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Weak invertibility and strong spectrum
by

MICHAEL J. MEYER (Atlanta, Ga.)

Absgtract. A notion of weak invertibility in a unital associative algebra A and a cor-
responding notion of strong specirum of an element of A is defined. Tt is shown that many
relationshipy Detween the Jacchson radical, the group of invertibles and the spectrum
have analogued relating the strong radical, the set of weakly invertible elements and the
strong spectrum, The nonunital case is also discussed. A characterization is given of all
{submultiplicasive} norms on A in which every modular maximal ideal M C A is closed.

1. Introduction. Let A he a nnital agsociative algebra over the field of
complex numbers and let &, 8 = A\ &, and Rad(A4) denote the group of
invertibles, the set of singular elemnents of A and the Jacobson radical of A
respectively, For an element a € A, let Sp(n) denote the spectrum of o in
A, that is, the set of scalars X such that A —a € § and let p{a) = sup{|}|:
A € Sp(a)} be the spectral radius of a in the algebra A.

For a subset £ C A, let P(F) denote the perturbation class of F in A4,
that is, the set of all elements a € A guch that a + F C I

In reasonable algebras (such ag for example all Banach algebras) the
Jacobson radical admits several characterizations in terms of invertibility
and spectrum [3, Theorem 2.5] and [4]:

(a) Radd{A) is the perturbation class of the group (7 of invertibles.

{b) Rad(A) = {r € A: Spla+r) = Sp(a), for all @ € A}.

(c) Rad(A) is the largest ideal in A on which the spectral radius is
identically wero,

If the algebra A carries a submultiplicative norm, then all primitive
ideals fu A, and hence the Jacobson radical of A, are closed, whenever
the group ¢ of invertibles of A is open in this norm. We will henceforth
assume all norms nnder consideration to be submultiplicative. Following {4]
we call a norm on A spectral if the group of invertibles of A is open in
the corresponding topology. The term Q-norm is also employed by several
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authors. Every complete norm is spectral and the spectral property is often
a sufficient substitute for completeness of a worm. See [4].

Recall that the strong radical of A is the intersection of all maximal
two-sided ideals in A. It is the purpose of thiy paper to show that it is
possible to define a notion of weak invertibility and according notions of
strong spectrum and strong spectral radius in such a manner that many of
the theorems concerning the Jacobson radical, primitive ideals, invertibleg,
spectrum, spectral radius and spectral norms remain true if these notions
are replaced by the strong radical, maximal ideals, weakly invertible ele-
ments, strong spectrum, strong spectral radius and weakly spectral norms
respectively,

For an element a € A, let (a)r, (a)g, (a) denote the left ideal, the right
ideal and the two-sided ideal generated by a in A respectively. In particular,

n
(CL) = {ijacj 21, by,er, ..., be, 00 € .A}
j=1
Clearly the element a is invertible in A if and only if (a) = (a)r == A. Let
us now call a weakly invertible if the two-sided ideal generated by @ in A is
all of A, and call a strongly singular otherwise, Let Gy and Sy denote the
sets of weakly invertible and strongly singular elements of A respectively.
For an element a € A define the strong speetrum Sp,(a) and the strong
spectral radius ps(a) of a in A as

Sps(a)={AeC:A-a€8,} and

os(a) = sup |A (= ~o0ifSp,(a) = ).
AE8p, (a)

Let us call a norm on A weakly spectral if the set G, of weakly invertible
elements is open in the corresponding topology. The term “ideal” shall mean

“two-sided ideal”. Our first result is the analogue of the above characteriza~
tion of the Jacobson radical.

THEOREM 1. Let A be an associative algebra with identity over the field
of complex numbers and R the strong radical of A. Then

(1) B is contained in the perturbation class P(Gy).

(2) R is the largest ideal in A on which the stromg spectral rodiug is
tdentically zero.

With an additional assumption on .4 these resulty can be sharpened:

THEOREM 2. Let A, R be as in Theorem 1 and r € A. Suppose that
every element in A can be written as o sum of invertibles. Then

(1) R is the perturbation class P(G.,).
(2) We have r € R if and only if Sp,(a+r)=S8p,(a), for all a € A.
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Concerning the notion of weakly spectral norm we have

TuroREM 3. Suppose that A is a normed algebra with identity. Then
the following are equivalent:

(
(
(
(
(

1) The norm on A is weakly spectral,
2) Bwery maximal ideal M C A is closed.
3) We have p.{a) < ||el, for all o € A.
4) |1~ all < 1 implies a € Gy, for all a € A.
8) The identity element is in the interior of G.y.
CororLary 1. Let A be as in Theorem 3 and suppose that the norm on
A s weakly spectral. Then the sirong radical is closed in A. =

COROLLARY 2, Fvery spectral norm on A is weakly spectral.

