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A multidimensional Lyapunov type theorem

by

ALBERTO BRESSAN (Trieste)

Abstract. Given functions fi,..., fu € LH{R™ R™), weights p1,...,pw : R™ — [0,1]
with " p; = 1, and any fnite set of vectors v1,..., vy € R\ {0}, we prove the existence
of a partition {A1,..., Av} of " such that the two functions

In= ,:':L:jlpifi= fa= i)l X, i

have the same integral not only over ™, but also over every single line 2’ + Rv;, for
each 7 = 1,...,k and almost every 2’ in the orthogonal hyperplane vj‘. Equivalently, the
Fourier transforms of fp, fa satisfy fp(y) = fA(y) for every y € |J vj‘.

1. Introduction. Let fi,..., ., be integrable functions from R” into
R™. If pi,...,pu : R*—[0,1] are measurable weights such that 3 p;(z) = 1,
a well known version of Lyapunov’s theorem [4, p. 433] states the existence
of a measurable partition {A;,...,4,} of R” such that

1%

(L. pri(m)fi(m)dmzz ffz-(w)dz.

R™ i=1 Ay

Now let v be any nonzero vector in R" and denote by v* the hyperplane
perpendicular to v. By Fubini’s theorem, for almost every z' € vt, the maps
A fil' + M), i = 1,...,v, are all integrable. Applying the above theorem
to each single line {2’ + Av : A € R}, one obtains the existence of a partition
{A1,...,A,} such that

(1.2) j‘u i}?,‘,(a’:/ + /\'I))f,j(.'l)j + Av) dA

- LN

j
= Z f filz' + M) dr  for ae z’' € v,

=1 g4 aved;
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Of course, “almost everywhere” refers here to the (n — 1)-dimensional Le-
besgue measure on the hyperplane vt

Tn this paper, given any finite family F of nonzero vectors in "™, we prove
the existence of a partition {4, ..., A,} such that (1.2) holds simultanecously
for every v € F.

THEOREM. Let fi,..., f, € CH{R™R™). Let By,...,D, : R* = [0,1] be
measurable functions such that 3 p;(x) = 1 for allx € R™. Given any finite
set {vy,...,v,} of nonzero vectors in R, there emists a measurable purtition
{Ay,..., A,} of R™ such that, for every j = 1,...,u, one has

(1.3) f X:pﬂu e + ) fila' + Avy) dA = Z f (" + gy dd

—oa  1=1 i=l gy A GA1

for almost every =’ in the orthogonal hyperplane 'u;’

The proof will be worked out in the next two sections. Applications of this
theorem include multidimensional Aumann integrals and nonconvex optimal
control problems for semilinear hyperbolic systems of partial differential
equations in one space variable. These are considered in the forthcoming
paper [3].

Several different approaches to the original theorem. of Lyapunov [7] on
the range of a vector measure can be found in [1, 5, 8, 8, 9].

2. Two geometric lemmas

LEMMA 1. For any integer m > 1 and every finite set {vi,...,v,} C
R\ {0}, there emists a finite set & C R™ such that

H
(2.1) #(S)>mYy #(S;).
g=1

Here #(S) denotes the number of points in S, while #(8;) counts the number
of distinct lines parallel to v; which intersect S.

In the case where the vectors vy,...,v, are linearly independent, the
proof of the lemma is quite easy. Indeed, the finite lattice

i
§= {J;cjvj Pey E{O,...,m/.a}}

satisfies

#(8) = (L+mp)* > mp(l 4+ mp)#~* = m}i#(&%‘)-
j=1
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To cover the general case, let {e;,...,e,} be the standard basis in R¥
and consider the finite set

it
(2.2) Q-“m"{chej:CjEZ,Ogchm/.L, Vj}CR“.
i=1
We now construct a linear map A : R* — R™ with the properties:
(i) for each j, A(e;) is parallel to v;,
(ii} the restriction of A to G is one-to-one.
Let w be a vector such that {w,v;} # 0 for every j. Fix any transcen-
dental irrational number £ € R and choose constants «; so that

(2.3) (w,a)) =€, j=1,...,4.
Ify =) bje;, we now define

(2.4) Aly) = agbsv; .
=1

The linear map /A then satisfies both requirements. Indeed, by (2.4), Ae;) =
ajvy, hence (i) holds. If (i) fails, then there exist integer coefficients
C1,- ., ¢y, not all zero, such that A(Y cje;) = 0. From (2.3) and (2.4) it
follows that

(2.5} 0:<W,A(;§‘16j6j)>=<w,§:1&jcwg> chfwa_,,v:,) ;cﬂgi

According to (2.5), the transcendental number £ is a root of a polynomial
with. integer coefficients. This is absurd, hence (i) must hold.
We claim that the set S = A(G) satisfies (2.1). Indeed, if

u
T = Zajéjvj €S,
J=1
then the mu 4+ 1 distinet points

ety + Zm&ru;, ce=0,..., mu,
I#i
all lie on the same line through 7, parallel to v;. This implies
#(8) 2 #(S;) - (L+mp)
and hence (2.1), because
#(S) = (g) = (1+mp)* > mu(l +mp)

Zl-}—mu _Z#

j=1

w—1
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LEMMA 2. Let K C R" be a compact get with posgitive measure and let
S = {z1,...,2x} be any finite set. Then, for any € > 0, there exisls § > 0
and a compact K* C K whose measure and diameter satisfy

(2.6) meas(K*) > 0, diam(K") <ed,
such that the sets 62 + K* = {z : ¢ —~ 6z € K"}, fori =1, oo N, are all
contained in K.

