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Generalized inverses in C*-algebras II
by

ROBIN HARTE (Beifast) and MOSTAFA MBEKHTA (Lille}

Abstract. Commutativity and continuity conditions for the Moore-Penrose inverse
and the “conorm” are established in a C*-algebra; moreover, spectral permanence and
B*.properties for the conorm are proved.

Suppose A is a ring, with identity 1 and invertible group A~1 (more
generally, an “additive category”); then an element ¢ € A will be called
regular if it has a generalized inverse in A, b € A for which

(0.1) a=aba.
It is clear that both products
(0.2) bo = (ba)? and ab= (ab)*

are idempotents of A; in the presence of an wmwolution * : A — A we can
also enquire whether or not they are self-adjoint: when {ba)* = ba and
(ab)* = ab then (provided also b = bab) the generalized inverse is called
a Moore-Penrose inverse for A. If this exists then ([7], Theorem 5) it is
uniquely determined, and lies in the double commutant of o and &*; when A
is a C*-algebra then ([7], Theorem 8) every regular element has a Moore-
Penrose inverse. We write et for the Moore-Penrose inverse of a € A; thus

{0.3) a=aata, o =ates™; (aTa)* =a’e (aa™)* =™,
By the unigueness it is clear that
(0.4) (a")* = (a*)".

We recall also that, in a C*-algebra 4, necessary and sufficient for an element
a € A to be regular (and hence have a Moore-Pearose inverse) is ([7],
Theorems 2 and 8) that the range ideal be closed:

(0.5) ad =clad.
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In this note we enquire for which elements ¢ € ada the Moore- Penrose
inverse o is a continuous function of a; this leads us to introduce the
“conorm” of a normed algebra element.

If0#£T:X — Y is a bounded linear operator between normed spaces
then its reduced minimum modulus is given by

(0.6) ~(T) = inf{||Teff : dist(z, 7' (0)) = 1}.
For 7' = () this suggests (Kato [9], Ch. IV, §5) (1) = oo, althongh Apostol

[1] prefers 4(0} = 0. For example if X and ¥ are both complete then ([9],
Theorem IV.5.2)

{0.7) Y(T) > 0 & (X} =cdT(X);
if T is invertible then
(0.8) F(T) = |77~

When A is a normed algebra then an element a € A acquires a “left”
and a “right” conorm, the reduced minimum modulus of the operators L,
and I, of multiplication by a on the normed space A:

1. DeriNtTION. The (left) conorm of an element @ € A in a normed
algebra A is given by

(1.1) v(a) = 7§ (a) = v(La) = inf{||az|| : dist{z, a1 (0)) > 1},
where
(1.2) a'0)=L;M0) ={z € Az =0}

is the right annihilator of @ in A.

Similarly, the minirum medulus of the right multiplication R, gives a
“right conorm” for a € A:

(1.3) +4#"(a) = inf{||zal| dist(z, a..1(0)) = 1},
where
(1.4) a-1(0) = BH0) = {x € Az =0},

Whether or not the algebra is complete, the conorm of a regulay elotient is
positive:

2. THEOREM. If 0 and b are elements of o normed wlgebra A than

(2.1) 0#a=aba=1<|b|y(a) < Ibe|| [|abl| .
If in particular 0 # a € aAa is regular in o C*-algebra A then
(2.2) la*y(e) = 1,

' Proof Suppose ﬁrsg that T € BL(X, ¥') hag a complemented null space
in X, and that P = P* € BL(X, X) satisfies P=H0) = 11(0); then we
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may define Th : P(X) — ¢l T(X) by setting

(2.3) Th(Pz) =Tz foreachz e X.
Now we claim
(24) T2 < |17 < 1Pl TRl
and
(2.5) Y(TF) £ A7) S | PIv(T8).
For (2.4) argue
| Tzl TPz |T| Tzl .
WP Bl = P ] =P o WIS PR pgy

for (2.5) observe
(2.6) dist{z, T7*(0)) = dist(Pz,T(0)) < || Pzl < ||P)} dist{z, T~1(0)).

If in particular 7 = TST has a generalized inverse § € BL{Y, X) then we
may take P = ST, and apply also the analogue of (2.4) with S and Q=TS
in place of T and P; then (0.8) gives

(2.7) AT = e

Now (2.4), (2.5) and (2.7) together give (2.1). When a = aba in a normed
algebra A then (2.1) applies with T' = L, and § = Ly; to deduce (2.2) we
need only show that if b= a™ then .
(2.8) laa*|| = [oTa| =1,

giving |ST| = |T8|| = 1 in (2.1). But if p* = p = p? € A then |p[| =
2] = . =

In a C*-algebra, the conorm can be represented as a sort of “spectral
radius”, and hence acquires “B*”" characteristics. Recall that the spectrum

of a linear algebra clement a € A is given by

(2.9) o(@)=cale)={reCra—X2g A},
and the spectral radius by

(2.10) |a|, = sup{|A| : A € o(a)}.

