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Weighted Bergman projections
and tangential area integrals

by

WILLIAM 8. COHN (Detroit, Mich.)

Abstract. Let {2 be a bounded strictly pseudoconvex domain in C®. In this paper
we find sufficient conditions on a function f defined on £2 in order that the weighted
Bergman projection Py f belong to the Hardy-Sobolev space HE(B.Q). The conditions on
[ we consider are formulated in terms of tent spaces and complex tangential vector fields.
If f is holomorphic then these conditions are necessary and sufficient in order that f
belong to the Hardy-Soboley space H}, (802).

0. Introduction. Let 12 be a bounded strictly pseudoconvex domain in
C" with C* boundary 842, Thus, we suppose that there is a €™ defining
function r : C* — R, a neighborhood @ of 2, the closure of {2, and a
constant ¢ > 0 such that

@ ={¢:r{() <0}, 802={(:r(()=0},

|Vr| 0 everywhere on 842,

and that the Levi form of r is positive definite on O:
P
o B¢, 9C,

for ail ¢ € O and all w € C*,

If F is a function on 2, we will say that F' belongs to the tent space
TE(£2) if the admissible area function

(Qwiwy = Cluwl?

: RN L
(0.1) AF(n)=( f}F(Z)lzlf%%)
I'(x)

defined for cach n € 862 belongs to LP(do). Here, dm denotes Lebesgue
measure on ", do denotes the “surface area measure” on 8(2, and I'(n) is
the acdimissible approach region we specify in Section 2 below. Tent spaces
were defined and studied in the context of the upper half space Ri“ by
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Coifman, Meyer, and Stein in [CMSt]. Some of their results were generalized
to contexts including the present one by Ahern and Nagel in [AN]. It can
be shown that most of the results in [CMSt] have analogues in the present
setting and we will comment on these when the need arises. It scems to be
well known that tent spaces provide a convenient characterization for the
Hardy classes H? of holomorphic functions defined on £2; see the discussions
in [AB], [B] and [St2]. To state this characterization, for a smooth function
f defined on {2, let T f(%) denote the sum of the absolute values of all
derivatives of f of order less than or equal to & evaluated at z € 2.

THEOREM A. A holomorphic function F defined on 12 belongs to the
Hardy class H? where 0 < p < o0 if and only if
rDF e T;(ﬂ) .

More generally, we say that F belongs to the Hardy-Sobolev space HL(12)
if all derivatives of F' of order less than or equal to k belong to HP({2). It will
be convenient to use multi-index notation: if I = (ky,..., k) where each &;
is a nonnegative intéger, then

H I
Dy = —',‘~§—L|—T and 5_[ “‘“‘“'**—Ql——‘*—‘—h— s
o™ . B 5( LLoT

where [I} = k1 + ...+ k. The following tent space characterization of H}

is well known.

THEOREM B. 4 holomorphic function F' defined on 2 belongs to HL((2)
if and only if

P DrymF € T2 (12),
where m 18 any positive integer.

If { € O and r({) =t let 312 be the boundary of the domain {2 : r(z)
< t}. Let Dr(¢) denote the normal to 82,

Dr(g) = (%’1—(0,..., —%;(c))

We have the usnal two vector fields associated with Dy,

&r 8
I—Z(ag 5, ac,,-a—z:j)
and

2] or 8
0.2 = A
02 e Zz(ag % acja‘c“j)’

where Ny corresponds to differentiation in the direction normal to a0y,
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while Ny corlospond:: to differentiation in the direction tangential to 912,
determined by ¢Dr. Notice that if F is holomorphic then

NIF(() = iNyF ().

It can be shown that if 0 < p < o0 and if F is holomorphic on {2 then
Fis “controlled” by the behavior of its normal derivatives in the sense that

F e HY((2) if and only if
rN{F & TP(£2)

for j = 0,...,k + 1. This actually follows from a more general result of
Beatrous [Bl Wlnch holds for harmonic functions: if u is a harmonic function
on a domain D in RN with ¢2 boundary and if X is a transverse vector field
on D then u belongs to HE (D) if and only if the nontangential area function
of 7 X ¥y belongs to LF(de),

We next recall what can be said about derivatives of holomorphic func-
tions in directions that are tangential to 842;. It is well known that if T (942;)
denotes the (complexified) tangent space of 802; at ¢ then

T (012,) = C"1(¢) ® C1(() @ R(iDr(()),
where C"1(¢) denotes _the orthogonal complement of the complex span of
{Dr(¢)} in C" and R(¢Dr({)) denotes the real span of iDr(¢).
Suppose then that v is a £ mapping from O to C". Write

U(C) = ('Ul(C): v :'Un(C)) '

Then v determines the vector fields
e 8
vy and Ty =Y 7,;(()—.
Z 7 aCT v Z 5( 3cj

Let {,} denote the Hermitian inner product on C®. If v is “complex tangen-
tial” 1o @42, i.e.

