausdorff formula [2], for any polynomial w on  $\mathbb{R}^d$  and  $x \in \mathbb{R}^d$ ,

(7) 
$$\exp(\partial_x - iw)f(y) = \exp\left(-i\sum_{k=0}^N c_k \partial_x^k w(y)\right) f(y+x),$$

where  $\partial_x$  is the directional derivative,  $c_0, \ldots, c_N$  are the Campbell-Hausdorff constants, and N depends on the degree of w.

Let  $A = (A_1, ..., A_d)$  be a polynomial magnetic vector potential and let M be the smallest  $\mathbb{R}^d$ -invariant linear space of polynomials that contains  $\partial_k A_i - \partial_j A_k$  for  $1 \leq j, k \leq d$ .

Let us introduce the notation:

$$A_x = \sum_k c_k \sum_j x_j \partial_x^k A_j, \quad \sigma_x F(y) = F(x+y), \quad P_{x,y} = A_x + \sigma_x A_y - A_{x+y}.$$

Defining multiplication on  $\mathbb{R}^d \times M$  by

$$(x,w)(y,v) = (x+y,w+\sigma_x v + P_{x,y}),$$

we obtain a nilpotent Lie group G whose Lie algebra is isomorphic to  $\text{Lie}\{\partial_j - iA_j : 1 \leq j \leq d\}$ . M may be treated as an abelian normal subgroup of G. The representation  $\pi$  of G induced by the one-dimensional representation

$$w \mapsto \exp(-iw(0))$$

of the subgroup M acts on  $L^2(\mathbb{R}^d)$  and, for  $f \in L^2(\mathbb{R}^d)$ ,

$$\pi_{(x,w)}f(y) = \exp(-iA_x(y) - iw(y))f(x+y).$$

Let  $X_1, \ldots, X_d$  be the left-invariant vector fields on G corresponding to the operators  $\partial_1 - iA_1, \ldots, \partial_d - iA_d$  and let  $\mathcal{L} = -2^{-1} \sum_j X_j^2$ . Then

$$\pi_{\mathcal{L}} = -2^{-1} \sum_{j} (\partial_j - iA_j)^2.$$

Solving equation (1) with the initial condition  $\xi(0) = 0$  we see that  $\xi(t) = (W(t), w_t)$ , where W(t) is the standard Wiener process on  $\mathbb{R}^d$  and  $w_t$  a certain stochastic process on M. Using the notation from the above construction we may rewrite Lemma 1 as follows:

PROPOSITION 1. If  $A=(A_1,\ldots,A_d)$  is a polynomial magnetic vector potential,  $H_0=-2^{-1}\sum_j(\partial_j-iA_j)^2$ , V is a function on  $\mathbb{R}^d$  such that  $\int_0^t V(x+W(s))\,ds>-\infty$  with probability 1, for any  $t\geq 0$  and  $x\in\mathbb{R}^d$ ,  $T_t=\exp(-t(H_0+V))$ , and  $\varrho_t=A_{W(t)}+w_t$ , then

$$T_t f(x) = E \exp(-i\varrho_t(x)) \exp\Big(-\int\limits_0^t V(x+W(s)) ds\Big) f(x+W(t))$$

for  $f \in L^2(\mathbb{R}^d)$ .

The Cwikel-Lieb-Rosenblum inequality. We now estimate the number  $N(H_0 + V, \lambda)$ . In the case  $A \equiv 0$ , this result is due to Cwikel [3], Lieb [5], and Rosenblum [8]. Our proof is an adaptation of Lieb's method published in [7].

Zeeman effect

PROPOSITION 2. For  $d \geq 3$  there is a constant c = c(d) such that for any polynomials  $A_1, \ldots, A_d$  on  $\mathbb{R}^d$  and any nonpositive potential  $V \in L^{\infty}$ ,

$$N(H_0 + V, 0) \le c \int |V(x)|^{d/2} dx$$
.