Proof Consider any norm on A and endow A with the corresponding
topology. If the norm is spectral, 1 € int(G). Since G C Gy, it follows that
1 € int(Fyy) and thus, by Theorem 3, the norm is weakly spectral. m

The following proposition gives a relation to completeness. It is the ana-
logue of [4, 4.11].

ProrosirioN 1. Let A be a normed olgebra and B the completion of A.
Then the norm on A is weakly spectral if and only if G (A) = Gy(B)N A
(that is, if every element of A which i3 weakly invertible in B is weakly
invertible in A).

Let us now investigate properties of the strong spectrum and the strong
spectral radius. Denote by M(A) the space of maximal ideals in .4 and for
each element o € A define @ € [J s pq(ay A/M to De the map

MM IM—at+MecA/M.
Tf A is & commutative algebra carrying a spectral norm, then (4] all the quo-
tients A/M coincide with the scalars and @ is the usnal Gelfand transform.
of the element @. It is well known that in this case Sp(a) = range(@), for
each element o € A. In the general case the scalars are contained in each
quotient A/M, M & M(A), and we have

Tugorim 4. Let A be as in Theorem 1 and a € A, Then

(1) If a is in the center of A, then a is weakly invertible if and only if
it 4s inwertible. Consequently, Sp,(a) = Sp(a) and g.(a) = o(a).

(2} We have Sp, (o) = range(?) N scolars. |

(3) The stromg spectrum Sp,(e) is a subset of Spla). ,‘Tf A carries a
weakly spectral norm || ||, then the strong spectrum .Sps,(a) is compact and
we hove gy{a) < ol :

(4) If ﬁq,’; . A = B is o unital homomorphism, then we have Sp,(¢(a)) G
Sp,(a). :



258 M. J. Meyer

(5) If f is a rational function of one complex variable with all its poles
contained in the complement of the spectrum of a, then f(Sp,(a)) = {f(A):
A € 8py(a)} € Spy(f{a))-

(6) If A is o Banach algebra, then (5) holds for all funclions f which
are holomorphic on a neighborhood of the spectrum of a.

(7) Sp.(a) = Uy Sp,(@ur{a)), where the union is laken over all mag-
imal ideals M C A and for each such M, Qu : A — A/M denoles the
quotient map.

(8) If A contains at most n distinct mazimaol ideals, then Sp,(a) con.
tains at most n points, for each elerment o € A, If A contuing af least n
distinet mazimal ideels, then for all sealars Ay, ..., Ay there crxisls an ele-
ment a € A such that Sp,(a) = {Ar,..., A}

Remark. Not all properties of the spectrum carry over to the strong
spectrum: The strong spectrum can be empty (see Corollary 4 below) and
equality does not hold in general in the Spectral Mapping Theorem (5),
For the spectrum it is well known that Sp(ab) \ {0} = Sp(ba) \ {0}. The
strong spectrum does not have this property. In reasonable algebras [4] the
spectral radius is subadditive on commuting elements. The strong spectral
radius fails to be subadditive even on commuting selfadioint elements of the
algebra B(H) of all bounded operators on separable Hilbert space. Examples
are given below, ‘

However, the well-known upper semicontinuity of the spectrum and the
spectral radius in an algebra carrying a spectral norm do hold for the strong
spectrum. Indeed, as has been observed in [6], they hold in a much more
general setting:

- THEOREM 5. Let A be as in Theorem 1 and assume that A carries a
weakly spectral norm. Then the set E of all elements a € A such that
Sps(a) # 0 is closed in A, The set-valued function A 3 a — Sp,(a) is
upper sernicontinuous on E in the following sense: If U is an open subsel
of the plane, then the set {a € E : Sp,(a) C U} is open in . Clonsequently,
the sirong spectral radius A > a — g,(a) 15 also upper semicontinuous on .