(v($), Dr(¢)} =10
for all ¢, then it follows that

w(¢) e T (), B €T,

for all ¢ on 862, and the restrictions of both T, and 7', to 892; define vector
fields on the manifold 962, It is natural to say therefore that the vector
folds 1% and T, are complex tangential on 2. Any such complex tangential
voctor field can be written as a linear combination (with £ coefficients) of
the vector felds :
dr 0 or 8

Ty = ac, 06 53;,%
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and .
s o _Or 8 or 9
Y8, 80, 8c.ag;]

where 1 < 14,7 < n. The following characterization of H ,f was given by Ahern
and Bruna in [AB] for the case where {2 is the unit hall and by Grellier in
[Gr] for the case where {2 is a strictly pseudoconvex domain. (Actually,
Grellier obtains results for an even larger class of domains.)

THEOREM C. Let ViF(z) = 3 |LF(z)| where the sum is taken over all
compositions L of k vector fields chosen from the collection of the veclor
fields T; ;. Then a holomorphic function F belongs to HY if and only if

" VeyamF € TE(D).

The statement of necessity in Theorem C illustrates the familiar prin-
ciple that a holomorphic function behaves twice as mnicely in the complex
tangential directions as it does in the normal direction. The statement of
sufficiency in the theorem is of interest because it only involves the vector
fields T3 ; and not their conjugates. Thus, the behavior of the functions LF,
where L is as above, is enough to determine whether or not F is in the
Hardy class HP.

In this paper we consider an arbitrary (not necessarily holomorphic)
function f defined on 2. We want to find sufficient conditions on such a
function that imply that certain weighted Bergman projections of f belong
to the Hardy—Sobolev space HE. It turns out that, in the spirit of Theorem
C, we need ouly consider the behavior of the derivatives I.f where now we
must let L be any composition of 2k + 2m or fewer vector fields T ;. If each
function of the form r™Lf belongs to the tent space 7% then this will be
sufficient that a weighted Bergman projection of f belongs to H}.

Our result differs from Theorem C in another way: we actually only
work, locally at least, with a single complex tangential vector field T =
T,. Thus, there is some similarity between our resulte and those of Beat-
rous [B]. We point out, however, that we need to consider all the Functions
L TFT2f, ., T2+m £ ingtead of just the ones where the operator has the
highest order. Perhaps this is the price one must pay in order to get control
in terms of a single vector field.

To malke all this precise we recall the following definitions.

For s > —1let B.((, #) be the Bergman kernel which gives the orthogonal
projection of the space L?{dm,) onto the space H N L%*(dm,). Here dm, =
r|® dm, L?(dmy) is the space of functions f defined on 2 satisfying

”f“g,s = f I.ﬂzdms < e,
e
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and HL?(dm,) is the Bergman space of holomorphic functions in L?(dm;).
Thus, if F € HN L?(dm,) then

F(z)= [ F(w)B.(¢,=)dm,(¢)
2
for all z € 2. If f € LY(dm,) we define
(0.3) Pof(2)= [ F(O)Ba(¢,2) dma(Q) .
2

Suppose that there is a finite covering of 812 by open balls {0.} and that
for each » there is a C* mapping v¥ of C* to C” satisfying the following
conditions:

W) >0 and (¥((),Dr((}y =0 foral¢e O,.

Let each v” determine the complex tangential vector field 7, = Ty.. Our
main result is the following theorem.

THEOREM 1. Suppose 0 < p < oo, m is a positive integer, and s is
a positive real number satisfying the conditions (n+s—m-+ 1)p > n end
s—m > —1. Let {Q,}, {vY} and {T,} be as above and suppose that , is the
characteristic function of O,. Suppose that for each v, r™x,Tif € TP (12)
forall j =0,...,2k +2m. Then P,f € HL(2).

