icm

STUDIA MATHEMATICA 105 (1) (1963)

Some estimates concerning the Zeeman effect
by

WIESLAW CUPALA (Wroctaw)

Abstract. The Itd integral calculus and analysis on nilpotent Lie grops are used to
estimate the number of eigenvalues of the Schrédinger operator for a quantum system
with a polynomial magnetic vector potential. An analogue of the Cwikel-Lieb-Rosenblum,
inequality is proved.

Introduction. In an external magnetic field there cccurs a splitting of
energy levels. This phenomenon is known as the Zeeman effect. According
to the Hamilton theory, the energy of a classical system with an slectric
potential ¥V and a vector magnetic potential A = (4,,..., Ay) is, in the
traditional notation,

) -1(-2) v

If, when studying the Zeeman effect, we neglect the spin and conecentrate
only on the splitting which results from the existence of the orbital momen-
tum (this is possible in a strong magnetic field and called the Panchen-Back
effect), then the behaviour of a quantum system in the external magnetic
field can be described in terms of the spectral characteristics of the quantum-~
mechanical hamiltonian, the symbol of which is the right-hand side of the
equation (1). Assuming that the electron charge e and the speed of light ¢
are both equal to one, we can reduce the study of the Zeeman effect to the
gpectral analysis of the Schridinger operator

Ly AN+ V
Hm_iz(aj—a PP +V.
Ju=l

Let P be the spectral measure of the operator H, and let N(H, \) mean
the dimension of the spectral projection P(—00, A). Let us consider the same
quantum system without the external magnetic field. Let S = ~A +V be
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the corresponding hamiltonian. The physical reality of the Zeeman effect
allows us to ask whether or not

2) N(H, 2) < N(S,\).

The aim of this paper is to demonstrate the following estimate, which is
weaker than inequality {2): for V >0,

(3) N(H,N
< Cl{(gq,p): I%E;XWL:A;'(Q) — 8 An(@)| L e(A+1), PP+ V(g < A+1},

where | - | denotes the Lebesgue measure, the constant C depends only on
the dimension d, and the constant ¢ depends on d and on max{deg(A;),...
...,deg{Ag)}. In the case A = 0, this estimate is the well-known Cwikel-
Lieb—Rosenblum inequality [10].

If we denote the right side of (3) by M (H, A) then we get a “substitute”
of inequality (2}:
(4) M(H,\) < M(S,2).

All the theorems of this paper are concerned with electric potentials V

and magnetic vector potentials for which C2° is the essential domain of H
(this condition has been thoroughly explored in [9]).

The Feynman-—-Kac formula. Let us consider a nilpotent Lie group G
with Lie algebra g. Let X,..., X be left-invariant vector fields on & such
that

Lie{Xy,..., X3z} =g.

If the dimension of & is n then, in fixed coordinates (zy,...,z,), we can
write

Xi=) a0
f==]

with ¢;; (7 =1,...,d,1=1,...,n) being polynomials on G.
Let us set (fori=1,...,n)

d
1
@i =g E 1:Xiji-
F=1

DermNITION 1. The week Wiener process (generated by the fields
X1,...,Xq) starting from the point g € G is the diffusion process £(t) =
(€1(t), ..., En(t)), t > 0, defined as the strong solution of the stochastic

differential equation

) g = a60) dt + 3 a4(€) AWt
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where Wy (2),..., Wa(t) are independent copies of the standard Wiener pro-
cess on the real line, i = 1,...,n, and the initial condition is £(0) = =¢.