Note that in general

(2.11) Agola) = |(a—A) e dist(A, o(a)) = 1.

When A is a complex Banach algebra then the spectral radius is less ﬁlw?a,n
or equal t6 the norm: for normal elements of a O*-algebra there is equahty.
This includes “positive” elements ([10], Théoréme 1.5): :
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3. THEOREM. If 0 # a € A is positive in a C*-algebra A then

(3.1) 7(a) = inf(o(a) \ {0})-
Proof. We make two claims: there is implication
(3.2) inf(o(a) \ {0}) > 0 = v(e) = inf(e(a) \ {0})
and
(3.3) 4(a) > 0 = inf(o(a)\ {0}) = v(a).

Towards (3.2) suppose 0 < A < inf(e(a)\ {0}) and write b == (a~-A)"*; then
a— X and b are both positive in A, so that ([6], Theorem 9.9.4; [8], Theorem
2.2) for arbitrary z € A,

llabs||? = [|(z + Abe)* (& + Aba)|| 2 N2 bba]| = || Abz]®.

Since bA = A this gives y(a) > A and hence (3.2). Towards (3.3) note that
if v(a) > 0 then by (0.7) the ideal ad is closed and hence a € ada is
regular, and has a Moore—Pentose inverse a™ € A. Since a is also positive
and hence normal it actually commutes ([7], Theorem 10) with o™, and is
thus “simply polax” ([7}, Theorem 9; [6], Definition 7.3.5). In particular, A is
the direct sum of the ideals aA and a™*(0}, and the restriction to a4 of the
multiplication L, is invertible (inverse given by restricting L), while the
restriction to ¢~*(0) is zero. If 0 < |A] < ~y(a) therefore both restrictions,
and hence a — A, are invertible, giving (3.3). m

By the spectral mapping theorem it follows that
(3.4) 2= 0=v(a)=n~(a?.

Theorem 3 gives the corresponding result for arbitrary elements ([10],
Théoréme 1.6):

4. THEOREM. If 0 £ a € A is a non-zero C*-algebra element then

(4.1) - v(a)? = inf(e(a*a) \ {0}),
and hence

(4.2) Y(@)* = 7(e*a) = v(aa") = y(u")*.
Also

(4.3) v(a) = v(Ra);

if A C B for a C*-algebra B then

(4.4) va(a) =vz(a).

Proof Recalling the square root equality
(4.5) llaz] = |[(a*a)*/?z|| for eachz € A,
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together with (3.4), gives the first equality in (4.2), and hence (4.1), since
Theorem 3 applies to the positive element a*a. Since in general

(4.6) l-bacAlal—abeA™?
there is equality
(4.7) o(aa™)\ {0} = o(a"a)} \ {0}.

This with Theorem 3 gives the second equality in (4.2), and the third is
just the first applied to a*. Equality (4.3) follows from vy(a*} = v(a), and
finally the spectral permanence (4.4) is (4.1) together with the corresponding
property of the spectrum .

Tn the special case A = BL{X, X) of operators, (4.1) is given by Apostol
([1], page 280). Theorem 4 shows that “spectral permanence” in C*-algebras
extends to regularity and in particular the Moore-Penrose inverse:

(4.8) o€ AneBa=>a € ada withat € 4.

This is an improvement on Theorem 5 of [7], which gives (4.8) for W*-
algebras; (4.8) of course follows also from the formulae of Groetsch ([4]; 31,
“orollary 1, §2.2). Another simple corollary is that (if a 5£ 0)
a
o
To investigate the continuity of the Moore~Penrose inverse and the co-
norm, we need a simple observation:

(4.9) v{a) = |a| partial isometry .

5. THEOREM. If ¢ € ada and b € bAb have generalized inverses i a
C*-algebra A then there is equality

(5.1) bt —aT = — b (b—a)at +BTHH(Y — ") (1 - aa™)
+ (1~ bTB)(b* aXa*ta™,

and, if a # 0 % b, implication

(5.2) 16%b = atall <1 = [9(8) = 7(@)] < b~ all

Proof Towards (5.1) write
bt —at bt (b —a)aT =bT(1~ aa™) — (1 - bth)at,
and use (0.3) and (0.4) to see that :
prEt (5 — a®)(1 - aat) = b7 (1 - aa™)

and

' (1 —bTh)(* ~ e a*taT = —(1- b h)a™.
For (5.2) write ¢ = (1 +ata —bTb)™" and argue

: -1
lbz|l > llaa*taca] — [Ib— all [la*ace] 2 (v(a) - [|b— all) dist(z, 57(0)),
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since, by (2.6) and (2.8),
dist(a*acz,a™(0)) = [ataca| = [[bFbe| = dist(z, b~1(0)).