Remark. We have assumed that the vector fields T, are globally defined
in order that it make sense that a function of the form T, f belong to the
tent, space T%({2) of functions globally defined on (2. However, the crucial
property of T, is that it is nonvanishing and complex tangential in the
ball @, and it is the behavior of the iterates of T, f in that ball which
is important. This is why we can allow the factor x, in the hypothesis of
Theorem 1.

Theorem 1 has the foliowing; corollary.

COROLLARY. Suppose 0 < p < 0o and m 18 a positive integer. Let {0},
{v’} and {T,} be as above. Suppose that F is holomorphic on 2 and that
Jor each v, vy, TIF € TE{) for all j =0,...,2k+2m. Then F € HL(12).

The remainder of the paper is organized as follows. Section 1 concerns
the weighted Bergman kernels, We will use a modification of the formula
obtained by Ligocka [L] which expresses the most singular part of the kernel
B,(¢, z) in terms of the defining function r of the region (2. The modifica-
tion is needed to achieve the property summarized in Lemma 1.1, We will
also need a more detailed expansion of the kernel B,((, z) analogous to the
representation achieved by Kerzman and Stein [KSt] for the Szegt kernel.
‘We will need this expansion in order to prove that certain kernels obtained
from the Bergman kernel B,{(;z) map the tent spaces 77 to themselves.
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These kernels arise in the following fashion. As in [C] the idea of the proof
of Theorem 1 is to integrate by parts to represent the projection P, f(z) in
terms of integrals of the functions T f where j = 0, ..., 2k + 2m multiplied
by kernels which are less singular than the kernel B,. Differentiating k + 1
times in the 2 variable then represents the derivatives of P; f(2) as integrals
over {2 against the measure dm,_q, of ™77 f multiplied by kernels which
then have the same singularity as the kernel By_ 1. In order to use Theo-
rem B we then multiply by |r(z)| and are left with the task of showing that
certain kernels with the same singularity as the unweighted Bergman kernel
By map TF (£2) to itself. This is made precise in Section 2. We should men-
tion that in order to prove the T2 boundedness result, as in [C] we appeal
to a theorem of M. G. Krein (see [C], Theorem B, for a statement and [GK]
for a proof) to deduce L? boundedness from the boundedness of an operator
and its adjoint on certain Lipschitz spaces A,. In the present context, as
opposed to the context of [C] the Lipschitz spaces we consider consist of
functions defined on {2 which vanish to a certain order at the boundary and
are therefore dense in the space L*(dm_1).

Before continuing we remark that the following notational conventions
will be used throughout the paper. The term “smooth” will mean C*°. We
will use the letter C' to stand for various positive constants which change
their values from context to context while remaining independent of the
important variables, Finally, the relation

A=B _
means that there are constants Cy and Cz such that C; 4 < B < (4.

1. Weighted Bergman kernels. In order to work with the kernel
B;(¢,z) we need to represent it in terms of the defining function r of the
region {2. We will rely essentially on the work of Ligocka [L] and Kerzman
and Stein [KSt] but will need to modify the constructions of those authors
as in [C] to snit our purposes. If I = (ky, ..., k) is a multi-index let

(=2 =(~2)" . ((n— )™ and =kl . k..
As in [C], for each integer ¢ > 2 define

éth1 Z

(CJ - 2),
where

s 1w
4i(C,2) = Dyr wikgﬂkl) () (Ch ~ 21)
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Y5 7 DiDir(O)(¢ — 2)'

UI 2
-2 LD~ )T+
[F=3
(=1)a-t 1
ot Y D)
|[]=g~1
Sinco
?!{(Ca 3) - I).j‘?'(c:)(c,i - 3j) - “;‘ Z DA:DjT(C)(CJ - Z«’j)(Ck — 3&:) + e(g, z) ,
Jl i

where
e(¢,2)l £ CIC - 2%,
it follows frow the strict pseudoconvexity of 2 that (see [KSt] or [C])
ReGy(C, 2} = 5@«‘2;-@ +O¢ -2

for ¢ € @ and z € 2 with |z - {| < §, where § is a constant independent of
z or (. Following Kerzman and Stein and Ligocka we patch in |¢ — 2|2 and

set
Ca z) Z 9i(¢

2)(G — 7)),

where

9i(¢s2) = (¢ = 2[5 (¢ 2 + (1= 9(I¢ ~ 2DHC; ~ 25).
Here, 4 is a smooth cut-off function defined for nonnegative reals, which is
identically L near 0 and supported on a neighborhood of 0 so small that the
inequality
“1(¢) + Re@y(¢,2) 2 O(=r(() = r(2) + (= 2*)
holds for all ¢ € 2 and all z € £2. The constant C' does not depend on z or ¢.