In order to prove the existence of the strong solution we choose triangular
coordinates on G (which exist by the Engel theorem [2]). In such coordinates,
gj: and a; depend only on the variables zy,...,2;_q, for all § = 1,...,4d,
i=1,...,n, and equation (1) can be solved “step by step”. The resulting
solution is independent of the choice of coordinates. To prove this we use the
It8 formula [1]. A simple calculation shows that for any twice differentiable
function ¢ on G, we have the stochastic differential equation

(2) AP0} = LHEW)dt + Y X30(6(8)) aW;(2),

where £ =} 57, X7. If ¢ is a coordinate on G, then (2) reduces to (1).
The diffusion £(1) is a time-homogeneous Markov process. If we denote

by &,(t) the weak Wiener process starting from z € G, then the operators

defined by the equation '

(3) Tif(z) = Bf(&(1)

form a semigroup (because of the homogeneity in time). From (2) and (3)
we obtain

Tif(z)= [ ELF(&(s))ds.
0

Thus £ is the infinitesimal generator of the semigroup 7%.

The term “Wiener process” is justified here by the properties of the
semigroup T} which are parallel to those of the heat semigroup. For example,
Tyf = f # p, with a certain smooth function py, the differential and growth
properties of which are similar to those of the Gaussian kernel [4].

If 7 is a unitary representation of the group @G and £(t) is the weak
Wiener process starting from the unity of G, then

(4) T = B -
If we set wp = H, then (4) may be symbolically rewritten as
CX})("“iIH) = ET[‘E“) . .
Let us asswme that 7 is monomial, i.e., it is the representation induced
by a one-dimensional representation of a subgroup G of G. If we denote
by S the space of right cosets of Gy in G and by L?(S) the space of square

integrable functions on § (relative to the G-invariant measure), then we can
express 7 f, where z € G and f € L*(§), using the formula

(5) Ty f(8) = EXp(é@S(S:m))f(Sm)a
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where sz denotes the action of z € G on s € § and ¢ is a function defined
on § x G with the property

(6) QS(S,.T) + ¢(sz, y) = ¢(S’my) :

LEMMA 1. If £(%) is the weak Wiener process starting from the unity of
the group G, and V' is e function on § such that fot V{(sé(w))du > a for
t >0, s€ 8 and some a € R with probability 1, then the eguation

Tif(s) = Bmeof(s)exp (= [ V(sé(w) du)
0

defines a semigroup with generator vy + V.

Proof. Let (§1(r))r>0 and (€2(r))r>0 be two independent copies of the
‘Wiener process starting from the unity. Because £ commutes with left trans-
lations, the Markovian property and time-homogeneity imply that the ran-
dom element & (1)€a(rz) has the same distribution as &3 (r; +73). Therefore

LT 5(s) = Eexplig(s, 1() LA (s exp (= [ V(sta(u)) du)
_ 0
= L exp(ig(s, £1(t)éa(r)) F(s61(t)a(r))
xexp(~ [ Vistaw)du~- [ V(sti(t)éa(u))du)
0 0

= Eexplid(s, &1+ 1))
Ly

xoxp(~ [ V(s6() du) flsga(t+1) = Teunf(s).
Q

It follows that the operators (T})i»o form a semigroup. Applying the

It6 formula to the process defined on G x R by the stochastic differential
equations

dn; = dtf.; for i = 1,...,n, dﬂn+1(t) = V(g‘fl('l;)) dt

and to the function F(g;r) = =, f(s) exp(—r) we can prove that the gener-
ator of this semigroup is 7z -~ V.

According to the Campbell-Hausdorff formula [2], for any polynomial w
on R% and z € R4,

N
(7) exp(0s — i) f(y) = exp (~ iy ckafw(y))f (y+=),

k=0

where 8, is the directional derivative, cg, .. ., cx are the Campbell-Hausdorff
constants, and N depends on the degree of w.
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Let A = {Ay,...,Aq) be a polynomial magnetic vector potential and let
M be the smallest Ré-invariant linear space of polynomials that contains
akAj - 5‘3'14;0 for 1 <4,k < d.