Proof. See [6, Proposition 2}, =

Let now A, B be normed algebras and ¢ : A — B a linear map. Then
[10] the subspace

S(@)={be B nf(

|a

|+ {6~ é(a)l]) = 0}

of B is called the separating space of ¢. If A and B are cornplete, then
continuity of ¢ is equivalent to S(¢) = {0}. If ¢ is a homomorphism with
dense range, then S(¢p) C B is an ideal. With this notation one of the great
unsolved problems of automatic continuity theory can be stated as follows:
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(9) It Aand B are Banach algebras, and ¢ : 4 — B a homomeorphism
with dense range, does b € S() imply that o(b) = 07

As a consequence ¢ would be automatically continuous if 8 is semisimple.
If the spectral radiug is replaced by the strong spectral radius, then (8) is
true. This is merely o slight generalization of [L0, Theorem 6.18]. The result
and its proof are included for the sake of completeness and the convenience
of the reader.

THIROREM 6. Lel A, B be unilal normed algebras, R the strong radical of
Band ¢ : A~ B alinear mop which satisfies ¢(ay) — ¢(w)p(y) € R, for all
z,y € A Assumie that the norms on A and B are spectral. Then b € S(¢)
implics b ¢ B and fenee gy (b) = 0.

Remark. We do not know if this result remains true under the weaker
assmmption that the norms on A and B are weakly spectral. The proof of
Theorem 6 nses Lemma 3, which relies on the fact that the spectral radius
is subadditive on commuting elements. Here it is not possible to replace the
spectral radiug hy the strong spectral radius, since the latter does not have
this property.

Let us turn to the proofs of these results before we discuss algebras
without identity,

2. Proofs. For the proofs of Theorems 1-6 assume that A, B are asso-
clative algebras with identity. A scalar A will be identified with the element
Acle A LE M ¢ A s an ideal, then Qpr : A — A/M denotes the quotient
map. Note that an element ¢ € A is weakly invertible if and only if there
exist elernents by, ey, ..., by, 00 € A such that E;;l bjac; = 1.

LeMMA L G ¢ Gy and Gy s imverent under multiplication from the
left and from the right by invertibles. :

Prool, Il is clear that 7 ¢ ¢y Let g € @ be arbitrary. fuppose that
a € (. Choose clements b, e b, € A such that Lj.:a bjoc; = L.
T];l((in Lo 3700 (hyg ™ Vgaey = 301 bjeg(y~te;). This shows that ga,ag
&y, m

CoroLuLany 3. If every element of A is o sum of invertibles, then the
permutabion eloss P(C) i o proper ideal in A.

Proof. According to [3, Lemuna 2.3) or [2, 5.5.5, p. 96], Lemma 1 implies
that P((,) s an ideal in 4. The above references state their regult for
Banach algebras, However, the existence of a complete norm on A'is used
merely to imply that every glement of A is a sum of invértibles. It is easily
checked that 1 ¢ P((Yy,). w - R ‘
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LEMMA 2. Let a € A and X be o scalar. Then the following are equive-
lent:

(2) A € Sp,(a) .

(b) There exists o mazimal ideal M C A such that Qa(a) = A.

Proof. Note that an element o € A is strongly singular if and only if it
belongs to some proper ideal in A, which is true if and only if it belongs to
some maximal ideal M C A. Consequently,

AESpa) e A—-aeES,
= N —a e M, for some maxivaal ideal M ¢ A
& Qum(a) = A, for some maximal ideal M C A. w

COROLLARY 4. Suppose thal the algebra A is simple. Then for each
element o € A, the strong spectrum Sp,(a) is empty if o is not a scalar,
and Sp,(a) = {A} if o is the scalar A.

Proof. This follows from Lemma 2, since M = {0} is the only masximal
idealin A. =

The following lemma is well known. It is included for the convenience of
the reader.

LemMA 3. Let A, B be normed algebras, 1 € B and o : A — B a
homomorphism with dense range. If the norms on A and B are spectral,

then 1 & S{4).

Proof (similar to [8, Theorem 2.5.2]). The spectral radius is subadditive
on commuting elements of an algebra which admits a spectral norm [4]. Let
a € A. Since the elements t)(a}, 1—1(a) commute in B, the homomorphism
1 contracts the spectral radius and the norms on A4, B are spectral, we have

1=o(¥(a) + 1 - 4(a)) < o(a) + o(1 - $(a)) < Jlal + |11~ +(a)]. =

IéEMMA 4. Let a,by,c1,... 0,00 € A. Then =y bjacy € Gy implies
o & Gy.