Now we define a kernel Gy(¢, 2) for (¢, 2) in 2 x {2 which is nonvanishing
ol the dingonal by setting

(1.1) GalC,2) = =r(0) + Gyl¢,2).

Notice t;h.a'l; tl’lere exists a constant &y such that for z € O, 8.G,(¢,z) =0
provided . Furthermore, there is a neighborhood 4
of {2 such tlmt Gq(C , z) has poaltwe real part for all ¢ and #z in U such that

‘Z'* | > (’)()/2
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In [L] Ligocka shows that if ¢ = 2 then for each s > —1 there is a function
Ns(¢,#) which is €*° on C™ x C* and for which the equality

_ N(Ga)
(1.2) f F(O)5 (C p MHS dma(C)

holds for all F' ¢ H N LQ(dms). In fact, her argument works with G, in
place of (3 (of course the function N; will also depend on ¢) and we will use
this fact in the sequel. The reason that we prefer to work with the modified
kernels G, is contained in the next lemma which was stated in [C].

LemMA 1.1, Forany j=1,...,n,

BGQ(CVZ) — — Ie Py
BCj IIZEQ(C ) I(C: )a

where each ey 15 a smooth function of z and (.

Remark. In Lemma 1.1 above 8/8(; denotes differentiation with re-
spect to the first variable while the second is held fixed. We will follow a
similar convention in the sequel when differentiating the function of two
variables G((, z); 8/8z; will denote differentiation in the second variable

while the first is held fixed. Similar remarks apply to the operators &/0¢ j
and 0/0%;.

Remark. At a certain point in our argument we will need to be working
with the kernel 4 where we must choose ¢ to be a large integer. Until that
moment we will simplify the notation by suppressing the dependence on g
and simply write G in place of G,.

We now reason as in [KSt] (see also [L] and [Ra], Chapter VII) and
relate the weighted Bergman kernel t¢ the kerne! in the denominator of
(1.2). Let Ws(, 2) = N,/G5+1+5. The form 9,%,((, ) may be extended to
be smooth in a neighborhood of 2. By finding a solution o the & problem
8.u = 8,¥((,2) we obtain a kernel Q((, z) which is smooth on {7 x {3,
Subtracting @ from the kernel of (1.2) yields a kernel N,/ Gy which is

holomorphic in z € £2 and still satisfies {1.2). For an <1,1b1trary Fin L' (dmy)
define the operator

GF(2)= [ FOgserhs am.(0).

n

Let G™ be the Hilbert space adjoint of G which is well defined on the space
L*(dm,). {See Corollary 2.2 below.} If B = G* — G then it follows from the
reproducing properties of P, and G that

P.=G + PB.
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Iterate this last equality to get

k
(1.3) Py=) GBI + Ry,
j=0
where
Ry = PBF+1

From (1.3) we may usc the methods in [KSt] (which rely on the “smoothing
properties” of the operator B) in order to analyze the remainder term R
andd gel the following representation for the weighted Bergman kernel B,.
We remark that the terms arising from the “correction factor” @ introduced
above are contained in the “remainder” term of the formula.

TrurorEM D. Let

Ns(¢, 2)

E((,2) = G(C, ) +i+s

where z,{ € §2, and set

(14) A(C,z) wE(z,() - E((,2}.
Then the weighted Bergman kernel of 2 is, for ( € 2 end z € (2,

k
By(¢,2) = E((,2) + 3 BA((,2) + R (G, 2)
J=1

where for each ¢ € 12,

Ryp1(C, 2) € CoBN( D) _
in the variable z, and (k) — 0o as k — oo. The kernel composition EAJ
Tmeans

EA(Cz)= [ .. [ Blt,2)Alte,tr)
e  tER -
. A(ij, tj_]_)A(C,‘tj) dms(tj) .. .dms(tl) .
2. Operators on tent spaces. In order to prove Theorem 1 we will
need the following result,

THROREM 2. Suppose 0 < p < co. Let K((, z) be a kernel of the form
r(z)*r(Q)* H((, 2)

K(¢7) = G{C, 2y itatbH

or
r(z)°r(¢)" H(¢, z)

G(z, C)n+1+a+b+l ’

K((2)=
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where [ 48 a nonnegative integer, H({, z) a smooth function which sotisfies
(G 2)| < Oz = P+ Ir(O + ()],

and a and b are real numbers satisfuing o > 0, b > =1, and (n+b-+ L)p
—n > 0. Then the operator

Ki(z) = [ FOK( =) dm(C)
1o}

maps the space T4 ((2) to wtself.