Let us introduce the notation:

Ae = ck y w0545, ouF(y)=Flz+y), Poy=As+0sdy—Anyy.
k i

Defining multiplication on RY x M by

(@, w)(y,v) = (z+ypw+ozv+ Foy),
we obtain a nilpotent Lie group G whose Lie algebra is isomorphic to
Lie{d; ~id; : 1 £ § £ d}. M may be treated as an abelian normal subgroup
of G, The representation m of G induced by the one-dimensional represen-
tation

w i exp{—iw(0))

of the subgroup M acts on L2(R%) and, for f € L*(R%),

My f (1) = exp(—1 4, (y) ~ dw(y)) f(= + ) -

Let X1,..., X4 be the lefi-invariant vector fields on G corresponding to
the operators 8y — 441, ...,0; — iAg and let £ = —271 ¥ X2. Then

L = '—2_1 Z(OJ nd ZAJ)Z
J

Solving equation (1) with the initial condition £(0) = 0 we see that { (t) =
(W(t), w:), where W (¢) is the standard Wiener process on R? and w; a
certain stochastic process on M. Using the notation from the above con-
struction we may rewrite Lemma 1 as follows:

ProposiTiON 1. If A = (Ay,...,44) is a polynomial magnetic vector
potential, Hy = —27137,;(0; — i4;)%, V is o function on R* such that
JiV(z -+ W(s))ds > —oo with probability 1, for any t = 0 and z € RY,
Ty = exp(—t(Ho -+ V), and gy = Aw ) + Wi, then

ﬂ .
T,f(s) = Bexp(—ii@)exp (~ [ V(o+W(s))ds) fla + W (1)
0
for f € LE(RY).
The Cwikel-Lieb~Rosenblum inequality. We now estimate the

number N(Hy + V; A). In the case A = 0, this result is due to Cwikel [3],
Lieb [5], and Rosenblum [8]. Our proof is an adaptation of Lieb’s method

published in [7].
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PROPOSITION 2. For d > 3 there is o constant ¢ = c(d) such that for any
polynomials Ay, ..., Ay on R® and any nonpositive potential V & L,
NHy+V,0)<c [ V()" de.

Proof. First we prove the inequality in the case d = 3. Then we describe
the changes which are sufficient for the proof in the general case. We assume
that V € C2°. The result can then be easily extended to L.

We set F' = -V and, for A < 0, A = —x%. As the first step we show that
(1) N(Ho—F,2) <2Tx(F((Ho+ x*)™Y — (Hy -+ F +£2)71)).

For a selfadjeint operator H we define the nth characteristic number as

H) = su inf H .
pon(H) dimKam_t  JEDUH) (H1.f)
FLE [|fl=1

I |ul) = || f2ll = 1 then the functions defined by ¢ — ((Hy — tE) fi, £,
t > 0,4i = 1,2, are equicontinuous. Hence ¢ — pu,(Hy — tF) defines a
continuous function p,(£). Since V < 0 we have pun (i + h) < u,(2). Using
the minimax principle [7], we see that N(Ho — F,\) = [{n : u,(1) < A}| =
[{n: pn(t) = X for some 0 < ¢ < 1} for A < 0.

Let n be a function which satisfies the equation

(HO --'rfF)T]Z A’F].
Then 9 = F1/2y satisfies
Fl/?(HO + ﬁ‘z)—lFl/zw - t—lw ’
F'2(Hy+ F+ &) F 2 = (1 +8)" 1.
Therefore, if we set
K = F'P[(Hy+ 57" — (Hy + F + 5?) "1 p1/2
then
Kip=[t74 ~ (L+¢)7 1.

Hence, N(Hg+V, A) does not exceed the number of eigenvalues of K greater
than 1/2. Sinee K is positive,

N(Ho+V,\) < 2Tr(K),

which is equivalent to (1).
The next step is to show the inequality

N(Ho+V,0) £ 2 [ Tr(Flexp(—tHy) ~ exp(—t{Ho + F)))) dt.
o]
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Formally, (2) is a consequence of (1) and the Laplace transform

o

(k2 4+ H) b= - f exp(—t(k? + H)) dt.

