icm

STUDIA MATHEMATICA 105 {2) (1993)

Extremal functions of the Nevanlinna-Pick problem
and Douglas algebras

by

V. TOLOKONNIKOQV (St. Petersburg)

Abstract. The Nevanlinna-Pick problem at the zeros of a Blaschke product B having
a solution of norm smealler than one is studied. A} its extremal solutions are invertible in
the Douglas algebra D generated by B. If B is a finite product of sparse Blaschke products
(Newman Blaschke products, Frostman Blaschke products) then so are all the extremal
solutions. For a Blaschke product B a formula is given for the number C/(B) such that if
the NP-problem has a solution of norm smaller than C(B) then all its extremal solutions
are Carleson Blaschke products, i.e. can be represented as finite products of interpolating
Blaschke products.

1. Discussion of the results. Let H® denote the algebra of all
bounded analytic functions in the open unit disc I and let U be the unit
ball of H*¢. Congider the Nevanlinna-Pick interpolation problem and the
set E of its solutions:

E={feU: f(z.)=wy, n=1,2,...}.
The main reference for H* and NP-problems is Garnett’s book {2].

For a point a in I let b,(2) be the Blaschke factor, and let B = Bz be
the Blaschke product with zeros Z = {z,}52;:

la| a—z - X
() = e 2 A2 = [Th.. (2).
bole) = G Bale) = [ o)

Then the NP-problem is determined by the pair (Z, f) of its zero set and
some solution, We have the following description of the set E:
() Ee=(f+BH®)NU=B(fB+H®)NU.

If the NP-problem has more than one solution, then for some functions
P, @, R, § analytic in I, we have the representation

P4 Quw
y o § o eereener— . P —R =B.
(2) E {f 5w wEU} 5 - RQ
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Consider the sets
Alz)={f(z): fe E}, =z€eD.

From (2) it is clear that each A(z) is a closed disc, and the problem has a
unique solution iff all those discs degenerate to points. A solution I of the
NP-problem will be called eztremal iff I(z) € 8A(z) for some z in D\ Z; then
the same is true for all z in D. A function f is extremal for the NP-problem
iff the corresponding w in the parametrization (2) is a constant of modulus
one. If the NP-problem has more than one solution then all its extremal
functions are inner functions.

For a subset T of the algebra L™ we denote by [T} the closed subalgebra
generated by T. If B is a Blaschke product, then [H ® B] is the Douglus
algebra generated by B. An NP-problem (Z, f) is called scaled iff there is a g
in E such that ||g|lee < 1, and semiscaled if for some N the NP-gubproblem
with zeros {z, }°2 , is scaled; this terminology is taken from [10].

In the following theorems we study the connection between the Blaschke
product B of some NP-problem and its extremal solutions.

THEOREM 1. If an NP-problem (Z, f} is semiscaled then all its extremal
solutions are inner functions invertible in the Douglas algebra D = [H™, By]
generated by Byz. If it is semiscaled, but not scaled, then the NP-problem
(Z, f) has a unigue solution.

‘We have two corollaries from this theorem. Let X denote the maximal
ideal space of the algebra L™ and QC = (H* +C)n (H* +C). If D
is a Douglas algebra, then QD = D N D is the maximal symmetric sub-
algebra of D, CD is the closed symmetric algebra generated by all inner
functions invertible in D, QDA = H* NQD, CDA = H*NCD. In [§
such algebras are called Sarason algebras. For a function f in L®°, the set
of “nonanalyticity”

N(f)=clos| J{Q: flg ¢ H®|q} C X

was introduced in [6, 7], where the union ig taken over all QC-level sets @,
i.e. maximal subsets of X where functions from QC are constant.

COROLLARY 2. If I'is an extremal solution of a scaled NP-problem at the
zeros of a Blaschke product B then N{I) = N(B). If B can be continuously
extended to some point of the unil circle, then the same is true for I.