Our proof of Theorem 2 requires three steps. Roughly speaking, first, we
appeal to the arguments of Ahern and Schneider to prove that K aud ity

formal adjoint K* are bounded operators on the Lipschitz spaces A, o(£2) of

functions f in the usual Lipschitz space A,(£2) {see [St1]) which vanish on
d12. (The adjoint is taken with respect to the inner product on the Hilbert
space L*(dm_1).) Here, we need only consider 0 < o < 1. It is easy to see
that A, g(42) is dense in the Hilbert space L?(dm..;). Second, we invoke
the theorem of Krein to conclude from this that K and K* are bounded on
L?(dm_1). Since L2(dm_1) = T$(42) (see [CMSt]} this proves the p = 2 case
of Theorem 2. Finally, we use the p = 2 case and the atomic decomposition
of TJ to prove that K and K* are bounded operators on TP, for 0 < p < 1.
The full result is then a consequence of interpolation and duality.

LEMMA 2.1. Let 0 < o < 1 and let Aq be the closed subspace of An(£2)
defined above. Let K ((,z) be a kernel of the form

K(¢,2) = WSO HE =)

G(C, z)ntiTatb+

or

K(C: z) —- T{Z)GT(C)b H(C:.z)

Gz, CynrTtasbrt
where H is as in Theorem 2, a > a and b > —1. Then the operator

Kf(z)= [ FOK(C 2)dm(C)
12

maps the space A, to itself and the space Ann to dtself.

Proof. The proof of the Lipschitz continuity of Kf proceeds along the
same lines as the proof of the main result of [AS2] which concerns a similar
result for the Szegd kernel. It is based on the construction of the kernel &
which shows that there is a finite collection of open balls {©0,} such that
812 C|J O, such that the following conditions hold:

{21) G(C: C) = ‘T(C): C € U OVS
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N < SR e — ,
(22) %(C’C)_Ov E(C:C):—D]T(g)a J=1L...n, CEU@U;
e, 4G .
(2.3) 52(«) =0, ;j;;(z,z) ==Dyr(z), j=1,....n, z€|JOy,
(2.4) GG 2 OO+ () + 1~ 2%),  z¢eln0O, .

To prove the first part of the lemma it is sufficient to establish the esti-
mate
IDKf(2)] < Clr(z)|*,
where 12 demotes a first order derivative. This in turn will follow if for &
suificiently small and positive we set 2, = {{: — < r(¢ ) < 0}, define

K:f(e) = [ HOK(C 2)dm

2,
and prove that
DK, f(z)| < Clr(2)|“"*.

Now the open set 2, may be written as the union of finitely many open
sets A7 on which there exists a smooth projection P from A to 8f2. Such
a projection exists since Vr is nonvanishing on 82, and can be chosen
so that the mapping 2 — (P(z),r(2)) is a C* diffeomorphism of A" onto
(N N O x (~gp,0), for some e > 0. We may assume that £ < g and by
partitioning unity we may also assume that the function f is supported on
one of the sets M. It follows then that we may write

€
K f(z)= [ [ FIOKE2)JI(C 1) don(C) dt,
0 o8
where J(¢,t) I8 positive, smooth and nonvanishing and do; is surface area
on the manifold 802, If we apply a first order derivative D to K.f we may
use properties (2.1)-(2.4) above and the method of [AS1] or [AS2] on the
resulting inside integral to estimate that | DK . f(2)] is bounded by a constant

bines the sum of the terms
g

(2_5) f ‘f |G’<g’z)‘"‘nm2w—b+mdat(c)tbdt
0o,
and
(2.6) ()]t [ [ 16T Ao (8
0 o

plus a term which is bounded independent of z. Note that o + b > T«l. We
may use the integral estimates of [ASL] to show that the expression in (2.5)
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is less than a constant times
E

tb
S e

and the expression in (2.6) is less than a constant times

E

tb
a—1 .
|r(z)| of (i’"(zﬂ + t)a,»l-b-l—lw-(.’« dt.

The desired estimates now follow easily.

