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Perturbation theory
relative to a Banach algebra of operators

by
BRUCE A. BARNES (Rugene, Oreg.)

Abstract. Let B be a Banach algebra of bounded linear operators on a Banach space
X. Let § be a closed linear operator in X, and let R be a linear operator in X. In this
paper the spectral and Fredholm theory relative to B of the perturbed operator S+ R is
developed. In particular, the situation where R is S-inessential relative to B is studied.
Several examples are given to lustrate the usefulness of these concepts.

1. Introduction. Let X be a Banach space, and let B be a fixed Banach
algebra of operators on X with B € B(X), the algebra of all bounded
linear operators on X. There are many interesting algebras B which occur
in operator theory. In the last several years a useful Fredholm theory has
been developed in some of these algebras; see [1], (2], [4], and [12, §5.8]. To
give one concrete example, when X is a Banach lattice, the Banach algebra
of all regular operators on X has been widely studied, and a Fredholm theory
for this algebra was developed in [1].

In [6] we studied the spectral and Fredholm properties of a (in general)
unbounded linear operator § which is affiliated with B in the sense that
(A— &)t ¢ B for some A € C. In this paper we continue the study of such
operators, specifically, we consider the perturbation theory of & relative to
B. We believe this theory to be a natural and useful generalization of the
classical theory. By way of illustration, assume that one knows at the start
that the resolvents (A —~ §)~1 € B for all X in some nonempty open subset
of €. The operators in B all have some interesting property, so it is ugeful
to know for what 1 € C a perturbation S+ R of § has (4 — (5 )t e B.

The main theory we generalize here is the theory of relative boundedness
and relative compactness of an operator with respect to S [13, Chapter 4,
§1]. It should be noted that the classical theory works in a situation where
the generalization does not, specifically when A — § has no bounded inverse
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for any A. On the other hand, the generalization gives new information
even for the case B = B(X). For the generalization allows one to deal with
Fredholm theory relative to the largest closed inessential ideal in B(X),
while the ideal of compact operators is often properly contained in this
largest ideal. This largest ideal is the closed ideal of inessential operators on
X (as defined by D. Kleinecke in [14]). In addition, the generalization yields
a useful perturbation theory relative to a large class of Banach algebras of
operators.

We use the following notation throughout: S is a linear operator with
domain D{8) in X. If R is any operator, then A(R) denotes the null space
of R and R(R) denotes the range of R. An operator B with D(R) in X is
Fredholm when R is closed, R(R) is closed and of finite codimension in X,
and A'(R) is finite-dimensional. We do not require that D(R) is dense in X
For any operator R,

o(R)={AeC:(0-R"'eB(X)}, o(R)=C\oR).

2. Certain Banach algebras of operators. There are many inter-
esting Banach algebras of operators relative to which one can do Fredholm
theory. All of the algebras B which we consider in this paper (and the al-
gebras in [1]; [2], [4], and [6]) have the properties: (B,|| - ||5) is a Banach
subalgebra of B(X), I € B, and for some M > 0, M|T||g = |T|} (operator
norm) for all T & B. We shall always assume that B has these properties.
We also assume that B contains sufficiently many finite rank operators in

the sense explained next. For z € X and e € X' (the dual space of X), let
a & z denote the operator

(a®@z)(y) =aly)r yeX).
In order to have a useful Fredholm theory relative to B, we assume through-

out that B has the property:

(#) There exists an X-total subspace ¥ of X’ such that o ® x € B for all
reEXandagY.

Here Y is X-fotal means whenever z € X and a(z) = 0 for all o € Y, then
z=0.

The following property is used repeatedly; a proof can be found in [15,
Lemma 4.13, p. 41].

PROPOSITION 1. Assume that Z is a subspace of X' and Z is X-total.
If {z1,...,®a} is @ linearly independent set in X, then ey, . .. ,an} C Z
such that

ag(z;) = bk; (Kronecker delta), 1<k, j<mn.
J
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Let Fg be the ideal of all F ¢ B such that F has finite-dimensional
range. Note that by (#), a®z € Fp for all z € X and o € ¥. Define

V={aeX  :JzeX, 240, witha®z¢c Fg}.

By the definition of (#), Y G Y. Now we prove that ¥ is a subspace of X’
and that ¥ has a number of special useful properties,

PROPOSITION 2. Let ¥ be as defined above.

(1) Y is an X-total subspace of X'.

(2) Ife € Y andz € X, then a @ z € Fg.

3 Ifae Y and T € B, thenaoT €Y.

(4) Fg=span{a®@z:ae¥, z € X}.

Proof. First we verify that ¥ is a subspace of X'. It suffices to show
that ¥ is closed under addition. Assume a;,a3 € 17, and choose =1 # 0 and
25 % 0 in X such that ap ® 2 € Fp for k = 1,2, Now 3{B1,B:} C Y such
that By(z;) = 8kj. Then (ay + o) ® 21 = a1 ® @1 + on @ @1 = ((BL + Ba)
@ z1) (1 ® 1 + 2 ® ) € F. Therefore by definition ey + a2 € ¥ This
proves {1). 5

To prove (2), assume o € V and z € X. By definition of ¥, 3z 5 0
such that & ® z € Fg. Choose 8 € Y such that §(z) = 1, and note that
a®e=(8®@2)(a®z2) & Fs

To prove (3}, assume o € Y and 7 € B. Now a®w € #p for some z #= 0.
Then (o T) ® & = (o ® )T € Fp. Therefore co T €Y.

Pinally, we prove (4). Assume E € Fp, E # 0. Then E has the form F =
T, ay®azy where {@,. .., %y} is a basis for R(E) and {a,...,an} € X".
Fix k and choose 8 € Y such that B(x;) = 0 for j # k and B(zg) = 1. Then
o @z = (B® wx)B € Fp, so by definition ap & Y. It follows by this
argument and by (2) that Fp =span{a®z:a €Y, ¢ € X}

By Proposition 2 we may replace ¥ by Y in hiypothesis (#). Accordingly,
we assume for the remainder of the paper that _
(#5#K) ¥ Tas the properties stated for the space ¥ in Proposition 2.

COROLLARY 3. (1) Let R be an operator in X and assume F € Fp with
R(F) G D(R). Then RF & Fg. In particulor, Fp is o left ideal of B(X).

(2) Assume R is an operator in X with R =T e B(X). Also, assume
3V € B and F' & Fp with RV = I — F. Then R~ € B.

Proof. By Proposition 2,

Fp=span{fa®@ez:acl (=Y), z€ X}

Thus F' has the form F = Y p_; o ® o where ap € Y. We may assume
{@,..., a5} is a linearly independent set. Choose {z1,..., 2} € X such
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that ap(z;) = 6ks, 1 < k4 < n. Then for all §, z; = F(z;) € D(R).
Therefore RF =3 5., o ® R(2z) € Fp.

To prove (2), note that V = TRV =1 — TF, and since by (1), TF € B,
we have T' € B.

We will need the following technical fact.