To formulate the next corollary and theorem, we introduce some classes
of inner functions. We call a finite product of interpolating Blaschke products
a Carleson Blaschke product and denote the set of all such products by Carl.
Let M(H*) be the maximal ideal space of the algebra H°. Denote by
MP-the set of all points in M{H>) with trivial Gleason part. For an inner
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function [ let
(3) C(I} = min{|I(m)| : m € MP}.

)
Then I € Carl iff C(I) > 03 ] Denote by P the subclass of Carl of Blaschke
products such that C(B) = 1. It is easy to prove from (3) that B € P iff

Ya e & Carl.

B -

1- “B
In [11] the author bas given many examples of Blaschke products in P

and their zero sets Z = {2,}2%,. These include:

(a) sparse Blaschke products:
lim H |20 = 2m|/|L — ZnZm| = 1,

T 03
nyhm,

(b) Newman Blaschke products:

sUp ml_la“ﬂ.
TR

(¢) Frostman Blaschke products:

be 7, la| > b, a#b}<1

where T= {z € C: |z| =1},
(d) Carleson Blaschke products with zeros in a Stolz angle, i.e. in the
convex hull of some dise {z: |2] ¢}, 0< ¢ < 1, and a point ¢t € T.

More information on those types of Blaschke products can be found in
5, 9].

CoROLLARY 3. Let I be an extremal solution of o semiscaled NP-problem
at the zeros of a Blaschke product B. Then:

(i) If B € P then I € P, in particulor I € Carl.

(ii) If B 1s a finite product of sparse Blaschke products then so is I.

(iif) If B is a fintle product of Newman Blaschke products then so is I.

(iv) If B is a Frostman Blaschke product then so is I,

(v) If B is Carleson Blaschke product with zeros in o Stolz angle then so
ig 1. '

In the following theorem it is proved that for every zero set Z the con-
stant C'(Bz) is the largest number ¢ for which all extremal functions of
NP-problems (Z, f) with || f||e < C are Carleson Blaschke products.

THEOREM 4. (i) Let B € Carl with zeros Z and C == C'(B). For any f in
H™ with norm smaller than C, all extremnal functions I of the NP—pmblem
(Z, ) belong to Caxl.
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(1) Conversely, if the above constent C s smaller than 1, then there
exists an extremal function I for the NP-problem (Z,C) which is not «
Carleson Blaschke product.

‘The existence of some constant in the first part of this theorem was
proved in [10]. The following problem was formulated there: s this theo-
rem valid with some constant independent of {z,}2%,? Theorem 3 gives a
negative answer to this question. Indeed, if

S+a

S(z):exp( g

then it is easy to prove by direct computation that S, is an interpolating
Blaschke product for all nonzero values @ in D and then C(S,) = la|. So the
constant C'(B) for B € Carl may be as small as we want. Stray’s conjecture
was independently disproved by Nicolau [8].

We can make some conclusions about the coefficients of the Nevanlinna’s
parametrization (2) from the properties of extremal functions, Let us intro-
duce new functions:

Rl:l/R) Plzp/Ry Q1=Q/R1
51=8/R, T=PS8 ~Q =RIB.

z+1

z—1

), aEID, S‘(),m

Nevanlinna proved that all these functions are in H* and have norms not
greater than one.

THEOREM 5. Let the NP-problem (Z, f) be scoled and let D = [H, Bl
Then the functions

(4) P, TSF (k>0)
are in the Sarason algebra CDA.

As the Shilov boundary of the algebra CDA can be identified with
M(CD) [9], we can give the following reformulation of this theorem: The
functions Py, T are continucus on M(CD), and all discontinuity points
of 5} in . M(CD) are in the zero set of 7. For the function Ry we have
R =TBe€CODNH® = CDAC QDA and Ry is an outer function. It can
be proved that then R; € QDA by analogy with {4, p. 59], where the case

of D = H* +( is studied. An open problem: is Ry in C.DA for every scaled
NP-problem?

2.-Proofs of the results. The main idea is to apply the following
lemma, attributed to Sarason in [1]; see also [2, p. 386]. We denote the
distance in L° by dist. :
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LeMMA 6. If u is @ unimodular function, a € D, b, is the Blaschke factor
with zero a and

dist{u, H*°) <1, dist{u,b,H®) =1,
then
dist(7, H*) = dist(uv, H®) < 1 and %€ [H*®,u).