Proof. First we prove the inequality in the case d=3. Then we describe the changes which are sufficient for the proof in the general case. We assume that  $V \in C_c^{\infty}$ . The result can then be easily extended to  $L^{\infty}$ .

We set F = -V and, for  $\lambda < 0$ ,  $\lambda = -\kappa^2$ . As the first step we show that

(1) 
$$N(H_0 - F, \lambda) \le 2 \operatorname{Tr}(F((H_0 + \kappa^2)^{-1} - (H_0 + F + \kappa^2)^{-1}))$$
.

For a selfadjoint operator H we define the nth characteristic number as

$$\mu_n(H) = \sup_{\dim K = n-1} \inf_{\substack{f \in D(H) \\ F \perp K, ||f|| = 1}} (Hf, f).$$

If  $||f_1|| = ||f_2|| = 1$  then the functions defined by  $t \mapsto ((H_0 - tF)f_i, f_i)$ , t > 0, i = 1, 2, are equicontinuous. Hence  $t \mapsto \mu_n(H_0 - tF)$  defines a continuous function  $\mu_n(t)$ . Since  $V \le 0$  we have  $\mu_n(t+h) < \mu_n(t)$ . Using the minimax principle [7], we see that  $N(H_0 - F, \lambda) = |\{n : \mu_n(1) < \lambda\}| = |\{n : \mu_n(t) = \lambda \text{ for some } 0 < t < 1\}|$  for  $\lambda < 0$ .

Let  $\eta$  be a function which satisfies the equation

$$(H_0 - tF)\eta = \lambda \eta$$
.

Then  $\psi = F^{1/2}\eta$  satisfies

$$F^{1/2}(H_0 + \kappa^2)^{-1} F^{1/2} \psi = t^{-1} \psi ,$$
  
$$F^{1/2}(H_0 + F + \kappa^2) F^{1/2} \psi = (1+t)^{-1} \psi .$$

Therefore, if we set

$$K = F^{1/2}[(H_0 + \kappa^2)^{-1} - (H_0 + F + \kappa^2)^{-1}]F^{1/2}$$

then

$$K\psi = [t^{-1} - (1+t)^{-1}]\psi$$
.

Hence,  $N(H_0+V,\lambda)$  does not exceed the number of eigenvalues of K greater than 1/2. Since K is positive,

$$N(H_0 + V, \lambda) \leq 2 \operatorname{Tr}(K)$$

which is equivalent to (1).

The next step is to show the inequality

$$N(H_0+V,0) \leq 2\int\limits_0^\infty {
m Tr}(F(\exp(-tH_0)-\exp(-t(H_0+F))))\,dt\,.$$

Formally, (2) is a consequence of (1) and the Laplace transform

$$(\kappa^2 + H)^{-1} = -\int_0^\infty \exp(-t(\kappa^2 + H)) dt$$
.

To complete such a formal proof we must show that we can change the order of trace and integral. For this purpose, we notice that  $F \exp(-rH_0)$  has a square integrable kernel. This is evident because  $H_0 = \pi_{\mathcal{L}}$ , where  $\pi$  and  $\mathcal{L}$  denote the representation and the differential operator explored in the proof of Proposition 1. The assumption  $F \geq 0$  implies that  $F^{1/2} \exp(-r(H_0 + F))$  is also a Hilbert-Schmidt operator. Therefore, the operator

$$A = \exp(-s(H_0 + F))F \exp(-(t - s)(H_0 + F))$$

is of trace class for any t > s > 0.

Proposition 1 and the Markov property lead to

(3) 
$$Af(x) = EF(x+W(s)) \exp\left(-\varrho_t(x) - \int_0^t F(x+W(r)) dr\right) f(x+W(t))$$
.