PROPOSITION 4. Assume D is a subspace of X and E € Fg with BE(D) C
D. Then AF, G € Fp with

E=F+G, GD)={0}, and R{F)CD.

Proof If E(D) = {0}, then we are done. Otherwise, choose a basis
{wi,...,w,} for E(D). Choose {8} CV with 8(w;) = 6, [Proposition
1]. Set P = 3 ;. B8k ® wy € Fp, and note that P is a projection with
range E(D). Now PE = E on D and (I — PYE(D) = {0}. Set F' = PE and
G = (I — P)E. This is the desired decomposition of E.

Note that in this argument the collection {f;} can be chosen from any
X-total subspace of X' in place of ¥. We will have occasion to use this
observation.

The proposition is used as follows. Suppose V € B with V(A—8) =TI —E
on D(5), where B € Fg and V(R(A~5)) C D(S). Then setting D = D(S),
we have by the proposition that £ = F + G where R{F) C D and G(D) =
{0}. Thus, V(A - 8)=TI- Fon D(S) and R{F) T D(9).

We use the following notation concerning the operator S:

es(S)={A: (A= 87" e By, o5(S)=C\oen(S).
If p5{S) is nonempty, then we say that § is affilieted with 5. This concept
was defined and studied in [8].

Let T be the largest clogsed ideal of BB with the property that for any
T € Ig, o(T) has no nonzero accumulation point. Certainly Fz C Zs.
The set Iy is the largest inessential ideal of B; see [7, F.3.1, F.3.12]. In our
situation, using [6, Proposition 4] and [7, Definition F.3.1, p. 35], we have
Ip = kh(Fg) (the intersection of all primitive ideals of B which contain
F5). In Fredholm theory relative to B, the ideal Tx can play the same role
that the ideal of compact operators plays in Fredholm theory in B{X ). When
B = B(X), then Iz is the ideal of all incssential operators on X as defined by
D. Kleinecke in [14]. Some information concerning inessential operators can
be found in [14] and [16]. Following [6, Definition 5], we make the following
definition.

DerFiNiTION 5. The operator A — § ig B-Fredholm if IV, W ¢ B and
3J, K € Iy such that

A=SW =I—~J, and V(A=8§)=I—-K onD(S).
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The equation (A~ S)W = I — J includes implicitly the information that
R(W) € D(8). The B-Fredholm theory of operators afiiliated with B is
studied in [6]. When S is B-Fredholm, we write § € $5. Also, when S € 5
and ind(§) = 0 (ind(S) denoting the index of §), we write 5 € &,

ProPOSITION 6. The operator (A—5) € $g < there exist V,W € B and
G e Fr with

A=W =T~C, and V(A= 8)=I~F onD(S5).

Proofl. Using the fact that Tz = kh(Fg), it follows from {7, BA 2.4,

p. 108] that if L € I, then 303, Uy € B such that

(I-L) ~IeFp and Us(I~L)—I€Fy.
Now suppose A — S € Pg, so there exist VW € B and J, K € Tg with
A-8W =1I-J, and V(A-8)=I~-K onD(S).
Since J, K € Tu, as noted above, 2U;,Uz € B and G, F ¢ Fg such that
(I- U =1~G and Up(l — K) = I~ F. Therefore
A=8WU =T~0G, and pV(A~S)=I1-F on D(S).

ExAMPLE 7. Now we describe briefly a particular Banach algebra of
operators satisfying (#) which we use in §4. Let 2 be a locally compact
Hausdorfl space. Assume p is a positive o-finite regular Borel meagsure on
2 with the property that u(U) > 0 whenever I/ is a nonempty open subset
of £2. Let C{{2) be the space of all bounded C-valued continuous functions
on §? equipped with the sup-norm. If ¢ is any continuous function on 2,
let M, be the multiplication operator on C(£2) determined hy . When ¢
is bounded, then M, € B(C(42)), and in general

D(M,) ={g € C(£2): pg € C(2)}.
Now let € be the set of all C-valued functions K{z,¢) on 2 x {2 such
that
@~ Kz, 1) is a continuous bounded function of £2 into LY ().

The functions in € determine an important class of integral operators in
B(C}(£2)) according to the formula: For I € C,

K(f)@y= [ Kz, 0)f(t)dp(t)
0
Here K is used both to denote the kernel and the integral operator. The
operator norm of K is ' :

(f €CU2).

K| = sup [ |&(2,8)] dult)
n&f? 0 :
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[12, Theorem 12.2, p. 303]. The set of all such operators forms a closed
subalgebra of B(C({2)). This class of operators is studied in K. Jorgens’
book [12, §12.2].

Denote by 7 the set of all integral operators which are determined by
functions in C. Let K be the closed subalgebra of B(C{2)) given by

K={A+K:Ae(, KeJ}.

If f € C(2) and g € L*(u), then the kernel f(z)g(t) is in C. Thus, K satisfies
(#) with Y = L' (u).
Next we enlarge K slightly. Let B be the set of all operators of the form

B={M,+K:pcC?), KeJ}.

PROPOSITION 8. The set B is a closed subalgebra of B(C(2)) which
satisfies (#) with V = L(u).

Proof. Since for ¢ ¢ C(2) and K € C, pK and K¢ are in C, it is
straightforward to verify that B is an algebra. Now 7 is an ideal of B,
and J is closed in B(C(£2)) by [12, Exercise 12.4(b)]. Let B be the closure
of B in B(C(f2)), so again, J is a closed ideal in B. Consider the map
¢ C(2) — B/J given by ¢(p) = M, + J in B/J. Since C(f) is a
C"-algebra, the image of the continuous homomorphism ¢ is closed in 5/7
[9, Theorem 3.6, p. 72]. Therefore ¥(C(2)} = B/J. Thus, if T € B, then
dp € O(N2) with T' — M,, € 7. This proves that B = B.

As alast bit of information concerning K and B, we note a nseful property
of I and Tg. We use the notation W(X) to denote the ideal of all weakly
compact operators on X; see [10, IV.4].

PROPOSITION 9. W(C(2))NK C Ze; W(C(2)) N B € Ip.

Proof. Define M = W(C(£2)) N B. Then M is a closed ideal of B [10,
pp. 483-484}, and if T € M, then o(T") has no nonzero accumulation poiut
[10, Corollary 5, p. 494]. Now since B is a closed subalgebra of B(C(2)),
budry(os(7T)) C 0(2') S (T [8, Proposition 12, p. 25]. Therefore o5(T) =
o(T). Thus, by definition M is an inessentia) ideal of B, and so M CInli7,
Theorem R.2.6, p. 58].

3. S-inessential operators. Fix a Banach algebra of aperator B which
satisfies (#) and (#+#). Throughout this section S is an operator in X with
domain D(S). It is assumed that § is affiliated with B (g5(S ) is nonempty),
and that D(S) is ¥-total. The main purpose here is to study perturbations
of § by some operator R in X having one of the following properties.