To prove the second part of the lemma, observe that if f € A, then
|f(2)| < Cr(2)|* and we have the estimate

Kef(2)] < C [ 1r(Q)*1K(C2)| dm(C)
2

[r{z)*|r (O
< J 16 s 4@
pota

< Clr(z)l° Bf e = Fars 4

< Clr(=)[%

since @ > . This finishes the proof.

Remark. The simple method used to obtain the last estimate can also
be used to obtain bounds on any first order derivative of K FifJ € Aap
and therefore gives an easier proof of the second statement of the lemma.
In fact, since the kernel G' has positive real part, if K((,z) is one of the
kernels of Lemma 2.1 with the function G replaced by |G|, then the proof
shows that the operator obtained from this kernel maps Aa o to itself. This
is reminiscent of the Forelli-Rudin result (see [Ru), Chapter 7) that shows
that the absolute value of certain weighted Bergman kernels on the wnit ball
give rise to bounded operators on weighted L? spaces.

CoroLLaRry 2.2. Let K be an operator of the Jorm considered in Theo-
rem 2 above. Then K is a bounded operator on L(dm._;).

Proof. Let o > 0 and suppose that f and g belong to Ay g. If
-3 b
K(e, ) = T G )

G(C, ) Fafbal

and

(9= [ fgdm_y,
n
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then it is easy to see that (Kf, g) = {f,K*g), where

o
K*'g(z) = [ g(Q)K*(¢, ) dm(()
n

and
K*(¢,2) = L™ HG 2)
Gz, ()rHitatbH
If we take o sufficiently small it is not hard to see that K and K* are
hounded on A, g by Lemma 2.1. The conclusion of Theorem 2 for the first
form of the kernel K therefore follows from the theorem of Krein. The same
argumnent works for the second form of K and the proof is complete.

In order to use the last two results to complete the proof of Theorem 2
we must recall some facts about the geometry of {2 and the atomic decom-
position of the tent space T},

Let ¢ be the pseudometric defined on 842 by

2(¢,m) = [{¢ = 0, Dr{O)] + (¢ — m, Dr(ah)] +1¢ — nf?
and for ¢ € #§2 and § > 0 define the nonisotropic ball

Q(¢;6) ={n:n €82 and o((,7) < £}

See [8t3, Chapter II] for a discussion of the properties of p and the
collection of halls @.

With the pseudometric p defined above we may work locally on sets A on
which there is a smooth projection P from N to 812 and a diffeomorphism
of N onto (VNN x (—gy,&p). Thus each point ¢ in A is identified with the
pair (P{¢), 7(C)). The following lemma can be proved by applying Lemma 5.3
of [C] twice.

LEMMA 2.3. If ¢ and z belong to N N §2 then
[P+ [r(2)] + 2(P(C), P(2)) = |G(¢, 2)] -
For each n € A N 82 define the approach region
Fi(n) = {¢ & M+ [o(P(C), I < Hr (O}

where £ = 0, In what follows we will assume that a single ¢ has been chosen

and suppress the dependence of the approach region on the parameter ¢. If

E is a suhsei of N N 682 may define the “tent” over E as
B={¢eN: QPR InNOD c B}

0 < p< 1 afunction 3 defined on A is called a TY atom if there is a ball

Q = }(n, &) such that F is supported in ¢ and

f mz@ﬂ < §r-2/p)
4 Ir|
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Take a finite cover of 12 by open sets AV; where each N is as A7 above and
call a function defined on 2 a T3 atom if it is a T atom arising from one
of the sets A;. The proof of the atomic decomposition for TY(REMY given
in [CMSt] may be modified to show that there is an open subset W ¢ UN;
containing 92 such that any function f belonging to T5(£2) which is sup-
ported on W has an “atomic decomposition”

oG
f= Z AiBys

J=1
where 3 [P < co and f; is a T atom. We remark that in modifying the
proof, in place of the Whitney decomposition used in [CMSt] we may use
a Whitney decomposition of the type described in [AN], on page 364. This
leads to a formula analogous to the one in [CMSt] on page 315 of the form
05, — 05y = A% Our sets AR however, are not disjoint. But if we use
5;-"' = Ak —{ P71 AF in place of A%, then the desired atomic decomposition
can be achieved.