Proof. Making a conformal change of variables in ) if necessary,
we can consider only the case @ = 0. The first assertion is proved in [1,
2|. It is also proved there that any h € H® with || — Aljee < 1 is in-
vertible in H*. Then ||1 — hulls < 1, hu is invertible in [H*®,u] and
%= h{uh)"t € [H®,u]. n

Lemma 7 was proved by Adamyan, Arov and Krein (see [8, p. 310]).
LemMA 7. Let g € L. If
dist(g, H*) =1, dist(g, H®+C) <1,

then there ewists o unique h € L™ such that g —h € H™ and g~ h is
unimodular,

Proof of Theorem 1. If the NP-problem is semiscaled but not
scaled then a scaled problem can be obtained by removing some points
{2} from Z. Let V be a set so obtained for minimal N and @ = zx.
Then for the function g = fByb, from (1) we have

(5) dist(g, H*) = dist(f, by b, H®) = 1,
(6) dist(g, H> + C) < dist(g, b H*) = dist(f, BH™) < 1.

Then by Lemma 7 the NP-problem (V U {e}, f) has a unique solution,
g is a unimodular function and so f is an inner function; let us write f = I.
In the case of scaled problem let V = Z, a € D\ Z and g = IByb,.
Because the NP-problem (V,I) is scaled, we have (5). As I is extremal, the
NP-problem (V U {a}, I} has a unique solution, so it is nonscaled, and so we
have (6). In both cases Lemama 6 can be applied to the unimodular function
g = IBy and '

ge[H*,g], I=gByc[H® glBv C[H* By] =

Remark. The following result can be proved: for an NP-problem (Z, f),
if B= By and g = /B then the NP-problem is scaled iff dist(g, 7*°) < 1,
and semiscaled iff dist(g, ™ + C) < L. This result will not be used and so
the proof is omitted. : : : :

To prove Corollary 2 we need the following characterization of a singly
generated Douglas algebra due to Jzuchi:
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THEOREM 8 [T, Cor. 2.5]. Let f € L™ and let D = [H*
algebra generated by f. Then

D={geL™:

. [ be the Douglas

N(g) C N(f)}-

Proof of Corollary 2. From Theorems 1 and 8 we have I ¢
[H*°, B} and N(I) C N(B B). By applying Lemma 6 to the unimodular func-
tion g = IBy we have By & I[H>, I} C [H*,I] and so N(B) ¢ N(I).

Let us denote the fiber over a point ¢ € T by X, = {z € M{H>) :
z{z) = t}. The function B can be continuously extended to ¢ iff B|x, = ¢
for some ¢ in T. Then for every f in [H, B] we have f|x, € H™|x, and
so by Theorem 1, I|x, € H|,; then the function I|x, is invertible in the
algebra H™|x,. If the inner function I is not continuous at ¢ then it is easy
to prove that there exists a sequence {z,}52.; in IV such that lim,, o 2, = ¢
and limy, 00 7(2,) = 0 (see for example [9, p. 63]); so I(m) = 0 for some m
in X3, contradicting the invertibility of I|x,. So I is continuous at ¢. =

Corollary 3 follows directly from the next result:

TrEOREM 9 [11]. (i) Each class of inner functions described in Corol-
lary 3(ii)~(v) is equal to the class of all invertible inner functions in some
Dougles algebra.

(i) For an inner function I, every invertible inner function in the Doug-
las algebra [H™, I] is a Carleson Blaschke product iff C(I) = 1.

The proof of the first part given in [11] consists in constructing the
corresponding Douglas algebras. For the case (v) such a Douglas algebra
was investigated by Savason: it is generated by H® and the functions on T
with only one discontinuity point [2, p. 396].