- Proof Suppose that f = EJ- bjac; € Gy and choose (finitely rany) el-
ements u;,v; €A such that 3, u;fui=1. Then 1= Do wafupm ), j ughjacv,
andsoa €@, m ! ‘

Proof of Theorem 1. (1) Suppose that r € R\ P(Gw). Then r+
Gy € G, and we can choose an element ¢ € G such that r+a & Gy, that
is, 7 +a € 8. Consequently, there exists a maximal ideal M C A guch that
T+a € M. Since r also belongs to M we conclude that a € M. But this
contradicts a € G,,.

- (2) If r € R, then Qps(r) = 0, for all maximal ideals M ¢ A, and con-
sequently Sp,(r) = {0}, thus g,(a) = 0, by Lemma 2. Conversely, suppose
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shat J € A is an ideal such that gs(a) = 0, for all @ € J. We wish to
ghow that J € f. Assume the contrary. Then there exists a maximal ideal
M C Asuch that J € M. By maximality of M we have M +J = A. Choose
m & M and a € J such that m+a = 1. Then ¢ = 1 — m and consequently
@ur(a) = 1. This shows 1 & Sp,(a) and contradicts ps(a) = 0. =

Proof of Theorem 2. (1) According to (1) of Theorem 1 we must
only show that P((fy) € R Let M C A be a maximal ideal. Suppose
P(Gw) & M. Since every element of A is a sum of invertibles, P(G,,) is an
ideal in A by Corollary 8. Thus the maximality of 3 implies that P{G,) +
M = A. In particular, there exist elements b € P(G,) and m € M such
that —b -+ m = 1. Since | € (7, it follows that m = 14 b € G,,. But this
contradicts the fact that m belongs to the proper ideal M in A. Thus we
must have P((Vy,) & M, for each maximal ideal M C A, and consequently
PGy & R

(2) Note that @ € (7y if and only if 0 € Sp,(a). Hence Sp, (a+r) = 8p, (a),
for all @ & A, implies a +r € Gy & a € Gy, for alla € A, and in
particular therefore r + Gy € Gy, that is, r € P(Gy) = R. Conversely, if
r& R= P{Gy), a € A and A is a scalar, then

Mg Sp,(a) = A~ a & Gy = A= (a+7)ECy = AgSp,(atr).

This shows Sp,(a + r) & Sp,(a). To obtain the reverse inclusion replace a
with ¢ - r and subsecuently r with ~r, w

Proof of Theorem 3. (1)=(2). Assume that the norm on A is
weakly spectral and let M € A be a maximal ideal. Then M is either
closed or dense in A. Since Gy is open, we can choose ¢ > 0 such that
l1—g|| < & tplies ¢ € Gy, for all g € A. Then m € M implies m € 5, and
50 ||L ~ |l = &. This shows that M is not dense.

(2)=(3). Let o € A and suppose that A € Sp,(a). Then there exists a
maximal ideal M ¢ A such that Qp(a) = A By assumption M is closed
(and proper), Consequently, the quotient norm || |jar, induced on the quo-
tient 4/M by the norm on A, is not identically zero {and is also submulti-
plicative). Therefore we have |1 2 1 and so |lellar 2 lof, for all scalars
o, Wao conelucle that

el 2 0| @ar(a)|las = |Allar 2 |A]-

(3)=>(4), Assume pg(b) < ||bfi, for all b € A, and let o € A be such that
1~ al| « 1. Then pe(1 ~ @) < 1 and consequently 1 ¢ Sp, (1 — a). Thus
oz ] e (4o a) & G

(4)=+(5). Clear,

(B)=+(1). Assume that 1 € int{G,) and choose £ > 0 such that I1—-fli <
e implies f & Gy, for all f & A. We wust show that Gy, is open. Let a € G,
and choose (finitely many) elements bj,c; € A such that 3, bjac; = 1.
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Suppose that ||d ~ a| < &/ > {b;lllle;l- Tt will suffice to show that d € (.
Set. f = 3, bydc;. Then

L= £l =] Y vste = diey | < lld—all 3 Hslles] <.

Consequently, f € Gy, This implies d € Gy, by Lemma 4. =

Proof of Proposition 1. The complete norm on B is spectral and
50 Gy (B) is open in B. Thus Gy (A) = Gy (B) N A implies that G (A) is
open in A, or equivalently, that the norm on A is weakly spectral.

Assume now conversely that the norm on A is weakly spectral and chooge
g > 0 such that ||1~ f| < & implies f € Gw(A), for all f & A. Note that
clearly Gy(A) € Gu(B) N A and let o € G, (B) A be arbitrary. Choose
(finitely many) elements z;,y; € B such that ¥ @,y = 1. By densily of 4
in B we can now choose elements b;,¢; € A such that |[1 - ¥ byac;fi < &
But then f =) bjac; € Gy(A), and 80 a € G, (A), by Lemma 4. =a

- Proof of Theorem 4. (1) If ¢ is in the center of A, then (a)y, =
(a)r = (a). '

(2) This follows at once from Lemma 2.