Proof For any vector z € R™, writing X, . x for the characteristic
function of the set 6z + K, one has
(2.7) }ljj% Xk = Xgaprcler = 0
Indeed, for every & > 0 there exists a continuous function ¢ with compact
support such that {|¢ — xllzr <. Defining ps(z) = ¢(x ~ §z), we have

lil? Sgp HXK - ng.,_K“El

< b~ xghor + 196~ Xgprreller + 1ir§1851p # — dslcr & 2e.

Since & > 0 is arbitrary, this yields (2.7).
Using (2.7), we can now choose § > 0 sufficiently small so that

N
(2.8) Z I s ~ Xgapqerclls < meas( K.
i=1
Consider the set
K ={zeK:x+6z ¢ K for some i}.

By (2.8), meas(K’) < meas(K), hence the set-thecretic difference K \ K'
has positive measure. Any compact set K* C K \ K’ with positive measure
and diameter smaller than £6 clearly satisfies the conclusion of the lemma.

3. Proof of the theorem. Let fi,...,f, € LR R™) be given, to-
gether with measurable weights By,...,,. Define W to be the family of all
weights p = (p1,...,py) : R™ — [0,1]" such that 3 pi(z) = | and, for every
§=1,...,u, one hag

(3.1) f z;p,-,(m’ + Avy) file' + Avy ) dA

~-po i=l

g “—g

SoBila = dvy) fila + hg) dd
gzl

for a.e. @' € vy. The theorem will be proved by showing that W contains

an extreme point (p7,...,p"), which in turn must satisfy
(3.2) pi{x) € {0,1} Viell,...,v}, forae z e R".
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1. Observe that W is a bounded, convex subset of L°(R™;R*). To prove
that it is also weak® closed, let (p');»1 be a sequence in W, converging to
p°° in the weak® topology. For every j ¢ {1,...,u} and every measurable
set A contained in the (n — 1)-dimensional hyperplane vj-, we then have

(3.3) f{ f Zp;’o(a",’%-/\vj)fi(x’-l-Avj)d)\}xA(x’)drc'

pk =00 i=l
4

= lim [ [ pl(a’ + d0p)[fela’ + dos)a ()] dA da’
1’;‘ —co i=1

oo v

i { [ SBG + dwy) fula! 4 ) dd () de

1,5,1» —oo i=1

i

Since A4 is arbitrary, from the above equalities we conclude

[> = I ooV
[ S = ae)file + M) dh = [ Y B+ ) file’ + dvy)dA
—po gzl —oo i=1
for almost every 1’ € v:;-'"; therefore p> € W. This proves that W is closed,
hence weak* compact. By the theorem of Krein-Milman, W contains an
extreme point, say p* = (p,...,0}).
2. We claim that the weights p; take values in {0,1} for almost every
z. Indeed, if (3.2) fails, by Lusin’s theorem there exists o > 0, two distinct

indices h, k € {1,...,v} and a compact set K C R" with positive measure
such that

(i) the maps fr, fi, P}, p} are continuous when restricted to K,

(i1) p; (), pi(z) € [o,1 — o] for every z € K.

Let & = {z1,...,2n} be the finite set considered in Lemma 1. Let £ be
the minimum distance between any two distinct lines, both parallel to some
vy, intersecting §. Otherwise stated:

(3.4)  &=wmin{lz — 2 + vyl 22 €8, AeER, j=1,...,.4,
z — #' is not parallel to v;} .

Since & is finite, £ > 0. Applying Lemma 2 we now obtain the existence of
5> 0and K* C K satisfying (2.6), such that the sets K™ +6dz;, i =1,... N,
are all contained in J. Observe that the choice of ¢ implies that these N
sets are mutually disjoint. Indeed, if £+ bz = &' + 8z; for some ¢ # j, then
a contradiction is reached because

£6 < |62 — 2] = |€ — €| < diam(K™) < €6
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For each £ € K* we now consider a system of linear equations in N scalar
variables #1,...,0y. Denote by my : R™ - vjf the orthogonal projections.
For each 2’ € 'uj', if the intersection of the line 7} Y(2') with the finite set
£+ 88 1s not empty, consider the equation

(3.5) o GilfulE+bm) - fulf+bz)] =0 R™,
7wy (§--bay)=a’