Proof of Theorem 4. Let I be an extremal solution of the
NP-problem (Z,f) and u = IB. Then o = dist(u, H*) £ ||flloe < C.
As in the proof of Theorem 1 we use Lemma 6 to get dist(, H>) = & and
then dist(B,TH™) = ||B — Ig|l« = o for some g in H*. By the Corona
Theorem, the unit disc D is dense in M (H®) and so for all maximal ideals m
we have | B(m) — I{m)g(m}] < a. But ||g}lec = [|79]lec < [|Bleo + e < 2, zmd
thus for all maximal ideals m € MP we have [I(m)| = (|B(m)|—a)/||gl
(C—a)/2>0andso I € Carl,

Let now C < 1.If f|y = C, f € U, then for qmimwahcweg[z

g € U and thus ¢ = Bw for some w in H*. So the Novanlmna pammetrwaf-
tion (2) for our NP-problem f{z = € is
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Let m € MP be such that [B(m)| = CG(B) (MP is compact). Then
we can take a constant function w such that ¢ + B(m)w = 0 and for the
corresponding extremal function I we have I{m) =0, s0 I ¢ Carl. w

Proof of Theorem 5. Let I, be the extremal function with
Nevanlinna parameter w € T. Then
PitQuu Tw

14 Syw Tl 1+ Sw’

Let N be a C'D-level set, i.e. a maximal subset of X where the func-
tions from the symmetric algebra C'D are constant. Then by Theorem 1 all
functions [y, arc constant on N, and it is sufficient to prove that so are all
functions (4).

fme M(H™)and w € T, w # —51(m), then we can multiply (7} by
1+ Syw, substitute m and then divide by 1+ S1(m)w, to get

Tw
L = P ——
For #y, 2 in N, let

X = {'w eT:w ‘T'L —31(11’:1), w ?é -—S;(:cg)}.

Then the fractional-linear transforms corresponding by formula (8) to the
poinis z1, z2 are equal on X12 and so Pi(z1} = Py(z3), T(z1) = T'(22), and
if the last number is nonzero then 8 (z1) = 8y (z3). Hence the functions Py,
T8} (k = 0) are constant on N for any CD-level set N and so they are
in C'D; by Nevanlinna's theorem they are in H*, and therefore in CDA. =

(7) Iy =
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Range inclusion results for derivations on noncommutative
Banach algebras

by

VOLKER RUNDE (Berkeley, Calif.)

Abstract. Let A be a Banach algebra, and let D : A -~ A be a (possibly unbounded)
derivation. We are interested in two problems concerning the range of D:

1. When does D) map into the (Jacobson) radical of A?
2. 1i {a, Du) = 0 for some a € 4, is Da necessarily quasinilpotent?

We prove that derivations satisfying certain polynomial identities map into the radical. As
an application, we show that if [a, [a, [2, Da]]] lies in the prime radical of A for all a € A4,
then D maps into the radical. This generalizes a result by M. Mathieu and the author
which asserts that every centralizing derivation on a Banach algebra maps into the radical.
Ag far as the second question is concerned, we are unable to settle it, but we obtain a
reduction of the problem and can prove the quasinilpotency of Da under commutativity
assumptions slightly stronger than [a, Da] = 0.

Introduction. The interest in range inclusion results for derivations
on Banach algebras goes back to I. M. Singer’s and J. Wermer’s paper
[S-W] from 1955, in which they proved that every bounded derivation on a
commutative Banach algebra maps into the (Jacobson) radical. In a footnote
they conjectured that the boundédness requirement for the derivation was
superfluons. It took more than thirty years until this conjecture was finally
proved by M. P. Thomas {[Tho 1)).

The simple-minded atternpt to extend these results to noncommutative
Banach algebras obviously fails, even for bounded derivations: Let 4 be a
noncommutative, semisimple Banach algebra, and fix some a & A which
does not lie in the center Z(A) of A. Then 4 5 z — [0,z] = ax — za is
a bounded derivation, which is nonzero, and therefore does not map into
the radical. There are, however, various meaningful generalizations of the
bounded Singer-Wermer theorem to the noncommutative setting (see [Yoo|,
[M--M] and [Vuk 1], for instance). All these results require at some point the
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