(8) We have S, C 5, which implies that Sp,(e) € Sp(a) for all a € A.
Suppose now that || || is a weakly spectral norm on 4. Then the sct 8,
is closed in the corresponding topology and this implies that the strong
spectrum Sp,(a) is a closed subset of the plane for each ¢ € A. The rest
follows from Theorem 3. ' '

(4) Clearly, - ?:1 byde; = 1 implies E?L_,l (b;)p(d)p(e;) = 1. Conse-
quently, d € G, implies ¢(d) € G, that is, ¢(d) € S, implies d & &,. It
follows that A € Sp,(#(a)) implies A € Sp,(a).

(5) Suppose that f = f()\) is a rational function with all its poles con-
tained in the complement of the spectrum of & € 4. Then the element
fla) € A is well defined. Suppose that A € Sp,(a) and choose & maximal
ideal MG A such that @us(a) = A Then f(A) = F(Qar(a)) = Qar(f{a)),
which shows that f(X) € Sp,(f{a)).

(6) The argument of (5) remaing valid. -

(7) If M C A is & maximal ideal then the quotient A/M is simple. The
result now follows from Lemma 2 and Corollary 4.

(8) The first part follows immediataly from Lemma 2, the second follows
from the Chinese Remainder Theorem.

Proof of Theorem 6 (similar to [10, 6.18]). Let ¢ : A — B be as in
Theorem 6, b € S(¢) and M C A any maximal ideal. Then M is closed in
B and so the norm:on B induces the quotient norm on B /M which is again
spectral [4]. The composition Qu¢ : A — B/M is a homomorphism with

dense range and Qu(b) € S(Que). But ${(Qud) = {0}, since the quotient
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B/M is simple and 1 ¢ S(Qu¢) (Lemma 3). Thus Qu(b) = 0, that is,
b e M, This shows that b€ R, =

3. Not necessarily unital algebras. Let now A be any associative
algebra., Then, to obtain a definition of spectrum, one introduces the circle
operation @ o b = a4 b - ab, with respect to which A is a semigroup with
identity 0. One calls an elemeut ¢ € A quasiregular if it is invertible in this
semigronp, or equivalently, if

(1) a & (1 -a)AnAl-a).
Note that the oceurrence of the identity is purely formal: {1 — &)b stands
for the element b — ab, for all b ¢ A, With this understanding we could
reinterpret (1)} as saying that
(2) a € (l~a)pnN{l—a)p,
where (1 ~ a)r = (1L - a)d and (1 - a)r = A(l — a) are the “right and
left ideals generated by 1o in A", Let @, denote the set of quasiregular
elements in 4. IT A does have an identity, then it is easily checked that
(3} 08 Qe l-aed, forallae A
Consoquently, for a nonzero scalar A we have
AeESpla) e A ~ag G l—-a/AgGea/ddQ,.
Moreover, 0 € 8p(a) ¢+ a € (. Thus, without assuming an identity, one
defines the spectrum Sp(a) as
Spla) = {Xs# 0 a/X & @} U Z(a),

where Z(a) = § if A has an identity and ¢ € G, and Z(a) = {0} otherwise.
Moreover, the notion of quasivegular element leads to the following well-
known characterization of the Jacobson radical [4]:

The Jacobson vadical is the lorgest ideal in A consisting entirely of quasi-

reguiar elements,

A corvesponding characterization of the strong radical ig also well known
[5, Section 4.5]: For an olement o ¢ A define the ideal I (w) € A as

T

1(a) = {b(]. ) o (1ot ij(l - a)ey

jﬁ:r.fl )
nzl, beber oo € .A}.
Again the ocenrrence of the identity is purely formal and we may think of

I{a) as “the two-sided ideal generated by 1 - a in A”. This. is similar: to tbe
definition of the ideal ¢(a) in [L]. Proceeding as in the unital case we now
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call the element a € A weakly quasiregular if o € I(a}, or equivalently, if
there exist (finitely many) elements b, ¢, b;, ¢; € A such that

a=b(l—a)+(1~aje+ Y bi(l—a).