0
To complete such a formal proof we must show that we can change the order
of trace and integral. For this purpose, we notice that Fexp(—rHj) has a
square integrable kernel. This is evident because Hy = 7, where « and £
denote the representation and the differential operator explored in the proof
of Proposition 1. The agsumption F > 0 implies that F1/? exp(—r(Hy+ F))
is also a Hilbert-Schmidt operator. Therefore, the operator

A = exp(—s(Hy + F))Fexp(—(t — s)(Hp + F))

is of trace class for any t > s> 0.
Proposition 1 and the Markov property lead to
t
(3) Af(s) = EF(a+W(s))exp (~arlz) [ Fla+W(r) dr) Fla+W(£)).
0

Let £2; be the set of trajectories of 2 Wiener process (W (r))p<r<s on R?
starting from z. We can decompose the Wiener measure on {2; into a family
of conditional Wiener measures {pzq, : ¥ € R%} in such a way that for any
Y, fa,ys 15 supported by {w € 2 : w(t) = y}. According to Definition 1,
a weak Wiener process on a nilpotent Lie group is the strong solution of
a stochastic differential equation. We can therefore define the process g:(2)
on {2;. Using (3), we can express the kernel of 4 as

&

(4) A(z,y) = f Flw(s))exp ( — iz, w) — f F(w(r)) dr) Ay y (W) .
0

An elementary reasoning shows that A is a continuous function. As we have
shown above, Tr(A) < co. Hence

Tr(4) = fA(m,m)d:B,

and the proof of (2) is complete.
Now, we notice that
Tr{F exp(—t(Hq + F)))
i
=" [ Te(exp(—s(Ho + F))F exp(—(s —)(Ho + F))) ds
0

Let G(u) = u(l — exp(—u)). Now, (2) and {4) imply that
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N(Hy+ V,0)

52' fdt f dz f LT (P))
[

<2 }Odt [z | dpm,x,f(w)t_la( fF(w(s))ds).
6] ¢}

Thus the factor exp(—ig:(z)) (which represents the external magnetic field)
does not affect our estimate.
We can rewrite the above estimate as

=] 3
(8) N(Ho+v,0)<2 [t [ da [ duo,o,t(w)rla( f F(:c—l—w(s))ds).
0

t~ L exp(—ig;(x, w)) (fF s))ds)l
0

Let g(u) = u(l —exp(—u)) for 0 < u < 2, g(u) = G(2 )+ {u—2)G"(2) for
2 < u. Then, noticing that G > 0 on (0, 2) and @ < 0 on (2, 00), we see

that
G(u) < glu),

(6) g is a convex function,
g(u) ~u? as u — 0,
g(u) ~ u as 4 — oo.

So, by the Jengen inequality,

G( JF(m+w(s))ds) <ttt Jg(tF(m-}—w(s)))ds,

and, noticing that [ dpg o, = (47rt)‘3/2, we conclude that
N(Hy+V,0)<c [ V(@) da,

where ¢ = 2(4m) %2 [[* u=%2g(u) du is finite by (6).
For d = 3, the proof is complete. For d > 3 the proof is incorrect—we

have to replacef w2g(u)du by [7° u"%?"1g(u) du, which is infinite.
But, if we use, instead of K, the operator K7 defined by

K' = F1/? Z(ml)j (7;”’) (Ho+ jF + &)1
=0 )
for a fixed natural m, then

K'Y =t 'R, (ty,
with R, defined by

Ren(y) =3 (1Y (J)(qu = .70‘3 (1—e ") ds.

§=0 0
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Rm is a monotone function. So, if ¢ runs over the interval (0,1), then

t™ Ry (t) runs from oo to (m + 1)~ Hence, we can change inequality (1)
to

m

(1Y NHo+V,0)<(m+1)Tr (Z(q)f ("'J”) (Ho + §F + mz)—lp) .