DEFINITION 10. Let R be an operator in X with D($) C D(R).
(1) R is S-bounded relative to B if for some A € g5(9), R(A — §)~ € B.
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(2) R i S-inessential relative to B if for some X € 0p(S), R(A — Syt
eds.
We prove a useful note.

NoTw 11. Assume R is S-incssential [or S-bounded) relative to B. If
V e B with (A~ S)V & B for some A, then RV € Ip [RV € B]. In
particulor, for any A € pa(S), R(A ~ 8)™" € Ig [R(A - 5t e B).

Proof, Assume u € pg(S) and R(,LLM.S')"fJ € Ig. Assume (A—S)V € B.
Then, RV == R{pe = &) T — W == R{p — )1 (g~ A) +{(A- 8V € Ig.

Mainly we are interested in B-Fredholm properties of the perturbed oper-
ator § - 1 where £ is S-inessential relative to B. There is a rather technical
resull, which we need in the situation where A — S is B-Fredholm. We es-
tablish this result now. There is an interesting biproduct of the argument
which we state ag Theorem 15.

PROPOSITION 12. Assume A — S is Fredholm with ind(A ~ §) £ 0, and
WeBadG e Fr with(A-8)V =1—G, Then3F € Fg and W € B
such that:

(i) N(A = S - F) = {0};

(i) W(\— 8+ F)=1I on D(8Y);

(il}) R{W) € D(5);

(iv) (A — 85YW =1 — E where B € Fp.

Proof Define N = AN(A — §) and choose M finite-dimensional with
X = M @ R(A— 8). By hypothesis, dim(M) > dim(N). Choose a basis
{z1,...,2,} for N and a linearly independent subset {cgl, oot © M.
Choose {o,...,an} CY with ap(zy) = 8k,;. Set F = S ohe1 0k ® x5 € Fp.
Suppose z € N (A — § + F), so (A~ §)a = —Fua. Since Fz € .M. we ha‘ve
(A= 8 = —Fx = 0. Therefore z € N and 0 = Y kw1 @k(z)zg. This implies
ap(w) = 0for 1 £ k < n Now = b AkZu, 80 Ap = ox(z) = 0 for
1< k < n, and thus, 2 = 0. This proves (i),

The operator A— S --F is Fredholm so we can choose a finite-dimensional
subspace P of X with X = P ®R(A ~ S+ F). Define W(z) = 0 for z € P
and W((A— 8§+ Fu) = u for u & D(§). Since A-5+Fis a closed operator,
the Open Mapping Theorem implics that W is a bounded operator on X.
By definition R(W) C D(S) and W(A = § + F) = I on D(S5).

Let V and ¢ be as in the statement of the proposition. Then

V=WOH-8+FWV=W{I-~G+FV).
Since W(—G + FV) € F by Corollary 3, this implies W € B. Finally,
(A~ SYW = (A= 8)(V+WG - WEV)=I—-G+(N—-85)W(G - FV).

Since R(W) € D(S), by Corollary 3, (A — SYW (G~ FV) € Fg.
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We need a result similar to Proposition 12 for the case where ind (A - .9)
> 0. To achieve this we construct adjoints of all the operators involved as
follows. Define a bilinear form on X x ¥ hy setting

(g,a) =a(z) (zeX, aeY).
For each T € B, let
™a)=aoT

Note that by Proposition 2, 71 maps ¥ into Y. It is straightforward to verify
that foreach zp € X, 20 # 0, Y ® 20 = {a® v : @ € Y} is a minimal right
ideal of B, and therefore closed. Fix @q € X, 2g 3% 0, and define a norm on
Y by |lally = |lo® wol|z. We have the following facts:

forallee Y.

(1) (Y, i+ |l¥) is a Banach space;
(2) TV € B(Y) for all T € B;
(3) {2z, o) is a bounded bilinear form on X x Y.

Tosee (2),for T ¢ B, e € Y, | TT(a)ly = |(a®z0)T |5 < |la®zo| 5T =
lelly 1T\ Also, (3) follows from the computation for 2 € X, v € Y

=z, a)ll|zoll = fe(z)il|zall = {| (o & @) (2}
< e @azollfzl] < Mlle @ mollslizll < Milallyilz| .

It follows that B is a subalgebra of the Jorgens algebra A{X,Y); see [12,
pp- 43-45].

ProrosiTioN 13. Bt = {T1: T € B} is a Banach algebra in the norm
1T = ||T|5, and Bt C B(Y). We let Fgt = (Fg)!. Then the preceding
results apply to B (here the roles of X and Y are reversed).

When S is an operator in X affiliated with B, then S, as defined in [6]
is an operator in Y affliated with B7.

Now we are in a position to prove a useful result concerning B-Fredholm
operators. When B = B(X), this theorem is a standard result which is esi-
tablished by a direct construction [17, Theorem 1.1, p. 162]. It is perhaps
surprising that an elaborate argument seems necessary to establish this re-
sult in the general situakion.

THEOREM 14, Assume A — 5 € $p5. There exists W € B with R(W) ¢
D(S), and 3F, G € Fg with R(G) C D(8) such that

A-8SW =T~F, and W(A-8)=1-G onD(S).

Proof. First assume ind{A—S5) < 0. Then the result follows from Propo-
sition 12. Now suppose ind{A — ) > 0. Form B' and St as in the discussion
above. By [8, Theorem 19], 05(5) = op+(S7), so ST is affiliated with BT,
Now A — § € &5. Assume for convenience that T = S~ € B. We have
as in [6, Theorem 6] that T is B-Fredholm. This easily implies that T is

H
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Bt-Fredholm. Then again applying [6, Theorem 6], A — St is Bf-Fredholm.
In addition, by [6, Theorem 14}, ind(A — ST} = —ind(A — S) < 0.

Apply Proposition 12 to A — ST, with the result: 3W € B and F,G € Fp

sucl that

A-Sshwt=1-G7,
Wi -8ty =1-F onD(8Y).

Implicit in the top equation is the fact that R(WH C D(ST). For = € D(S5)

and w €Y,
(WA= &), a) = (A — e, Wha) = (2, (A~ SHW'a)
= o, (I - GNa) = (I — Gz, ) -
Therefore W(A—8) = I -G on D(S). The fact that we may assume R(G) S
D(S) follows from Proposition 4 once we establish R(W) C D(5). Assume
§1=7TeB. Then Wist = Wi((A-81) =X =T-F' — AW on D(ShH.
Therefore Wt = 71 — FITT - AWTY 50 W = T — TF — XT'W. It follows
that R(W) C R(T) € D(S). For any z € X, o € D(5),
(N = §)Wa,a) = (Wa, (A~ Sha) = (&, WA - SN)a)
= (w,(I ~ F1)a) = (I - F}a,0).
Thus, (A — S)W = I — F because D(ST) is X-total [6, Proposition 12].
THEOREM 15. Assume A — 5 € &g,
(1) If ind() — 8) €0, then IW € B and AF € Fj such that
WA—-S+Fy=1 onD(S).
(2) If ind(\ — §) = 0, then W € B and 3F € Fi such that
(A~-S+FW=1.