In [5] the texm G-regular is used instead. Clearly every quasiregular element
is weakly quasiregular. We have [5, Theorem 4.5.6]:

The strong radicol is the largest ideal consisting entirely of weakly quasi-
regular elemenis.

A similar characterization is given in [1, Theorem 7).

Now let W@, denote the set of all weakly quasiregular elements a € A.
Note that I(a) C A is a modular ideal with (two-sided) modular identity
a. Thus a € I(a) © I(a) = A. If the algebra A does have an identity, then
I{a) is in fact the (two-sided) ideal ({1 — a)) generated by the element 1 -
in A and consequently

(4) aeW@, e ((l1-a))=A&l—-ac d,,

analogously to (3). We now define the strong spectrum Sp,(a) and the strong
spectral radius ge(a) of an element a € A as
Sp.(a) ={A# 0:a/X ¢ WQ,} U Z(a),
0a(a) = sup |},
AESD, (a)

where Z(a) = {0} if there exists a modular maximal ideal M ¢ A such that
Qur(a) = 0, and Z(a) = @ otherwise. Here g,(0) = —o0 if Sp,(a) = @, and
0s(a) = +oo if Sp,(a) is an unbounded subset of the plane. It follows from
(4) that the new definition of the strong spectrum agrees with the old one
if the algebra A hag an identity.

The element a is a modular identity for the ideal 7{a) and, if M C
A is any ideal, then @ is a modular identity for M if and only if [ (a) G
M. Consequently, the following statements are all equivalent: o ¢ W(Q,,
I{a) # A, a is a modular identity for some proper ideal in 4, a is a modular
identity for some maximal ideal M C A. Recall also that ¢ s o modular
identity for the ideal M C A if and only if the quotient A/ M has an identicy
and QM (G) =1

Thus our definition of the strong spectrum shows that the analogue of
Lemma 2 holds:

LEMMA 2'. Let a € A and X be any scalar. Then ) € Sp,(a) if and only if
there exists o modular mazimal ideal M G A such that Qu (a)=) & A/M. w

As in the unital case we have

TurOREM 2'. The strong radical of A is the largest ideal in A on which
the strong spectral radius is identically zero. m
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Theorent § also generalizes to the general case with minor changes. We
omit the details. Recall [4] that a norm on A is called spectral if the group
Qr of quasiregular elements is open, (In the presence of an identity we have
@y = L — G, and so this new definition of spectral norm agrees with the one
given ahove [4].)

Let us now call a norm on A weakly speciral if the set WQ, of weakly
quasivegular elements of A i open in the corresponding topology. To ob-
tain the analogue of Theorem 3, it is most convenient to relate the strong
spectrum Sp, (e, A) of an element o in the algebra A to the strong spectrum
Sp,{a, AL) of o in the unitization A of A.

Note first that for every modular maximal ideal M C A there exists a
maximal ideal My G A" with My N A = M. (Let Q : A* —» A/M be the
extension of Qar : A — A/M defined by Qa + A) = Qula) + A, for all
a € A and all scalars A, and set M) = ker(Q).) Similarly, if M; € Al is a
maximal ideal, then My == A or M = My N A is a modular maximal ideal
in A, Now Lemma 2’ shows that

Sp, (e, A)\ {0} = Sp,(a, A\ {0}, and thus
oa(a, A) = ps(a, AY), forallac A.
We shall also require the following lemmag:
LEMMA 5. We hove WQ,(A) = WQ,.(AY) N A

Proof. Clearly WQ.(A) & W@, (AY) N A. Conversely, let o € WQ,(A")
MA. Then there exist (finitely many) elements b-+A, c+p, bj+A;, ¢j-Huy; € A
such that '

a= (b A1~ a)+ (1—a)ect+p)+ Z(bj + 251 = a)(ci + ps)
= b(L - a) + (L= a)e+ Y bi(l=a)ey + Y X(l - a)e
+ ) whi(1 - @)+ [A Y M) (1 —a).

