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On the joint spectral radii of commuting
Banach algebra elements

by

ANDRZEJ SOLTYSIAK (Pozuat)

Abstract. Some inequalities are proved between the geometric joint spectral radius
(cf. [3]) and the joint spectral radivs as defined in [7] of finite commuting families of
Banach algebra elements,

Let A be a complex Banach algebra with the unit denoted by 1. Let a =
{61, ..., an) be an n-tuple of pairwise commuting elements of A. The symbol
o(a) will stand for the Harte spectrum of a, i.e. (Ay,..., ) ¢ o(a) if there
exist elements uy, ..., up a0d vy,. .., vy in A such that E;‘zl uia; —A;) =1
and 357 (aj = Aj)v; = 1 (here we write for simplicity a; — A; instead of
a; — A;1). We shall also need the left approzimate point spectrum of a, i.e.
the set

n

A@) = { e ) € €5 inf 3 [l(ag = X =0}

et
The geometric (joint) spectral radius of a is defined (cf. [3]) to be the
number . _
r(e) = max{|A| : A € g(a)}

where
n 1/2
A= 10l = ()
g1

As was shown in [3] (cf. also [8]) r(a) does not depend upon the choice of a
joint spectrum of @, In particutar, the Harte spectrum o(a) can be replaced
by the left approximate point spectrum of a in the above formula without
changing the value of r(a).
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In the case when A is a C'"-algebra the following formula was proved
in [6]:
1/(2s)

Z %a*“aa
aERT |o|=s
where Z7 is the set of all multiindices o = (a1,...,an), @y 2 0 (j =
1,...,n), and, as usual, o] = ay+... o, al =l el a® = ot el
and " = (af,...,a"). In fact, the proof of this result in [6] was done for
a commuting n-tuple of Hilbert space operators but it goes exactly in the
same way for arbitrary commuting C*-algebra elements.

Another possible definition of a joint spectral radius of a commuting
n-tuple of normed algebra elements is given in [7]. Namely, let the joint
spectral radius of o = (ayq,...,a,) be the number
o ”1/3 )

r(a} = lim

§—r 00

o) = lim max |a
g 00 a621,|m|=s
It is an immediate consequence of this definition that equivalent algebra
norms give the same joint spectral radius. Notice also that for a single ele-
ment ¢ of a Banach algebra A we have

r{a) = 7{a) = the spectral radius of a.

In this paper we show how the above mentioned notions of joint spectral
radii are related to each other. More precisely, we prove the following:

THEOREM 1. Let a = (a1,-..,0,) be a mutually commuting n-tuple of
elements of a compler unital Banach algebra. Then

1 -
m—\/-_-r(a) < Fla) <rla).
v
Before proceeding to the proof let us define one more notion. Let o =
(a1,...,an) be an n-tuple of mutually commuting elements of a normed
algebra. Set
re(a) = lim  max r{a®)/s
*( ) 800 €LY || =8 ( ) ’
where r(a®) = r{ag" ... a5™) is the usual spectral radius of a®, i.e. r{a™) =
limg o [|@®*]|/*. Notice that the above limit exists since the elements y
(j=1,...,n) are commuting.
The following lemma seems to be of independent interest.

LEMMA. For every n-tuple o = (ay,...,a,) of pairwise commuting ele-
ments of a normed algebra A, 7(a) = r.(a).

Proof. Since r(a®) < [[a®]| we obviously have r.(a) < #(a). To prove
the opposite'inequality it is enough to show that r,(a) < 1 implies 7{a) < 1.
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Indecd, take & > 0 and b; = a,/(r,(a) + £),i=1,...,n. Then r,(b) =
m(blz ooy by) < 1 and thus 7(8) < 1. This implies 7(a) < r,(a) + < for all ¢
and finally #(a) < 7.(a) as claimed.

Now assume that 7,(a) < 1. So there exists an integer sq such that for
all z %:‘0 and all @ € Z7% with |o| = s we have r{a®) < 1. This implies
[la || /<1 forall o e Z with |a] = sy and k > kq (ko is the same for all
a’s with |af = 5p), In particular,

s <1 forj=1,....n and k > ko.
Let
K = max{l, | ay]|, Haf\f,...,||a;°’“°"1||} and K = max K;.
1<ign

Now take o = {cny,. .., q,) € Zy. Then a; = m;(soko) + 1;, where m; >0
and 0 <l < spko (f=1,...,n). Thus we get

ol = o ... agn| = flapssskorhs . gymsokotin]
< Mafo™ ol flagemo a | . )] < &7

(here it is assumed that [|a]] = 1 if the algebra A has no unit) and so the
set {a* .. ag™ 1 (ag,..., @) € 27} is bounded. By the lemma of Rota and
Strang ([7], cf. also [2], p. 18, Thm. 1) there exists an equivalent algebra
norm N on A such that N(a®) < 1 for all o € ZZ. Since 7(a) does not
depend upon the choice of a particular algebra norm on A equivalent to the
given one we obtain #(e) < 1 and the proof is complete.

Remark. Berger and Wang ([1], Thm. IV) showed that the assertion
of the lemma is true for every bounded family of n x n matrices. However,
it is not true in the general case of an arbitrary Banach algebra even for a
family of mutually commuting elements. This was observed by the referee
who supplied the following example:

Exameni. Let A be a commutative Banach algebra generated by count-
ably many cloments zy,wa,.. . satislying 27 =0 (=1,2,...}. The elemnents
of A are of the form y == Znezm E:q:m,_,,;i” €, i Ty -+ ¢, with the norm
Iyl = 3 e 2o, oo, [y | Obviously, the set M = {z; 11 =1,2,...}
is bounded with #(M) = 1 and r (M) = 0.