F=0
In the same way as in the case d = 3 we prove that (1') implies
(3) N(Hy+V,0)

oG

(m+ 1) f dtfda:fdﬂncn

'(sz-Fw ds)

o

where G, (y) = y(1 — e™¥)™. We notice that there exists y,, such that
G" > 0 for y € (0,ym) and G" < 0 for y € (ym, c0). We define

gm(y) = { G(y) ’ for 0 < ¥ < ym,
Gou(ym) + (¥ ~ Ym)G' (ym)  for ym < y.

Then gy, ~ y™*! as y — 0, and g, ~ y as y — oo, We set
o
Cam = 2(4m) 42 fy"d/z"lgm(y) dy.

We can see that this constant is finite when m > d/2 — 1 and conclude that
N(Ho+V,0) < cam [ V(@)™ dz.

COROLLARY. For d > 3 there is a constant ¢ = e(d) such that, for any
polynomials Ay, ..., Ay on R?, a potential V > 0 and ony X > 0,

N{Hg+V, X < el{(z,8) : 2+ V(z) < A}|.

Proof. Set Vi = min(V — A,0). We have
(Ho + V), 9) 2 Ml + (Ho + V3)8,8),

so the minimax principle [7] and Proposition 2 prove the Corollary.

The uncertainty principle and the final estimate. For selfadjoint
operators F and H with commutator [F, H] = iM, if M is selfadjoint, we
have the uncertainty principle:

|ZIP||Fl 2 47 (M, 6)*.
Let us set Dy =0, + A (k=1,..., d). Then [Dk,Dj] = ’i(akAj - 6jAk).
The uncertainty principle implies that

S 1D PIDs ol 2 47 Y ([ (s — 0,40107)
k,j

kg



22 W. Cupala

Hence, there exists a constant ¢ = ¢{d) such that

(iﬂiw) 2 e | [ (Buds - 840160
k=1 k>j

In the case of a polynomial magnetic vector potential, there is a sharper
version of this inequality.

PROPOSITION 3. Let A1, ..., Aq be polynomials and Hy = —271 3, (9, —
iAy)%. There is a constant ¢ such that

(Hog, )z e [ D |0nAs — 8 Al — ]
k>j

for ¢ € C°. The constant ¢ depends only on d and on the largest of the
degrees of Aq,..., A4

Proof Let g be a free nilpotent Lie algebra with free generaiors
X3,..., X, and with nilpotence class N. Let £ = ~2713", X7 be the sub-
laplacian on G = exp(g). By Folland [4], there exists a constant ¢; > 0 such
that

(1) 11X;5, Xiléh < el (£ + 1)e

for ,k=1,...,d, ¢ € C=(G).
Let N {the nilpotence class of G) be so large that

XjHBj—iAj, j=1,.‘.,d,
defines a representation w of G. (1) implies that
7, 0 Il < ellmega f

for ¢ € C°(R%). Thus

(Ho+ 1%, ) > (|86 4, — 8; A6 1, 1) -
This implies (see [6]) that

((Ho+ 1f. f) 2 ea(|0x A4y — 8; 44
which completes the proof.

51,

THEOREM. For d > 3 and any natural number N there exist constonts
C = C{d) and c = c(d, N) such that for any polynomials Ay, ..., Ay on R4,
any potenttal V' > 0 and any A > 0, f max{deg(A4,),...,deg(Ay)} < N
then, :
N(Ho+V,A)

< 0l{(z.6) : 3 10e4;(2) - 9, 4u()| < A+ 1), & +V(a) < A+ 1},
k>
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Proof Let ¢ be the constant defined by Proposition 3. Fix A > 0 and
put

Vi(z) =0 ifeither Y |84d;(2) — 8 An(x)| > (2/c)(A+ 1) or V(z) > A,
k>j

Vi(#) =V(z)—A—1 for the remaining x.
We have

(Ho+ V), )= (27 Ho+ V = V), ) + (27 Hy + V3) £, £).
By Proposition 3,

(@7 Ho +V - V)£, ) = Aif|E
Thus, using the minimax principle, we see that

N(Hy+V,A) < N(27 Hy + V3,0)
and Proposition 2 finishes the proof.
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