Let  $\Omega_t$  be the set of trajectories of a Wiener process  $(W(r))_{0 \le r \le t}$  on  $\mathbb{R}^d$  starting from x. We can decompose the Wiener measure on  $\Omega_t$  into a family of conditional Wiener measures  $\{\mu_{x,y,t}: y \in \mathbb{R}^d\}$  in such a way that for any y,  $\mu_{x,y,t}$  is supported by  $\{\omega \in \Omega_t: \omega(t) = y\}$ . According to Definition 1, a weak Wiener process on a nilpotent Lie group is the strong solution of a stochastic differential equation. We can therefore define the process  $\varrho_t(x)$  on  $\Omega_t$ . Using (3), we can express the kernel of A as

$$(4) \quad A(x,y) = \int F(\omega(s)) \exp\left(-i\varrho_t(x,\omega) - \int\limits_0^t F(\omega(r)) dr\right) d\mu_{x,y,t}(\omega).$$

An elementary reasoning shows that A is a continuous function. As we have shown above,  $\text{Tr}(A) < \infty$ . Hence

$$\operatorname{Tr}(A) = \int A(x,x) dx$$
,

and the proof of (2) is complete.

Now, we notice that

$$\operatorname{Tr}(F\exp(-t(H_0+F)))$$

$$= t^{-1} \int_{0}^{t} \operatorname{Tr}(\exp(-s(H_0 + F))F \exp(-(s - t)(H_0 + F))) ds.$$

Let 
$$G(u) = u(1 - \exp(-u))$$
. Now, (2) and (4) imply that

Zeeman effect

$$\begin{split} &N(H_0+V,0)\\ &\leq 2\Big|\int\limits_0^\infty dt \int dx \int d\mu_{x,x,t}(\omega) \, t^{-1} \exp(-i\varrho_t(x,\omega)) G\Big(\int\limits_0^t F(\omega(s)) \, ds\Big)\Big|\\ &\leq 2\int\limits_0^\infty dt \int dx \int d\mu_{x,x,t}(\omega) \, t^{-1} G\Big(\int\limits_0^t F(\omega(s)) \, ds\Big) \, . \end{split}$$

Thus the factor  $\exp(-i\varrho_t(x))$  (which represents the external magnetic field) does not affect our estimate.

We can rewrite the above estimate as

(5) 
$$N(H_0 + V, 0) \le 2 \int_0^\infty dt \int dx \int d\mu_{0,0,t}(\omega) t^{-1} G\left(\int_0^t F(x + \omega(s)) ds\right).$$

Let  $g(u) = u(1 - \exp(-u))$  for  $0 < u \le 2$ , g(u) = G(2) + (u - 2)G'(2) for  $2 \le u$ . Then, noticing that G'' > 0 on (0, 2), and G'' < 0 on  $(2, \infty)$ , we see that

(6) 
$$\begin{cases} G(u) \leq g(u), \\ g \text{ is a convex function,} \\ g(u) \sim u^2 \text{ as } u \to 0, \\ g(u) \sim u \text{ as } u \to \infty. \end{cases}$$

So, by the Jensen inequality,

$$G\Big(\int\limits_0^t F(x+\omega(s))\,ds\Big) \leq t^{-1}\int\limits_0^t \,g(tF(x+\omega(s)))\,ds\,,$$

and, noticing that  $\int d\mu_{0,0,t} = (4\pi t)^{-3/2}$ , we conclude that

$$N(H_0+V,0) \le c \int |V(x)|^{3/2} dx$$
,

where  $c = 2(4\pi)^{-3/2} \int_0^\infty u^{-5/2} g(u) du$  is finite by (6).

For d=3, the proof is complete. For d>3 the proof is incorrect—we have to replace  $\int_0^\infty u^{-5/2}g(u)\,du$  by  $\int_0^\infty u^{-d/2-1}g(u)\,du$ , which is infinite. But, if we use, instead of K, the operator K' defined by

$$K' = F^{1/2} \sum_{j=0}^{m} (-1)^{j} {m \choose j} (H_0 + jF + \kappa^2)^{-1}$$

for a fixed natural m, then

$$K'\psi = t^{-1}R_m(t)\psi,$$

with  $R_m$  defined by

$$R_m(y) = \sum_{j=0}^m (-1)^j \binom{m}{j} (1+jy)^{-1} = \int_0^\infty e^{-s} (1-e^{-sy}) \, ds.$$