Proof of Theorem 1. First we prove that (1//n) r(a) < #(c). Take
A= (A, .o, Aw) € (a). Then there exists a sequence {by,) in A such that
[bs]] = L for all k and ||(a; - A;)bk|| = 0 as k — oc (j =1,...,n). Thus for
all € Z7, lox| == 8, we obtain

a2l 2 af? .. ate)bel) — A2 A%
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as k — oo. This implies |[a]*...a% || = |AT* ... A4 Notice that

max A2 LA, 2o
aniJa\——»s
1, ..
__lj\lzs .

ns

1 sty 2 Zan
2 n® Z ap\lf P AR =

a621,|a|=5
Hence we get

1
ax a® et = —==|Al".
aeg‘i,\m:s ” 1 T ” nsl ]
As X € ni(a) was arbitrary the above implies

: 1

max |a¥t...a% ||V = —=r(a),
aEZQ‘_,[cﬂms n

which finally gives 7{a) > (1/4/n)r{a) as claimed.

Now we prove 7{a) < r(a). In view of the lemma it is enough to show
that r.(a) < r(e). Let @ € Z%, o] = 5. By the spectral mapping property
of the Harte spectrum o ({4], Thm. 4.3) we have

ala®) = pela),
.22, So suppose A € o(a®™). Then
1@y such that A = pi™ ... uf,

where p(z) = 2%, 1.e. p(z1,...,2n) = 27" ..
there exists g = (p1,..., p4n) € olay,..
Hence

AP =l P g Y
€L} |ol=s

and therefore | M < |p|* < r(a)® for all A € o(a®). Thus r(a*) < r(a)* and
consequently

8! ;
=l P P = ()

max.  r{a*) < r(a)’.
GELY jo=s

This finally gives r.(a) < r(¢) and concludes the proof.

Remarks. 1. In the case when A4 is a C*-algebra it is possible to prove
v{a) < r(a) directly without using the lemma.
Namely, by Theorern 1 of [6] we have

8! )
_— a’*ﬂ/aﬂ‘
2 ool

@€Y |l=s

L1/(2s)

o=,

Elements a**a® of a C*-algebra 4 are positive and so is the sum within the
norm signs. Therefore (see (5], p. 269, Thm. 7.77¢VII))

sl
Z T koo
!

OIEW;_,MI:% N

8!
la®[{* = |la™a™[} < arlle™aetl <
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This implies

1/(2s)

3

lim  max ||a®*|* < lim ||
800 gL |er| =5 T s—o0

8!
> S
al

a€ZY | al=s

which was to be proved.
2. The following example shows that both inequalities in Theorem 1 may
be strict.

1 ‘jLet A be t.h.e:”al%cxbm of all 2 x 2 matrices with complex entries. Let ¢ =
(i2) and b= (7 "t )- Then ab = ba and moreover o(a,b) = {(1, 2),(2, )}
Hence r(a,b) = +5. It is casy to see that r(a®b?) = max{2®,2°} for all
@, 2 0. Therefore, in view of the lemma (cf. also [1], Thm. V)

¥

’F~(a,b) = sL—liEo aﬁ}gﬁa (T(aabﬁ))l/s =9

Finally, we get

%T(a,b)x\/’g—< 2:?(0”1)){7"(&,6): \/‘5‘

3. It is easy to give examples showing that both constants. in the inequal-
ities of Theorem 1 are the best possible.

Namely, let as before 4 be the algebra of all complex 2 x 2 matrices.
If we take o = 1 (== the identity matrix) and b = (3 1), then #* = 1,
and o(a,b) = {(1,1), (1, -1)}. Therefore r(a,b) = +/2. On the other hand,
MBX o4 g=s |a®DP || == ||B] for all s > 1, which gives

Fla,b) = lim max |a®b?||*/® =1.
§-+00 cyd ey

Hence we have

-%ﬂmwﬂmﬂmm<ﬁmmmw

To see that the other constant is the best possible take ¢ = (3}) and
d= (3 2), Then ¢? = (), ed = de = ¢, and o(e,d) = {(0,1)}. Thus r(c,d) =1
and Max,rgwsr(e”d?) = 1, which by the lemma gives 7(c,d) = 1. Thus we
obtain ‘ - '

ed) = e < 1=F(e,d) = r(c, ).

“l
Ted= 7



4. One can take any other (than Euclidean) norm on each C* and define
the geometric spectral radius with respect to this norm. Cho and Zolazko
showed in fact ([3], Cor. 10) that for many joint spectra (spectroids c.,\i class
Xy in the terminology of [3]) the geometric spectral radius defined in that
way does not depend upon the particular spectrum.

Now observe that if we define the geometric spectral radius with respect
to the I,-norm by the formula

rp(a) = max{|Al, : A € o(a)}

where
n 1/p
IAp = (A1, vy An)lp = (Z |)\j|1") for 1 < p < oo, and
j=1
[Aoo = 1{A1y- -y An)|oo = max [Ag],

1£isn
then reasoning analogously to the proof of Theorem 1 we get

THEOREM 2. Let a = (a1,...,an) be a pairwise commuting n-tuple of
elements of a complex unitel Banach algebra. Then

—a7pla) < (@) S ryfa)
forevery 1 < p < oo and
’ Too(1) = Tla).

Finally, notice that the last equality is the multivariable variant of the

Beurling-Gelfand spectral radius formula.
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