(3) If ind(A— 8) =0, then 3F € Fg such that X~ 84 F has an inverse
in B.

Proof. Part (1) is part of Proposition 12, and part (2) follows by ap-
plying this same proposition to the adjoint A — gt.

To prove (3), we have again by Proposition 12 that 3F € Fy such that
N\ =8+ F) = {0}. Now ind(} — § + F) = 0, so it follows that A — S+ F
hag an inverse in B(X). In addition, A ~ 8+ F € @3, 80 A~ 5+ F has an
inverse in B8 by Corollary 3(2).

The following technical lemma is used in the proof of the next theorem.

Lemma 16, Let R be an operator with D(S) € D(R). Assume Lo €
05(S), and W ¢ B with RW & Ig. There esists G € Fg of the form
G = H{pg—S)~" where H € Fp such that R(G) C P(S) and I - RW ~ RG
has an inverse in B.
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Proof. Since RW € Iy, R{(I-RW) is closed and has fnite codimension,
Also, R(I — RW) + R(RW) = X, so we can choose {z1,...,2,} € D(8) C
D(R) such that {R(21),..., R(z,)} is linearly independent and
(1) R(I — RW) @ span{R(z),..., R(zn)} = X .

Now note that the set {Sc(ug—5)""1: # € Y}is X-total. Assume N (- RW)
has a basis {z1,...,#n}. By Proposition 1 we can choose {#(,...,fA,} C Y
with the property that ax = B o (up — §)7! takes the values

(2) ap(@;) = 6ky (1S kJjsn)

Let H=3"%_, Bu @2y € Fp. Set G = H(py— 9)7, s0

RG = Z ap @ R(zig) .
k=1
Note that R(G) C D(9).

It remains to verify that I — RW — RG has an inverse in B. Since
this operator is in $%, by Corollary 3{2) it suffices to show that it has an
inverse in B(X). Furthermore, it is enough to show that A (I — RW - RG)
= {0}. Suppose (I — RW — RG)z = 0. Then

(I — RW)x = RGx € span{R(z1),...,R(z.)}.
Therefore by (1}, (I — RW)z = 0 = RGz. Since RGz = 0, ap(x) = 0 for
1 <k < n Also, z € NI — RW) = span{z1,...,2z,}, and so by (2) we
have z = 0.

Now we prove the main result of the paper. The result depends heavily
on the properties of a B-Fredholm operator as stated in Theorem 14.

THEOREM 17. Assume A — S € $g and R is S-inessential relative to B.
Then A — (S + R) € &g and ind(A — §) = ind(A — (9 + R)). Furthermore,
S+ R is closed.

Proof. First by Theorem 14 there exist B, F' € Fp and W & B with
R(F) € D(S), R(W) C D(5) and

A=-SW=I-E, WHX-8=I-F ouD(§).
As verified in Note 11, RW € Tz. We note that
(1) A—-(S+RY)W =I~-F—-RW.

Choose & and H as in Lemma 16 with R(G) ¢ D(S) and with I — R(W+G)
having inverse V' € B. On D(9),

(2) W+GA-S-R)=I-F-(W+&HR+GHN-89).
Also, on D(S), .
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(I+{(W+&VR)(I~(W+G)R)
=] - (W+ )R+ (W + G)VR(I — (W + G)R)
=]-W+GR+W+GFV{I~RW+G)R
=] (W+GER+(W+GR=1.
Combining this equality with (2) we have on D{S),

3) (I+ W+ G VRY(W + G)(A - (S +R))
= (I + (W + @ VR - F —~ (W+G)R+GO-85))

= L4 (I + (W + Q) VR(~F + G(A = 9)).

Now R(G) € D{R) and RW € Bso (I + (W + G)VR)(W + G) € B by
Corollary 3(1). Also R(F) € D(S), so again by Corollary 3, we have (I —
(W + G)VR)F € Fp. By Lemma 16, G = H(puo — 5)™" where H € Fp, so
on D(5),

GO\~ §) = Hpo ~ §)" A= S) = Hlpo — 8) (o — 8) + (1 = pio)]
=H + (A= po)H (o — $) "t € Fg.-

Thus, by (3), 37 € B and J € Fp with T(A - (§ + R)) = I — J on D(5).
Together with (1), this equality shows that A — (S + R) € $5.

Now we consider the index. Let D(S) have the usual graph norm, and
then A\—8 : D(§) — X is a bounded Fredholm operator, W : X — D(S8) is a
pounded Fredholm operator, and (A=S$)W = I—E, so ind(A—5)+ind(W) =
0. Also, R is S-bounded so again, A — (S + R) : D(§) — X is a bounded
Fredholm operator and by (1), ind(A — (S 4+ R)) + ind(W} = 0. Hence,
ind(A — 8 = ind(A — (8§ + R)).

Now we check that §+ R is closed. It suffices to show that U = A—(S+R)
is closed. By the argument above using (1) and (3) we have that there exist
K,J € Fg with R(J) C D) (= D(S)) and W,T € B with R(T) & D(U)

sueh that

UW =I—-K, and TU=I~J ouD(l).

Write J = Jpm; @ @ 2y where {a1,...,2n} 18 a linearly independent
set and ey, ., @) § Y. Choose a maximal linearly independent sub-
set of {ag,...,n}; we may assume it iy {oc1,...,am}. Then N(J) =

" ker{ay). Since () is Y-total, Ay, ..., ym} € DU} such that oy (y;)
= by for 1 £ k,j < m. Set P = S L on @ yy € Fp, and note that
N(P) = N(J), P = P?, and R(P} ¢ D(U). Now since (/- J)([-P) = I-P,

(4) UIl-PW=1-D, TU(I - P)=I-P on D)
where D = K + UPW & Fg.
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Next we verify

(5) R(U(T — P)) is closed, and N(T)NR{U(I - P)) = {0}.
First, for all z € X by (4), U(I — P)Wz = (I ~ D)z, and so R(I - D) C
R(U(I — P)). Thus R(U{I — P)) is a fnite-dimensional extension of the
closed subspace R{I — D), and so it is closed. Next suppose z € N (T) N
R(UI ~ P)). Then z = U{I ~ P)y for some y € D(U), and therefore
(I - Py =T{U({I - P))y =Tz =0 by (4). Since (I —~ P)y = 0, we have
x = 0.

Now U = U(I— P)+ UP and UP is bounded, so it suffices to verify that
U(I - P) is closed. Assume {z,} C D(U), z,, ~— g, and (I = Pla, — u.
Then (I — Pz, — (I - P)2g, and by (4), (I - Pz, = TU{I — P)2y, — Tyo.
Therefore (I — P)zg = T(yo), and as R{(P) C D(U) and R(T) € D(U}, we
have zo € D(U). By (5), R(U(I - P)) is closed so yp € R{U{I—P)). Finally,
T(U(I - P)ED - y()) = (I - P)xo - T(’yg) = D, S0 by (5), U(I - P)AE[J = Yo

There is a apecial interesting case where the conclusions of Theorem 17
hold, but where the proof is short and elementary. Assume R has the three
properties:

(i) R € B;

(il) R(u — 8)~! € Iz for some u € pp(S);

(iii) (6 — §)"'R € Iy for some § € pg(S).