LEMMA 2.4. Lei 0 < p < 1 and let 8 be a T3 atom. Suppose that K

is the kernel described in Theorem 1. Then there is an absolute constant
independent of 3 such that

J1AKB) Pdo < C.
an
Proof. Suppose that 8 is supported on Q where @ = Qe 8), and

e € 0f). We first use Holder’s inequality to estimate that if m@Q = Q(e,mé)
then

/2 }
JIAKpPdr < ([ jaxs)P dg)” (mQ)tr/?.
me a5

Using the fact that T§ = L?(dm._,) it follows that

dm
J1A®B)Pdr=C | &8P
a0 0 "

and this last integral is dominated by a constant times

f WET_@ < 5"*(1;“2/1'1) ’
7 7

where we have used Lemma 2.2. Since o(m@) < C(mé)™, it follows that
JIAEBP i < 0,

me
where V' is a constant depending only on m.
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Next, let 7 € 962 and suppose that o(n, &) > mé. Let d = o(n, e). If m
is sufficiently large we can use Lemma 2.3 to conclude that there exists a
constant ¢ such that the estimate

|G(7,2)} 2 C(d + |r(2)])
holds whenever z € ') and 7 € @ Use the formula for K to estimate then

that , . .
oG r(r)] r(z)|*]r(r)]

Y T R e

and thercfore, if = € I'(y),

. r{z)|® d 1/2 1/2
iKﬁ(SN s C(d 4= |7*L(r3() ;!-r.—kl-l-a-l-b ( I 1*6!2%) ( I |T12b+1 dm)
@ Q

A

| (T, 2)

o b
= Y d+ r (7)) iFerd
5nml~b+1-n/p|7,(z)la '
(cl + [r{z)yrtiTath

We now integrate over I'(n) using the local product structure and get
the estimate

5n(1—2/p)/25(2b+2+n}/2

; dm Z)
ABS = | |Kﬁ(z)|’mf—m
in)
2(n-b+1-n/p) Ir(z) 2" dm(z)
<Cb f (d + [r (=) 2nHi+arh)
I'(n)
‘ ] E t?ﬂ.—ﬂ-—l .
< 052(n+b+1—n/‘p) f f (d + 15)2(n+l“{-t::.-f-.'b) do dt
0 Q(n,Ct)
_ 62(wt+fl+1—n/?’)
Therefore
d
]. |A(Kﬂ)|p do < (’jé;ﬁ)(ﬂ-l—b»{-l—n/p) J%ﬁ_) <,
‘ o 5 € NN
AP F &

provided (n+b-+1)p > n. Together with the previous estimate this completes
the proof. N
We now can complete the proof of Theo.rgn 2.pIt is easy to see téxat 1: ﬁs
enough to show that Kf € T whenever f is in T3 and is supporte11 on : ;
seb W above. For 0 < p < 1land p=2thisis a consequence of Coro aryh‘ ,h
and Lemma 2.4. We may then use the interpolation results of [CMSt] (whic
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can be generalized to the present context) to get the theorem for 1 < p < 2,
If we then use the duality (proved in [CMSt] and also true in this context)
which is achieved by the pairing (f,¢) = [, fgdm_, between T¥ and i
where g is conjugate to p plus the fact, and this is why we need two forms of
the kernel K, that the adjoint of K with respect to this pairing is bounded
on T for 1 < ¢ < 2, the argument is complete.

With Theorem 2 established we are ready to give the proof of Thecrem 1.
The argument is quite similar to the proof of Theorem 3 in [C] and we
therefore sketch the details.

Proof of Theorem 1. The hypotheses on f imply that »™f ¢
L'(dms...m) so the projection B, f is well defined. Write

Pf(z)= [ F(OBM(¢2) dma(C).
2

We now use the expansion given by Theorem D to write that P, Ffis a
sum of expressions

Ui(z) = [ FQOEAY(C, 2) dma(C)
7
and
Unaa(z) = [ FORMa(C, 2) dmy(C),
52

where 7 = 0,..., M and where M will depend only on p.

Our strategy now is to apply a differential operator D of order k -+ 1 (in
the variable z) to each term above, multiply by |r(2)| and show that the
result is in the tent space TY. We can easily handle the “remainder term”
Upr41 since it follows from Theorem D that we may choose M so that the
kernel Rps4; is as smooth as we like. Therefore for M large the expression
7(2)DUs11(z) will lie in T7.