This gives y(b) > ~v(a) — ||b — al|, which is half of (5.2), and similarly the
other half. =

Various conditions are equivalent to the convergence of a sequence of
Moore-Penrose inverses ([10], Théoréme 2.2):

6. THEOREM. If 0 # a € ado and 0 # oy, € anda, are regular in g
C*-algebra A, with ||a, — al| — 0, then the following are equivalent:

(6.1) lag = a*|| = 0;
(6.2) 1{an) — v{a);
(6.3) sup fla} | < oo.
Proof. If (6.1) holds then both sequences of projections also converge:
(6.4) ' atan — ata
and
(6.5) anal — aa™;

conversely, if either (6.4) or (6.5) is valid then (5.2) gives convergence (6.2)
for the conorms. If (6.2) holds then (since v(a) > 0} the sequence ~v(a,)
is bounded below, and (6.3) follows from the equality (2.2). Finally, (6.1)
follows from (6.3) and the equality (5.1). w

In the finite-dimensional case {matrix algebra), Theorem 6 recovers a
result of Penrose ([11}, Theorem 3.5), which says that, if (on) converges
to a, then (o) converges to (a*) if and only if eventually rank(a,,) ==
rank(a). We can also see that the only normal elements at which the Moore-
Penrose inverse is continuous are invertible: more generally,

if the conorm ~
s continuous at a € A then, using (6.4) and (6.5)

H

(6.6) C#acadaandaccldA™)=aecda!,

We can improve Theorem 6: the regularity of o actually follows from the
convergence a, — a of a regular sequence (a,,) satisflying the condition (6.3),
We begin by showing that the conorm is everywhere upper semi-continnous:

7. THEOREM. The conorm is upper semi-continuous on A\ {0}:
(7.1) lan —a| — 0= limsup y(an) < 4(a).
T
Proof. We claim that for each k& > 0,

(7.2) {a € A:v(a) >k} is closed in A4,
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and show first that the analogue of (7.2) holds in the subset AT of positive
elements of A. If o € AT then 4(a) > k if and only if
(7.3) 10,k[ S C\ o(a)
and hence by (2.11),

1
min(\, k -~ A)
If, more generally, & € A% lies in the closure of the set of positive elemenﬁ
satisfying (7.3) then whenever 0 < A < k thereisbe At withb— A € A
and ||b— al| < min(A, k - A), giving

a=A=E-N1+E-N"a~b)cA™l.

This means that (7.3) holds for a. (7.2) follows: the set of elements a € A

with y(a) > k is the counterimage, under the continuous mapping’:n — T,
of the set, of positive elements b € AT with y(b) > k2. Now (7.1) is clear. m

(7.4) D<A<k=|a=-N"Y=a-N"Y, <

In the special cage A = BL(X, X) of operators, (7.3) is given by Apostol
([1], Corollary 1.2). Theorem 7 gives the improved version of Theorem 6:

8., THEOREM. If a € A and (a,)} in A with a, — a and a, € azda, for
each n € N then

(8.1) lim inf lja) || < 00 = a € ada,

and hence

(8.2) sup [|la;f ]| < co=>JaT = li;na:[.
™"

Proof. Observe, using (2.2},
7(a) 2 limnsup v(ea) 2 1/ lim inf lak( > 0.

This makes a € A regular, giving (8.1); for (8.2) apply Theorem 6. w

We shall call an element @ € A semi-invertible if it has either a_left inverse
or a right inverse; for the full algebra of bounded operators on Hilbert s%ace
these are the only non-trivial continnity points of the conorm. We look first
at general normed gpaces:

9. THROREM. The reduced minimum modulus is continuous on the open

sets of bounded below and of almost open operators between a pair of normed
spaces, If T+ X —+ Y is a bounded linear operator between normed spaces

for which
(9.1) +(T) >0 and T7(0) #{0} and dAT(X)#Y,

then T is not a condinuily poz’ht of the reduced minsmum modulus 7.
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Proof T : X — Y is either bounded below or almost open there is
implication (cf. Lemma B.3.11 of [12])

(9.2) IS =Tl < ¥(T) = |y(8) = +(T) < 15 = Tlis
for if x € X is arbitrary then
IS =T < HT) = (H(T) = 18— TPll=l < I5=
giving (1) — IS — T'|| < ~(S), while at the same time
(8l € ISz < (| T2l + |15 =T} =]l

giving v(8) — IS — T|| < (7). This proves that the reduced minimum
modulus is continuous on the open set of bounded below operators, and
hence by duality on the almost open operators (note ({9], Theorem IV.1.8)
that when +(T) > 0 then y(TT) = y(T)). For the last part suppose z € X,
yeY, feXtand ge Y7 satisfy

gT =0="Tz and f(z)+#0# gly).
If we put, for each £ > 0,
T.=T—-cf oy : 2Tz —cf(2)y,
then ||T. — T} — 0 and T71(0) € F71(0), for if z € X is arbitrary then
Tez=0= Tz =cf(z)y = 0=g(Tz) =cf(2)g(y).
Now dist(z, f~1(0)) < dist(z, T, *(0)), giving
dist(z, f~H0))y(Tx) < | Teal| = [[(Te - Tzl = el f(2)] lyli — 0.
We conclude that, as e — 0, T, =T and y(T;) = 0# (7). =