In this case, assuming V,W € B, F,G € Fg with (A — YW = I — F,
and V(A — 8§) =1 — G on D(8), we have

(A—(S+R)W =1I~F—RW,
and
VIA-(S+R))=I-G-VR onD(S).

But by (i)-(iii), RW and VR are in Ig. Therefore A— (S + R) is B-Fredholm.
The rest of Theorem 17 is also easy to verify.

Now we consider 5-bounded perturbations of S. For T & B we use the
notation rg(T) for the spectral radius of 7 in the Banach algebra B.

THEOREM 18, Assume R is S-bounded relative to B. Also, assume A5 &
P, so by Theorem 14, 3W € B, 3F, G ¢ Fg, with R(G) C D(S), such that

A=SW=I-F, and WA-S)=I~G on DLS).
Ifre(BW) <1, then A — (S + R) € &y and ind(A — (§ + R)) == ind(A ~ S).

Proof. Since rg(RW) < 1, by a standard Banach algebra, result we have
(I-RW)™! = Z e B. Therefore

(1) (A= (S+R)WZ=(I-F-RW)Z =I-FZ.
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Also, for z € D(R),

(I + WZR)(I — WR)z = = — WRx + WZR(x — WRzx)
=g — WRz + WZ{I - RW)Rx
=z— WRa+ WRr =1z
Note that (I + WZR)W € B. For & € D(5),
(I+ WZRYW (A~ (S + R))z=(I-+ WZR)(I-G - WR)x
= (I = (I + WZR)G)x .
Therefore
(2) (I -+ WZRYW (A~ (S + R)) = I~ (I + WZR)G on D(S5).
Since R{) C D(R), it follows by Corollary 3(1) that (I + WZR)G € Fp.
Then (1) and (2) imply that A — (5 + R) € @5.
As to the index, A — § is a bounded Fredholm operator from D(5) (with

the graph norm) into X and W is a Fredholm operator from X into D{5).
By the usual index theorem for bounded Fredholm operators,

0 = ind(I — F) = ind{{(} — S)W) = ind(A = §) + ind(W).
Similarly, using (1),
0=ind(J = FZ) = ind((A— (9 + R))WZ)

= ind(X - (§ 4+ R)) + ind(W) + ind(Z) = ind(X — (5 + R)) +ind(W).
This proves ind(A — (§ + R)) = ind(A — §).

In genecral it is useful to know that o(S) = o5(S). Next we look at a
situation where the very strong conclusion that o(S+ R} = g5(5 + R) holds
for all R which arve S-inessential relative to B.

Wo use the following notation for the Weyl spectrum of an operator R:

ow{R) = {\: X~ R is not Fredholm of index zero on X};
owa(R) = {A: A~ R & B}
When R is S-inossential relative to B, then by Theorem 17,
ow(S + R) = ow(S) and owa(S+ R)=ows(S).

TrEOREM 19, Assume ow(S) = ows(S) (this holds if ow(S) = o(5) =
o5(8)). If R és S-inessential relative to B, then

c(§+R)=0o5(S+R).

Proof It is always true that o(S + R) C op($ -+ R). Assume A &
o(8 4+ R), 50 A & ow(S + R) = ow(5) = ow,5(8) = ow,s(5+ R) [t]?heorem
17]. Therefore A — (§ + R) € $5 and A — (§ -+ R) has an inverse in B(X).
By Corollary 3(2), A € or(S + R).
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Concerning the condition ow(S) = o(9) = og(5), it follows from this
that ow,5(5) € ow(S). The reverse inclusion always holds.

4. Examples. In this section we present three examples where the re-
sults in §3 apply. These examples are for the purpose of illustrating the
types of possible applications. We need a preliminary proposition concetn-
ing compactness properties of an integral operator on C(f2). Here 12 is a
normal locally compact space and the measure g on (2 is a o-finite regular
Borel measure.

ProprPosITION 20. Let J € C.

(1) If J has the property that given any £ > 0, 34, o compact subset of
02, with

sup [ |J(z,8)| dult) <,
wEAS o

then the operator J is compact on C'(£2).
(2) Assume J € L®(2x §2) and f € L. Set K(z,t) = J(z,£)f(t). Then
the operator K is weakly compact on C(£2).

Proof. To prove (1) we use the compactness criterion in Jérgens’ book

(12, Theorem 12.3, p. 305]. Let £ > 0 be given, and choose A compact such
that

sup ffJ(m,t)|d/,a(t)<e/2.
DEAR P

For each y € A, let
Vy = {q: e [ |7(z,1) - J(y, 1) dult) < 5}.
2
Take {Vy1,...,Vyn} a finite cover for A. Fix y,4.1 € A¢. Note that
rf (@) = Jlynsr, b du(t) <
?

for all x € A (by the choice of A). Set Vi1 = A° Then {Vy;:1<5<
n + 1} satisfy the requirement in [12} for compactness of J, that is,

f W (z,t) = J(y;, t)|dp(t) <e forallzeVy;, L<j<n+1.
2
To prove (2), let P : O(2) — L' be defined by P(g) = fg, g € C(2);

and let @ : L' — C(£2) be defined by Q(h)(z) = Jo I (2, t)h(t) dp(t). The
operator () takes values in C(£2) since J(z,t)h(t) € C, and Q(h) is just this
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kernel applied to the constant function 1. Both P and @ are bounded oper-
ators, but more, P is weakly compact by [10, Theorem 6, p. 494]. Therefore
K = QP is o weakly compact operator on €'(§2) [10, Theorem 5, p. 484].

Assume J is a kernel defined on 2 x 2 which determines a hounded
operator from L! inte C(82), f € L', and K(x,t) = J(=z,t)f(t) is a kernel
in €. Then K is weakly compact on C'({2). This more general result has the
same proof as given above for (2). As a specific example, let 2 = [0, 00)
with T.ebesgue measure, and set

I t) = x4 ()
Certainly J maps L'([0,00)) continuously into C[0,00), and for any f €
LY([0,00)), it is easy to check that
K(x,t) = X[0,0] () flt)eC.

ExaMPLE I. Fix 2 = [0, 00) equipped with Lebesgue measure. We work
in the Banach algebra of operators K described in Example 7. Also, the space
C is a¢ in this same example. Let C*[0, 0o) be the subspace of all f € C10, co0)
such that f’(z) exists for all z € [0,00). Let D : D(D) — C[0,00) be the
differentiation operator:

D(D) = {f € C*[0,00) : f' € C[0,00) and f(0) = 0},
D(fy=f for feD(D).
We now derive a result for differential operators of the form
L=D"+ (Pn—an*l +.o.-F (101D+ Yo
where o € C[0, 00) for all & and
lim pr(z) =0, €C for0<k<n—1.
E—oQ

(x,t > 0).