We next consider the term Uy. There is no loss of generality in supposing
that f is supported on one of the sets ¢, described in the hypothesis or that
each of the sets (0, is contained in one of the sets N; discussed previously,
since a partition of unity argument reduces the general case to this one.
Using the explicit expression for the kernel £ given in Theorem D apply
Lemmas 2.2 and 2.3 of [C] and the product structure on O, to integrate
by parts 2k + 2m times and express Up(2) as a sum of terms of two types.
The first type arises if during the integration by parts an operator T, was
applied to the factor G. Recall that G = (¢ and we have Lemma 1.1 at our
disposal. In this case the resulting term has the form

H(¢, z)

2.7) Qf Qe g Syts g dmem(0),
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where g is a linear combination of the functions T, 1=0,...,2 + 2m,
and H is C* on C* x C" and satisfies the condition

|H(¢,2)| € C|¢ — 2|9~ 2h—2m

Applying the operator D to (2.7) and multiplying by ir(z)| yields a term of
the form

(2.8) ) [ U0 ez dmem(€),
Ie ?

where u € T,f and H satisfies the condition
IH(Ca Z)' < Oi{; - z|‘1—3kw2m—1.

By specifying at the outset that g be very large we can then apply Theorem 2
to deduce that (2.8) is in T7.

Continuing to the other terms where the kernel 7 has not been differen-
tiated, it can be shown that if U(z) represents such a term then

29 b = [ w0 D ),

7]
where v is in T and
[H (G2} < CUC = 227 4 e (1™ + [r(2)[*+™)
We may now apply Theorem 2 to conclude that the right hand side of {2.9)
is in the tent space T%.

We finally discuss the terms U; where § = 1,..., M. It follows from
Theorem D that

Ui(z) = [ ATF(8)E(t, ) dmy(2),
2

where A is given by (1.4}. Thus
Afy = [ FOE®Edm(Q)— [ FIQOEE 1) dms(0)
n

2
= Ef(t) - BAY). |
The argument above shows that *DEf € T§ where D is any diﬁ.erential
operator of order k& + 1. The same argument applies to Ef where in place
of Lemma 1.1 we use property (4.1) of [C]: :

Q’:?“"(C:z)=0) i=1...,mn C,ZEO,,.
0zj
Integrating by parts (using the vector field Ny given by (0.2})) as was done

during the proof of Lemma 4.1 in [C] allows us to uselTheore:m 2 to deduce
that the property that »Df € 75 where D is any differential operator of
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order k + 1 is preserved by the operators B and E. Therefore the function
rDAJ f also Hes in T7. The same argument then shows that »DUy is in 77
and the proof is complete.
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Pointwise inequalities for Sobolev functions
and some applications

by

BOGDAN BOJARSKI and PIOTR HAJELASZ (Warszawa)

Abstract. We get a class of pointwise inequalities for Sobolev functions. As a corollary
we ubtain a short proof of Michael-Ziemer’s theorem which states that Sobolev functions
can be approximated by C™ functions both in norm and capacity.

1. Introduction. In this paper, we prove some pointwise inequalities for
Sobolev functions, i.e. functions in the Sobolev classes W™ ({2}, where m is
an integer, p = 1, and §2 is an open subset of R™. For simplicity we restrict
the discussion to the case 2 = R" and mp < n. The generalized derivatives
Daf, |a] € m, are defined as equivalence clagses of measurable functions.
For our pointwise estimates, presented in a form valid for each point of the
domain 2, it is essential to select a representative in each class which is
s Borel function, i.e. a function well defined at each point of its domain,
essentially by an everywhere convergent limiting process of sequences of
continuous or continnously differentiable real-valued functions. This is best
illustrated by the well known procedure of selecting a Borel function f(z)
for the class of real-valued Lebesgue spaces Lf (R™) using the formula

Flz) = limsup JC fly)dy = Iimsgp fr(z), r>0,
() Blz,r) —
where f,(2) are tho Steklov means of the Lebesgue function . Nc?te that the
above limiting process is rather delicate and should be applied with extreme

o~

care; in particular, it is not additive, and in general f(a:.) # —(.— f )(z).
An important remark is that our main pointwise inequalities for the
Borel function f(z) may be formulated in terms of the averaged Steklov type

1001 Mathematics Subject Classification: Primary 46E35; Secondary 41A63, 41A80,

41409, 31B15. ) o
Fey words and plirnses: Scholev furction, Taylor polynomial, approximation, integral
representation, Bessel capacity.
This work was supported by KBN grant no. 2 1057 91 01.