Since o & A, the sealar part A+ p -+ 3 Ajpy on the right must be zero and
we obtaln

a e {b |- }_: ,u,-,'b,,‘J (L a)+ (1 ~a) {c + Z )\jcj} “+ ij(l —a)ey .
This shows that o € WEQ,(A). =

LiMMa 6. Suppose that A is a normed elgebra. Let 0 < g < /2. If

lall < 2¢ implies 0. € W(A), for oll a € A, then fal + ja| < e implies
o+ o & WQLAD), for all clemenis a € A and all scalars o

Proof. Assume that b &€ WQ.(A), for all elements b € A with [ <
9%. Let o € A and « be auy scalar such that [la] + |a < & Then |al <
£ < 1/2 and 5o a/(1 — )| 5 2[|a]| < 2. Thus ¢/(1-a) € wWQ,(A) and
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consequently there exist (finitely many) elements ¥, ¢, b3, ¢5 € A such that

a a a ; iy @ ‘
l_a:bj(l_l——:a)_}_(l"—l—a)c+Zb7(l 1_(1)63.
Set b=¥/(1—a), c=c/(1—a), b; =b;/(1~a)and A= &/(1— a). Then

a-t+o o o
= 17—
1-o (1—a)2+/\( l—a)

=(b+)\)(1—i—%-a—) + (1_ 1fa)c+2bj(1— T—f"_—a)cj.
Multiply with 1 — « to obtain
ata=(b+N1-{a+a)+ - (at+adety bi(l-(ata)e.
This shows that a +a € WQ,.(A'). =

. COROLLARY 5. Let A be a normed algebra and estend the norm on A to
the unitization A' as follows: ||a + al} = l|a| + lal, for all elements a € A
and all scalars . Then the norm on A is weakly speciral if and only if its
extension to A is weakly spectral on A,

Proof. Assume first that the extended norm is weakly spectral on A!.
Then the set WQ,(A) is open in A, By Lemma 5, WQ,.(A) = WQ,{A})N
A. Consequently, the set W@, (A) is open in A. This means that the norm
on A is weakly spectral.

Assume now conversely that the norm on A is weakly spectral. Since
0 € WQ,(A) we can choose € > 0 such that £ < 1/2 and |al| < 2 implies
that a € WQ,(A), for all elements a € A, Then, according to Lemma 6,
lell + |lee| < & implies o + @ € WQ.{A!), for all & € A and all scalars a.
This shows that 0 € int(W@Q,(A")). But in the unitization 4* we have
WQH(AY) = 1—Gy(AY), according to (4). This shows that 1 € int(G,, (A)).
Now Theorem 3 shows that the norm on A* is weakly spectral. =

THEOREM 3. The following conditions are equivalent for o normed al-
gebra A:

(1) The norm on A is weakly spectral.

(2) Every modular mazimal ideal M C A is closed.
(3) We have g,(a) < |la||, for all « € A.

(4} |lal| <1 implies o € WQ,., for all a € A.

(3) The zero element is in the interior of WQ,.

Proof We show (1)=(2)=(3) =(4)={(5)=>(1). The implications {2)=>
(3)=(4) =>(5) are shown as in the proof of Theorem 3.

(1)=+(2). Suppose that the norm on A is weakly spectral and extend it
to the unitization A as above. Now let M C A! be any modular maximal
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ideal. Choose a maximal ideal My C A" such that M = M;NA. By Corollary
5 and Theorem 3, My is closed in A'. Consequently, M is closed in A.

(5)=-(1). Suppose that 0 € int(WQ,). Extend the norm on A to A as
above. Then Lemma 5 shows that 0 € int(WQ,(A!)) = int(1 — G, (AY)).
Consequently, 1 € int(G,(A!)). Now Theorem 3 shows that the norm on
Al ig weakly spectral. Tt follows from Corollary 5 that the norm on A is
weakly spectral. m

CoroLLARY 2/, Let A be a normed algebra. If the norm on A is spectral,
then st i3 weakly spectral.

Proof. Suppose that the norm on A is spectral. Then 0 € int{Q,). Since
@ C Wy, it follows that 0 € int(WQ,) and hence the norm on A is weakly
spectral. m

ProposiTioN 1/, Let A be a normed algebra and B the completion of A.
Then the norm on A is weakly spectral if and only if WQ,.(A) = WQ,(B)NA.

This can be reduced to the unital case by using Corollary 5 and (4).

4. Examples. Suppose that the algebra .4 has a unique largest proper
ideal X, that is, a proper ideal K which contains all other proper ideals.

From Lemma 2 it follows that Sp,(a) is empty if @x(a) is not a scalar,
and Sp,(a) = {A} if Qx(a) is the scalar A, for each element a € A. Moreover,
the set S, of strongly singular elements, which in general is the union of all
proper ideals in .4, coincides with the ideal X. Consequently, a norm on A
is weakly spectral if and only if the ideal X is closed in this norm.

In particular, a simple algebra A is of this form with K = {0}. In this
case every norm on A4 is (trivially) weakly spectral.