For each j, the number of nontrivial equations of the form (3.5) equals the
number of distinet lines parallel to v; which intersect £ -- 88, i.c. #(8;).
Observing that each vector equation in (3.5) is equivalent to m scalar equa-
tions, as j varies in {1,...,u} we obtain a linear homogeneous system of
m Y #(S;) scalar equations in the N = #(8) real variables 0;. Because
of (2.1), this system has at least one nontrivial solution (64, ..., #x). Since
the coeflicients in (3.5) are continuous functions of £ & K™, the set of all
solutions of this linear homogeneous system which satisfy the additional
constraint

(3.6) max{{6;],...,|0x]} =0

is compact, nonempty, and depends on £ in an upper semicontinuous way.
By a standard selection thecrem [2, p. 90], we can thus construct a solu-

tion (61(¢),...,0n(€)), satisfying (3.6), which depends measurably on the
parameter £ € K™,

Two new weight functions p™(-), p~ () can now be defined by setting:
(3.7) of (&) =p;(z) =pi(z) Hithkorzd K*+68S,
(88) ph(2)=pi) £6:(6), Fi(z) =pila) FH:(8)
: if ¢ = £+ 8z; for some £ € K*, ¢ {1,...,N}.
Since the sets K* +§2; are mutually disjoint, the definition (3.8) is meaning-
ful. Clearly, Zp;* (z) = 3o »; () = 1 for every «. By (3.6), pf(m),pf(a:) =

[0,1]. Moreover, p+,p~ are both in W. Indeed, this can be established by
proving that

(3.9) 0@ 20l + M) = fula + dwp)]dA =0
o M €K +68
for every j and every &' € v}, where
0(z) = {ei(g) if © = £ + 6z for some £ € K*, i€ {1,..., N},
0 otherwise.

If (z' + Rus) N (K* 4 6S) = 0, the equality (3.9) is trivial. In the other case,
choose any £ € K*, 2z € 8 such that Ti(€ + 62) = o' and set ¢ = m;{€).
Observe that 2" is uniquely defined. Indeed, if '

(& +82) =€ +62),  mi€) # mi(€)

Lyapunov type theorem 127

for some £,£' € K*, 2,2’ € 8, then 7;(62) # m;(62'). The choice of £ in (3.4)
thus implies

|75 = )] = {m; (62) — m3(62")| > €8,
contrary to the assumption diam(K*) < 6.
The left hand side of (3.9) can now be rewritten as

(3.10) f Y 0u(a” + M) [fula” + vy + 62)
'y avye K e (=)
—fe(x” + My + 8z)] dA,
where the set [{x") of indices is defined as
Ie'y={ie{l,... N} m;(z" 4 6z) = 2'} .

By construction, the functions 8; satisfy (3.5), hence the integrand in (3.10)
vanishes identically and (3.9) holds. This proves that p*,p~ € W.

The definitions (3.7), (3.8) imply p* = (p*+p7)/2, in contradiction with
the extremality of p*. Therefore, (3.2) must hold. The partition {4,,...,4,}
defined by

Ay ={z eR":p}(z) =1}
clearly satisfies the conclusions of the theorem.

4. An example. On the unit square @ = [0,1] x [0, 11, define the func-
tions

fl(mﬂy)*:“'lv f2($7y)50
and the weights
p(zy) =z, pafz,y)=1~z.
An application of our theorem with vy = (1,0), vo = (0,1) yields the exist-
ence of a subset A, C @ whose horizontal and vertical sections satisfy

meas{y: (z,y} € A1} =z . for ae. z €[0,1],
1
meas{z: (z,y) € A1} = 5 for ae. y € 1[0,1].

This can be accomplished, for example, by choosing
Ar={(z,y) e <y<2ory <22 -1}NQ.
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Generalized inverses in C*-algebras II
by

ROBIN HARTE (Beifast) and MOSTAFA MBEKHTA (Lille}

Abstract. Commutativity and continuity conditions for the Moore-Penrose inverse
and the “conorm” are established in a C*-algebra; moreover, spectral permanence and
B*.properties for the conorm are proved.

Suppose A is a ring, with identity 1 and invertible group A~1 (more
generally, an “additive category”); then an element ¢ € A will be called
regular if it has a generalized inverse in A, b € A for which

(0.1) a=aba.
It is clear that both products
(0.2) bo = (ba)? and ab= (ab)*

are idempotents of A; in the presence of an wmwolution * : A — A we can
also enquire whether or not they are self-adjoint: when {ba)* = ba and
(ab)* = ab then (provided also b = bab) the generalized inverse is called
a Moore-Penrose inverse for A. If this exists then ([7], Theorem 5) it is
uniquely determined, and lies in the double commutant of o and &*; when A
is a C*-algebra then ([7], Theorem 8) every regular element has a Moore-
Penrose inverse. We write et for the Moore-Penrose inverse of a € A; thus

{0.3) a=aata, o =ates™; (aTa)* =a’e (aa™)* =™,
By the unigueness it is clear that
(0.4) (a")* = (a*)".

We recall also that, in a C*-algebra 4, necessary and sufficient for an element
a € A to be regular (and hence have a Moore-Pearose inverse) is ([7],
Theorems 2 and 8) that the range ideal be closed:

(0.5) ad =clad.
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