Theorem 9 says the conorm will always be continuous at semi-invertible
elements, and the upper semi-continuity of Theorem 7 says that the conorm
is continuous at elements with no generalized inverses. When A is the
bounded operators then this is all; in more general algebras we can expect
the sitnation to be more complicated. For example, if

u 0 D 0
(5 ) ea (3 3)
with vu = 1 # wv in D then the conorm on A will be continuons at a, which
will be regular but not semi-invertible.
We conclude by considering when the Moore—~Penrose inverse a1 com-
mutes with an element a € 4; as we have seen this occurs {{11], Theorem

10) when a is normal, and of course also when a is invertible. Kerry Brock
[2] has found the answer for bounded cperators:
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10. THEOREM. If a € ada is a reguler element of a C*-algebra A then
the following are equivalent:

(10.1) ea” =ata;
(10.2) a=H0) = a*"1(0);
(10.3) a-1(0) = aZ,(0};
(10.4) ac A"
(10.5) a€a*d.

Proof The argument divides neatly in two: if a € ada in a C*-algebra
then

(10.6) e € At and af € atATY;

if @ == aba € A with no restriction on A4 then there is implication
(10.7) ba® = o = a’b & ba = ab,

while if in addition b = bab then

(10.8) a€ Ab=b"1(0) Ca” (D) = a = a®b

and

(10.9) ab=ba<aec A band a € bA™T.

These are quickly checked: for example aa™ = (aa®)" = at*a*, giving
o* = a*aat € Aa™, and hence

(10.10) a* = (a*a+1-aTa)a™ with atat*+l—ata = (a*a+1—ata)t,
giving (10.6). For (10.7) note that if aba = a with ba = ab then ba? = aba =
a; conversely, if @ = ba® = a®b then ba = ba®h = ab. The first implicatioln of
(10.8) is immediate; if b(0) C a~1(0} and b = bab then 1 —ab € a™(0),
giving the second. Finally, if ba = ab then

(10.11)  a=(a? +1~a*a)b with Pil-ata=(@®+1-a%a)™?,

giving (10.9). =

There are alse “one-sided” versions of Theorem 10, conbining (10.6) and
{10.8). It is sufficient for example for
(10.12) ‘ o=ava
that o be either lefs invertible, or quasinormal ([5], Problem 108) in the

gense that

(10.13) ac*a = a*a®;

equivalently [5], @ has a commuting “polar decomposition”.
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On continuity properties of functions
with conditions on the mean oscillation

by

HUGO AIMAR and LILIANA FORZANI (Santa Fe)

Abstract. In this paper we study distribution and continuity properties of functions
satisfying a vanishing mean oscillation property with a lag mapping on a space of homo-
geneous type.

Since the initial works by F. John and L. Nirenberg and J. Moser in
1961, the study of regularity of functions with properties on their mean og-
cillation over balls was developed by 8. Campanato, G. Meyers, S. Spanne
and A. P. Calderdén. Extensions from the euclidean setting to spaces of ho-
mogeneous type were considered by N. Burger, R. Macias and C. Segovia
and one of the authors.

In 1967, J. Moser in his paper on Harnack’s inequality for parabolic equa-
tions introduces a BMO type condition with a time lag. In 1985, E. Fabes
and N. Garofalo, applying an extension of Calderén’s method as stated by
U. Neri obtained a John-Nirenberg type lemma for this parabolic case. In
1988 one of us proved an extension of these results to the setting of spaces
of homogeneous type that can be applied to degenerate parabolic equations.
Related resulis come from the analysis of one-sided maximal functions and
weighty; in a recent paper F. Martin-Reyes and A. de la Torre prove a
John- Nirenberg type lemma for one-sided BMO functions.

T this paper we study distribution and continuity property of functions
sabisfying a vanishing wmean oscillation property with a lag mapping on a
space of hoegencous type,

1. Main results. Let X be a set. A symmetric function d : X x X —
Rt U {0} is a quasgi-distance on X if d{z,y) = 0 iff x = y and there exists a
constant K such that d(z, 2) < K[d(z,y)+ d(y, z)] for #,y, 2z € X. The ball
with center ¢ &€ X and radiug » > 0 is the set B(z,r) = {y € X : d(z,y)
< r}. We shall say that a positive measure p defined on a o-algebra contain-
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