Let § be the operator with constant coefficients {az},
S =D"+ gy D" V.. +a1D+aq,
and let
ps(z) = 2" + ano12® M4+ aztao.
Yot R = L — §. The operators I, §, and R all have domains the set D(D™),
where D(D") is determined in the usual way from D(D}.
THEOREM 21. Let §, L, and R be as above. If for some X, pg(z) — A =

vy (7= Ag) where Re(Ap) < 0 for 1 < k < n, then R is S-inessential

relative to K. We denote the set of all such A by I'.
Proof. For any A € C, consider the integral operator

T)) = [ 09 dt.
0
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T maps continuous functions on [0, oo} into continuous functions on [0, ¢o).
When Re(}) < 0, then T3 € B(C[0,00)), and it is straightforward to verify
that T = (D — A)~'. The operator T} is bounded in this case since e*¥ ¢
L0, 00) when Re()) < 0. In fact, the kernel

Ka(w,t) = e)\(m_t)x[u,m] ®)

that determines 7% has the property K, € C.

Now assume A and {Ay,...,An} are as stated in the theorem. Note that

D(T,\j)zf-}")\jT)\j forl<j<m.
Forl<m<n-1,
k4 m n m "
DW(H T,\k) = Dm( HTA““)( H T)\k) = H(I{-)\)‘;T)\k)( H TM)'
k=1 k=1 R=m—+1 k=1 k=r-41

It follows that D™ (I, Th,) is an integral operator with kernel Jy in C.
The operator S — A has inverse (S — A)~! = ([[7_, b, ), and

n—1

mn n—1
R(S - A)ml = E (‘Pm - am)Dm( ]___[ T)\k) = Z (‘Pm - Cb*m)J'm .
m=0 k=1 ma(}

Sinee limg— oo (@ (7) — am) = 0 for all m and J,, € C, it follows by Propo-
sition 20 and Proposition 9 that R(S — A)~! € Zx. This proves that R is
S-inessential relative to K.

It is easy to check that D —y is always one-to-one on D(D) for arbitrary
€ C. Tt follows that § — X is one-to-one on D(5) forall A € C. If § — X is
Fredholm and of index zero, then it follows that S~ A has a bounded inverse.
This proves ow(S) = ¢(8). Now automatically o(S) C oxc(S), and by the
argument in the proof of Theorem 21, o (S) C I'. It is straightforward to
check that o(5) = I'®. Thus, ow (8} = o(8) = 9x(S). Therefore Theorem 19
applies, so o(L) = ox(L). We summarize this in the following result.

'THEOREM 22. Let 5, L, and R be as above, s0 L = § + R. Then
ow(S) =0(8)=0x(5), o(L)=o0x(L),
and O'WJC{L) = O'W’]C(S) = CTw(S) = O'(S) =TI,

ExampLE II. In this example we consider operators of the form M p
J where M, is a multiplication operator (perhaps unbounded), and J is
an integral operator determined by a kernel in €. The Banach algebra of
operators involved is the algebra B described in Example 7. The underlying
space is C'(£2) where £ is locally compact and normal and has no isolated
points.

Let ¢ be a continuous function on 2. Let DM,)={feC(R):pfe
C(£2)}, and define M, (f) = of for f ¢ D(M,). '
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PROPOSITION 23. o(M,) = o5(M,) = ow(M,) = the closure of the
range of ¢ on 2.

Proof. This is all fairly elementary, We prove that o(M,) = ow(M,,).
Suppose N (M) # {0}. Fix f e N(My), f # 0. Let U = {w € 2 :
fw) # 0}. Then U is a nonempty open subset of 2. Now V = {g ¢
C(£2) : (support of g) € U} € N(M,) since ¢ = 0 on U. Since £2 has
no isolated points, U7 must be infinite. It follows that V, hence A'(M.,,), is
infinite-dimensional.

Now if A ¢ ow (M.}, then A~ M, = M), is Fredholm of index zero. But
as argued above, N (My_,) is either {0} or infinite-dimensional. Therefore
A~ M, is invertible.

THEOREM 24. Assume p is o C-valued continuous function on (2, end
let M, be the multiplicalion operator described above. Assume  has the
property that for some A & {pw) 1w € 2}, (A — )"t € LY u). Let J be
a kernel in C such that J is essentiolly bounded. Then J is M-inessential
relative to B, and

Uw(ﬂrfsa - J) == a’w(]\fﬂp) = O-W,.B(Mlp) = O'W,B(Mga + J)
= {closure of the range of © on 2},

and (Mo + J) = os(M, + J).

Proof. Applying Proposition 20(2), we have that when (A — )" &
L'(u), then the kernel J{z,#)(\ — (t))™ determines a weakly compact
operator on C{2). By Proposition 9 this operator is in Zs. The theorem
follows by applying Proposition 23, Theorem 17, and Theorem 19,

Ag indicated following Proposition 20, Theorem 24 will apply to a more
general class of integral operators J. For example, when {2 = [0, 0o} with
Lebesgue measure and p(z) = z?, then the Theorem holds for the operator
T on C0, 00) given by

e
T(g)(x) = *g(z) + [ glt}dt,
0

ExampLi IIL In this example we consider a Banach algebra of operators
acting on L™ == L°(u) where y is a finite meagure defined on a g-algebra
of subsets of a fixed set £2. To avoid trivialities we assume that L% (u)
is infinite-dimensional and u is a continuous measwre (u({2}) = 0 for all
z € {2). In this examaple we let /5 be the algebra of all operators of the form
Al 4+ Ko where I is the identity operator on L™, A € C, and K, is the
integral operator on L™ determined by a kernel K in L%((2 » 2,1 x w).
For AI + Ko € B, let |Al 4+ Koollg = |A| + || K|/ Clearly B is a Banach
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subalgebra of B{L®). Also, B satisfies (#) and
Fp = span{tp(z)p(t) : 0,9 € L%(u}}

Let K be an essentially bounded kernel. Operators on LP({y) determined
by K have a number of special properties, we list two:

(1) Forallp, 1 £ p < oo, K determines a hounded operator K, on LP(u),

Kp(f)(@) = [ K (20 f(0) du(t).
Q

Also, Ky, is a Hille~Tamarkin operator for all p; see [12, §11.3]. In particular,
K, is compact for 1 < p < oo, and weakly compact for p = 1, 00 [12, §11].

(2) Forallp, 1 <p < oo, Kp(LP) C L®, and ¥ {fn} T LP, || fo~fll, — 0,
then [|Kp(fa) = Kp{f)lloo — 0. Also, i {fu} € L, [ faloo < M forn > 1
and fn, ~+ [ a.e. on {2, then applying the Dominated Convergence Theorem
it follows that | Keo(fn) — Koo (f)]|eo — 0.