 $R_m$  is a monotone function. So, if t runs over the interval (0,1), then  $t^{-1}R_m(t)$  runs from  $\infty$  to  $(m+1)^{-1}$ . Hence, we can change inequality (1) to

$$(1') N(H_0 + V, 0) \le (m+1) \operatorname{Tr} \left( \sum_{j=0}^m (-1)^j \binom{m}{j} (H_0 + jF + \kappa^2)^{-1} F \right).$$

In the same way as in the case d = 3 we prove that (1') implies

 $(5') N(H_0 + V, 0)$ 

$$\leq (m+1)\int\limits_0^\infty dt\int dx\int d\mu_{0,0,t}(\omega)\,t^{-1}G_m\Big(\int\limits_0^t F(x+\omega(s))\,ds\Big)\,,$$

where  $G_m(y) = y(1 - e^{-y})^m$ . We notice that there exists  $y_m$  such that G'' > 0 for  $y \in (0, y_m)$  and G'' < 0 for  $y \in (y_m, \infty)$ . We define

$$g_m(y) = \begin{cases} G_m(y) & \text{for } 0 < y \le y_m, \\ G_m(y_m) + (y - y_m)G'(y_m) & \text{for } y_m < y. \end{cases}$$

Then  $g_m \sim y^{m+1}$  as  $y \to 0$ , and  $g_m \sim y$  as  $y \to \infty$ . We set

$$c_{dm} = 2(4\pi)^{-d/2} \int_{0}^{\infty} y^{-d/2-1} g_m(y) dy.$$

We can see that this constant is finite when m > d/2 - 1 and conclude that

$$N(H_0 + V, 0) \le c_{dm} \int |V(x)|^{m/2} dx$$

COROLLARY. For  $d \geq 3$  there is a constant c = c(d) such that, for any polynomials  $A_1, \ldots, A_d$  on  $\mathbb{R}^d$ , a potential  $V \geq 0$  and any  $\lambda \geq 0$ ,

$$N(H_0 + V, \lambda) \le c |\{(x, \xi) : \xi^2 + V(x) < \lambda\}|.$$

Proof. Set  $V_{\lambda} = \min(V - \lambda, 0)$ . We have

$$((H_0 + V)\phi, \phi) \ge \lambda \|\phi\|^2 + ((H_0 + V_\lambda)\phi, \phi),$$

so the minimax principle [7] and Proposition 2 prove the Corollary.

The uncertainty principle and the final estimate. For selfadjoint operators F and H with commutator [F,H]=iM, if M is selfadjoint, we have the uncertainty principle:

$$||H\phi||^2||F\phi||^2 \ge 4^{-1}(M\phi,\phi)^2$$
.

Let us set  $D_k = i\partial_k + A_k$  (k = 1, ..., d). Then  $[D_k, D_j] = i(\partial_k A_j - \partial_j A_k)$ . The uncertainty principle implies that

$$\sum_{k,j} \|D_k \phi\|^2 \|D_j \phi\|^2 \geq 4^{-1} \sum_{k,j} \left( \int \|(\partial_k A_j - \partial_j A_k) |\phi|^2 
ight)^2.$$

(2799)

Hence, there exists a constant c = c(d) such that

$$\left(\sum_{k=1}^{d} D_k^2 \phi, \phi\right) \ge c \sum_{k>j} \left| \int \left(\partial_k A_j - \partial_j A_k\right) |\phi|^2 \right|.$$

In the case of a polynomial magnetic vector potential, there is a sharper version of this inequality.

PROPOSITION 3. Let  $A_1, \ldots, A_d$  be polynomials and  $H_0 = -2^{-1} \sum_k (\partial_k - iA_k)^2$ . There is a constant c such that

$$(H_0\phi,\phi) \ge c \int \sum_{k>j} |\partial_k A_j - \partial_j A_k| |\phi|^2 - ||\phi||^2$$

for  $\phi \in C_c^{\infty}$ . The constant c depends only on d and on the largest of the degrees of  $A_1, \ldots, A_d$ .