These extreme cages provide easy examples to complement Theorem 1.
To be specific, let H = I be separable Hilbert space, B the algebra of all
bounded linear operators on H, K C B the ideal of compact operators,
C = B/K the Cualkin algebra and @ : B — C the quotient map. K is well
known to be the unique largest ideal in B. Comnsequently, the algebra €' is
simple.

Exampre 1. Choose a selfadjoint element o € B such that @ x{a)eCis
not a scalar. Then neither is the element ) g (1 —a). Consequently, Sp,{(e) =
Spy(l—a) = 0. Bul Sp,{a+1~a) = {1}. This shows that the strong spectral
radius is not subadditive on the commuting selfadjoint elements a, 1—a € B.

ExamrLe 2, We show that the equality Sp,(f(a)) = f(Sp,(e)) fails for
certain elements of the algebra C, even for the polynomial f(A) = A2,

Let ¢t € B be the bounded linear operator which permutesthe coordinates
as follows:

t:ly 3 (w1, 29,...) — (%2, %1, 24, %3,...) €Iz,



268 M. J. Meyer

and set @ = Q(t) € . We have t* = 1 € B and consequently a® = 1 ¢
C'. Thus Sp,(f(a)) = Sp,(a?) = {1}. It will now suffice to show that the
element @ is not a scalar in C. Then, by simplicity of C, Sp,(a) = @ and so
f(Sp,(a)) = 0. Let A be a scalar. We have to show that the operator ¢ — A
is not compact. Note that ¢ — A is the operator

Io 3 (21,T2,...) = (T2 — AT1, By — AZ2, T4 — AZ3, T3 — AZg,...) €y

and let p: (xy,29,...) — (21,0, 23,0,...) be the orthogonal projection onto
$pan{esns1 ), where (er) denotes the standard unit vector basis of H = [y
Then p(t — A) is the linear operator

2 2 (.731,.’132,...) — (.’L‘z — Az, 0,24 — /\:L'3,O,...) €ly.

Thus p(t— ) is an isometry on the infinite-dimensional subspace 5pan{es; }.
Consequently, the operator z(t — A) is not compact and hence neither is the
operator t—A. Notice also that the algebra C is a C”-algebra and the element
a € C is selladjoint.

EXAMPLE 3. We show that the equality Sp,(ab) = Sp,(ba) fails for cer-
tain elements a,b € C. Let s,t € B be the following bounded linear operators
on H =I;:

§:l3D (:nk) — (.’L‘gk) ely and

t:ly 3 (zg) - (0,21,0,29,...) €2,
and set @ = Q(s) and b = Q(t). Then st = 1 € B and consequently
ab=1¢& C, but the operator ts has infinite-dimensional kernel, and so the
element ba = Q(ts) € C is not invertible, in particular ba # 1. The simplic-
ity of the algebra € now implies that Sp,(ab} = {1} but Sp,(ba) # {1}. In
fact, it is easy to see that the operator ts is not compact and so ba % 0.
Thus be is not a scalar in C and so the strong spectrum Sp,(ba) is empty.

ExAMPLE 4. Recently [9] L. B. Schweitzer has constructed a simple unital
Banach algebra A with involution which carries a nonspectral B*-norm.
Since all norms on A are weakly spectral, this provides an example of a
norm which is wealdy spectral but not spectral.

Remark. Another reason to consider the notion of a weakly spectral
norm is the following: A classical result by C. E. Rickart [7] shows that on
a commutative, semisimple, completely regular Banach algebra all norms
are spectral. The question was left unresolved in the noncommutative case.
The basic building blocks (via the subdirect product representation) of non-
commutative, completely regular Banach algebras are the simple, unital Ba-
nach algebras, and these in turn are completely regular (by default). Conse-
quently, Schweitzer's example gives a negative solution. The trouble seems
to arise from the fact that invertibility (and hence the spectrum) are de-
fined in terms of one-sided i¢deals (of which thete are many, even in a simple
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poncommutative Banach algebra), whereas complete regularity is defined in
terms of two-sided ideals (and hence true by default for a simple Banach
algebra).

Our notions of wealk regularity, strong spectrum and weakly spectral
norm are defined in terms of two-sided ideals. In fact, all norms on a simple

unital algebra are (trivially) weakly spectral. We are therefore led to the
following question:

Is every norm on a strongly semisimple, completely regular Banach al-
gebra weakly spectral?

In the commutative case we have (7, = @ and consequently the notions
of spectrum and strong spectrum and of spectral norm and weakly spectral
norm coincide.
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