Let Hoo be the set of all integral operators Ko, on L®°(u) determined
by kernels K for which the norm

Too (K} = esssup f [ K (z, )| du(t) < co
&2 o

Then (Heo, Teo) is a Banach algebra of operators, the Hille-Tamarkin op-
erators on L% {u}; see [12, §11] where the notation Hees is used for Heg.
From [12, §11] we have that Ho, is a closed subalgebra of B{L°°) and that
Ot (Koa) = 0(Koo) for all Koy € Hoo. Clearly {Keo : K € L% x )} is
a subalgebra of H.

PROPOSITION 25. Let B and Heo be as above.

(1) {Ko : K € L®(1e x p)} 4s o right ideal of Heo-
(2) oB(A+ Koe) = 0(A + Koo) for all operators A+ Ko € B.
(8) In ={Kw: K e L™®(px p)}.

Proof First assume J and K are kernels with 7(J) < oo and K €
L% (p x p). Consider the kernel defined almost everywhere by

(J % K)(,1) f J(@, 2) K (2,t) du(z).
For almost all (z,),
(7 % K)(w, 8)] < fu:c 2)|IE (2, 1)} du(z) < fu(m 2 Idu( )& los -

Therefore ||J * KHDQ L Too (T E |00 < c0. Smce (J * K)oo = JooK oo, this
proves {1).
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For T' € Heo, it follows from [12, Theorem 11.11, p. 292] that ¢y (T) =
o{T). Also, when T' € B, then (1) easily implies that og(T) = o (T).
Therefore (2) follows,

Now we prove (3). For K € L™(u x u), let K*(z,t) = K(t,z). The
integral operator (K™*); on L'(p) determined by K* is a Hille-Tamarkin
operator. Therefore o((K*);) has no nonzero accumulation points [12, The-
orem 11.9, p. 289]. Since K is the adjoint of (K™*)y, it follows that oK)
has no nenzero acentmulation point. Applying (2) we have

(K a) has no nonzero accumulation point for all K € L% (p x ).
From the definition of Iy, this implies
Ig={Kuo: K € L>™(uxpu)}.

Now we look at a situation where an operator S on L™ has (A—=S5)~" € B
for all A € p(S). It is interesting to know when the resolvents of some
perturbation § + R of § also have this very strong property.

PROPOSITION 26. Assume S is an operator on L°°(p) with 7' € Ty, so
51 = K, where K is an essentially bounded kernel.

1) es(S) = o(3).
2) If A € p(9), then (A~ 8)~! € Ip.
3} Forall A € C, A S € 0%.
) Assume that R 4s an operator on L™ such that R is S-inessentiol
relative to B.
(i) o5(S+ R) = a(S+ R).
(ii) For all A € C, A—(S+R) € 8%, and IF € Fp such that \—(S+R)+F
has an tnverse in Ig.
() If for some p > 1, 5 has o closed estension Sy on LP(u) with N'(Sp) =
{0}, then 871 = K, and 9(Sp) = on(8) (here K, is the operator on L¥{u)
determined by the kernel K).

(
(
(
(4

Proof (1) Since S e T, 05(5 1) has no nonzero accumulation point.
Also note that o(971) € o5(S"). Consider the continuous embedding ¢ :
B — B(L>) given by o(T) = T, T & B. From [4, Theorem 4.5] it follows
that any isolated point in og(T) is in o{w (1)) = o(T). Thus when ag(T) is
countable, it is the closure of the set of all its isolated points, so in this case
o(T) = ap(T). Applying this argument to S, we have o(S™*) = ap(S~1).
Then by [6, Theorem 2(2)], op(S) = ¢(5). This proves {1},

(2) Assume that M € o(S) = g5(S5). By the usual resolvent equation,
(A=8)L+ 8T =AM~ 8)"1871, Since (A~ 5)~! € B and ™! & Iz, this
equation shows (A — 8)~' € IB

(3) The operator (A — 8~} € &% for all A #£ 0 (571 is weakly compact
on L°). Tt follows from [8, Theorcm 8] that A — S € % for all A € C.
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(4) Assume R is S-inessential relative to B, so RS~ ¢ Tg. By (3) and
Theorem 17, ow 5(S+R) = ow,5(5), which is empty. Thus, A~ (S+R) € P
for all A € C. Also, ow(S) C ow(S) (always), so ow(S) = owa(s). It
follows from Theorem 19 that op(S + R) = o{S + R). Finally, applying
Theorem 15, 3F € Fg such that A — (§ + R) + F has an inverse in B (of
course if A € gg(S + R), then F = 0 will suffice). Let W be this inverse.
Then

ST =WA-(S+R) +F)S T = WS =T~ RS~ + Fs-1),

solving for W and using the hypothesis that S~ € Z, we have W ¢ Zx.

(5) Let .S, be a closed extension of S on L? with N'(S,) = {0}. For g € L7,
choose {gn} € L% with ||gn — ¢, — 0. Then |&,(g,) — Ko@)y — 0,
{Ku(ga)} € D(S) € D(Sy), and |8, (Kp(gn)) = glly — 0. Since S5, is closed,
Kp(g) € D(Sy) and S,(Kp(g)) = g. Now if u € D(S,),

Sp(KpSp(u) — u) = 0
s0 KpSp(u) = u for all u € D(S,).

Next we consider a specific case where Proposition 26 applies. We take
as the underlying space L°[0,1], the measure being Lebesgue moeasure. Lot
AC[0, 1] denote the absclutely continuous functions on [0, 1]. Define

D(Seo} = {u € AC[0, 1] : v’ € AC[0, 1), u” & L0, 1],

and u{0) = (1) = 0},
Soolt) = —u"”  for u € D(8..).

Let K (z,t) be the bounded kernel on [0, 1] x [0, 1],
Kz, t)=(1- m)tX[D,m} (t) +=(1 — f;)x(m,ll (1).

It is easy to see that St = K. Also note that S, has a closed extension
Sp on LP[0,1], 1 < p < oo, and N(S,,) = {0} (D(Sp) is defined analogously
to D{Sec) with the requirement that w” € L*[0,1]). In fact, by direct con-
putation one easily verifies that S{,‘l = Iy, for all p. Thus all the conclusions
of Proposition 26 hold for S., (in place of S), and part (5) of that result
holds for 5. Also note that the operator g — (S M) i determined by
the bounded kernel ~tX (.01 (t)+ (1 - t)x(m‘]_) (). _

Now we consider the spectral and Fredholm properties of an integro-

differential operator W on 1P [0, 1] of the form

Wul(@) = ~u"(z) + pla)' () + p()u(e)

1 1
+ [ Hiz,t)u/(t) dt + J I, tultydt .
0 0
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Applying the theory developed in this paper, we prove under mild assump-
tions that for all A € o(W), (A — W)™! € Zg, that is, (A — W)~! is an
integral operator determined by an essentially bounded kernel. Also, A - W
is Fredholm of index zero for all A and has Fredholm inverses in Tg.