Proof. Let  $\mathfrak g$  be a free nilpotent Lie algebra with free generators  $X_1,\ldots,X_d$  and with nilpotence class N. Let  $\mathcal L=-2^{-1}\sum_k X_k^2$  be the sublaplacian on  $G=\exp(\mathfrak g)$ . By Folland [4], there exists a constant  $c_1>0$  such that

(1) 
$$||[X_j, X_k]\phi|| \le c_1 ||(\mathcal{L} + 1)\phi||,$$

for  $j, k = 1, \ldots, d, \phi \in C_c^{\infty}(G)$ .

Let N (the nilpotence class of G) be so large that

$$X_j \mapsto \partial_j - iA_j, \quad j = 1, \ldots, d,$$

defines a representation  $\pi$  of G. (1) implies that

$$\|\pi_{[X_j,X_k]}f\| \le c_1 \|\pi_{\mathcal{L}+1}f\|$$

for  $\phi \in C_c^{\infty}(\mathbb{R}^d)$ . Thus

$$((H_0+1)^2 f, f) \ge c_2(|\partial_k A_j - \partial_j A_k|^2 f, f)$$

This implies (see [6]) that

$$((H_0+1)f, f) \ge c_3(|\partial_k A_j - \partial_j A_k|f, f),$$

which completes the proof.

THEOREM. For  $d \geq 3$  and any natural number N there exist constants C = C(d) and c = c(d, N) such that for any polynomials  $A_1, \ldots, A_d$  on  $\mathbb{R}^d$ , any potential  $V \geq 0$  and any  $\lambda \geq 0$ , if  $\max\{\deg(A_1), \ldots, \deg(A_d)\} \leq N$  then

$$\begin{split} &N(H_0+V,\lambda)\\ &\leq C \Big| \Big\{ (x,\xi): \sum_{k>j} |\partial_k A_j(x) - \partial_j A_k(x)| \leq c(\lambda+1), \ \xi^2 + V(x) < \lambda+1 \Big\} \Big| \ . \end{split}$$

Proof. Let c be the constant defined by Proposition 3. Fix  $\lambda > 0$  and put

$$V_{\lambda}(x)=0 \quad ext{if either } \sum_{k>j} \left|\partial_k A_j(x) - \partial_j A_k(x) 
ight| > (2/c)(\lambda+1) ext{ or } V(x) > \lambda \,,$$

 $V_{\lambda}(x) = V(x) - \lambda - 1$  for the remaining x.

We have

$$((H_0 + V)f, f) = ((2^{-1}H_0 + V - V_\lambda)f, f) + ((2^{-1}H_0 + V_\lambda)f, f).$$

By Proposition 3,

$$((2^{-1}H_0 + V - V_{\lambda})f, f) \ge \lambda ||f||^2$$
.

Thus, using the minimax principle, we see that

$$N(H_0 + V, \lambda) \leq N(2^{-1}H_0 + V_{\lambda}, 0)$$

and Proposition 2 finishes the proof.

## References

- L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York 1974.
- [2] N. Bourbaki, Groupes et Algèbres de Lie, Hermann, Paris 1971.
- [3] M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. 106 (1977), 93-100.
- [4] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207.
- [5] E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, unpublished.
- [6] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216.
- [7] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Academic Press, 1978.
- [8] G. W. Rosenblum, The distribution of the discrete spectrum of singular differential operators, Dokl. Akad. Nauk SSSR 202 (1972), 1012-1015 (in Russian).
- B. Simon, Schrödinger operators with singular magnetic vector potentials, Math. Z. 131 (1973), 361-370.
- [10] —, Functional Integration and Quantum Physics, Academic Press, 1979.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WROCŁAW BRANCH
KOPERNIKA 18
51-617 WROCŁAW, POLAND

Received April 23, 1991 Revised version June 8, 1992 and February 8, 1993