THEOREM 27. Pz p, 1 £ p < co. Assume @, € L™[0,1]. Let H and J
be kernels with 7o (H) < co and 7(J) < o0 and which determine bounded
integral aperutors Hy and J; on I2[0,1). For j = p and oo, let

D(R;) = {u e AC[0,1] : v/ € L/[0,1]},
and define
Ri(u) = @u' + e+ Hy(w)+ J;(w)  (ue D(Ry)).
Let 8;, § = p, oo, be the second derivative operator defined above.

(1) RaoS5! € T Rj,,.S‘i';1L is compact on LP[0,1] for 1 < p < co.

(2) 08(Sw + Roc) = 0(S; -+ Ry); for all A € C, A — (See + Reo) € H%,
and A — (5, + Ry) is Fredholm of index zero on LP[0,1].

(3) For j = p and co, when A € p(8;+ Ry}, then (A= (S;+R;)) ™t = K
for some K € Ig. '

(4) For j = p and oo, for all A € C, there exists F € Fg such that
(A= (S;+ Ry)+ F)"t = K; for some K € L=.

Proofl. The operator 571 is determined by a bounded kernsel M, and
as noted above, g — (S_;-"l(g))’ is determined by some bounded kernei N.
Therefore

R;(571g) = (o N);(g) + (wM);(9) + H; Ny () + J5M5(g) -
By Proposition 25(1), H * N and J * M are essentially bounded kernels.
This proves Re. 87! € Ts (Proposition 25), and the second statements in
(1) follow from the fact that R,S;" is Hille-Tamarkin for 1 < p; see [12,
§11]. For the case p = 1, it can be verified directly that A; and Ny are
compact on L),

By Proposition 26(4) we have thal ¢p(Suw + Fx) = 0(9 + Rx) and
A (8o + Row) € % for all A Also, since .R.;,,S'z“,‘l is compact, we have
ow (S, + Rp) = ow(8p) which is empty. Thus for all A, A — (S -+ R,) is
Fredholm of index zero on LP[0, 1].

We usie these facts to prove 9(See+Ro) = p(Sp+By) A € 0(Soc+Roo)s
then N\ — (8.0 + Rao)) # {0}, s0 N (A = (8, + R,)) 5 {0}. Tt follows that
A€ o(Sy + Ry). Conversely, if A € p(8q0 + Reo), then

Thus in this case, A € ¢(8, + Rp) since A — (5, + R;) is Fredholu of index
zero. We have proved that g(Sw + Ree) = 0(Sp + Rp), which completes the
proof of (2).
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By Proposition 26(4), for all A € C, there exists F' € Fp such that
(A~ {(Soo + RBeo) + F)7! = Ko, where K is an essentially bounded kernel,
that is, Koo € Ip. Also, when A € 0(Ss + Reo), then this statement is true
with F' = 0. Now by (2), for all A € C, A~ (5, + R;,) + F' is Fredholm of
index zero on L?[0,1]. But

L%[0,1) = R{A — {Suo + Reo) + F) CR(A = (S, + R,) + F).

Therefore A — (S, + Rp) + F is invertible on L?[0,1]. Certainly, we have
(A~ (Sp + Ry) + F)~! = K,,. This proves hoth (3} and (4).

References

1] 'W. Arendt and A. Sourour, Perturbation of regular operators and the order es-
sential spectrum, Nederl. Akad. Wetenach. Proc. 8% (1986), 109-122.

[2] B. Barnes, Fredholm theory in o Banach olgebra of opergiors, Proc. Roy. Irish
Acad. 87A (1087), 1-11.

[8] —, The spectral and Fredholm theory of estemsions of bounded Fnear operators,
Proc. Amer. Math. Soc. 105 (1989), 541-049.

[4] —. Interpolation of spectrum of bounded operators on Lebesgue spaces, Rocky Moun-~
tain J. Math. 20 (1990}, 359-378.

8] —, Essential spectra in o Banach algebre applied to linear operators, Proc. Roy.

Trish Acad. 90A (1990), 73-82.
(6] —, Closed operntors affiliated with o Banach algebra of operators, Studia Math. 101
(1992), 215-240.
[l B.Barnes, G. Murphy, R. Smyth, and T. T. West, Riesz and Fredholm Theory
in Banach Algebras, Pitman Res. Notes in Math. 67, Pitman, Boston 1982,
(8] F.Bonsall and I. Duncan, Complete Normed Algebras, Springer, Berlin 1973.
91 H. G. Dales, On norms on algebras, in: Proc. Centre Math. Anal. Austral. Nat,
Univ. 21, 1989, 61-95.
[1¢] N.Dunfordand J. Schwartz, Linear Operators, Part I, Interscience, New York
1964.
] 8. Goldberg, Unbounded Lincar Operators, McGraw-Hill, New York 1966.
] K. J&rgens, Linear Integral Operators, Pitman, Boston 1982,
(18] T. Kato, Perturbation Theory for Linear Operators, Springer, New York 1966,
] D. Kleinecke, Almost-finite, compact, and ineasential operators, Proc. Amer.
Math. Soc. 14 {1963), 863-868.
[15] R. Kress, Linear Integral Bquations, Springer, Berlin 1089.
[16] W. Pfaffenberger, On the ideals of strictly singular and inessential operators,
Proc. Amer. Math. Soc. 25 (1970), 603-607.
[17] M. Schechter, Principles of Functional Analyeis, Academic Press, New York 1971,

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OREGON
EUGENE, OREGON 97403

U.5.A.

Received June 2, 1992 ' (2949)
Hevised version March 16, 1998

icm

STUDIA MATHEMATICA 106 (2) (1993)

Wavelet bases in LF(R)
by

GUSTAY GRIPENBERG (Helsingfors)

Abstract. Tt iy shown that an orthonormal wavelet basis for L*(R) associated with
a multiresolution is an unconditional basis for LP(R), 1 < p < oo, provided the father
wavelet is hounded and decays sufficiently rapidly at infinity.

1. Introduction. The purpose of this paper is to extend some of the
results in [8] on unconditional bases (see e.g. [5]) in wavelet form {(27™
~k)}m.kez for the space LP(R; C), 1 < p < cc. Here 9 is a mother wavelet,
that is, {27 ™/%2)(27"™ 8 —k)} s kez 18 an orthonormal basis for L (R; C) (and
e denotes a generic argument). The analysis in this paper is restricted to
the one-dimensional case where there is also a father wavelet ¢ such that if
Vi, is the space spanned by {@(27™ e —k) }rez and Wiy, is the space spanned
by {¢¥(27™ e ~k) }rez, then Vi1 = Vi & Wi, In other words, the wavelets
are associated with a multiresolution.

It is proved below that if i and ¢ are bounded and both decay sufficiently
rapidly at infinity, then we get an unconditional basis for L?(R;C) for all
p € (1,00). The main point of this paper is to show that no smoothness
assumptions on ¢ and ¢ (like those in [8] where it is required that | (x}| <
Cp(1 + {&|)~P for every p > 0). are needed for this conclusion to hold. This
means in particular that all the compactly supported wavelets constructed
in [2] give rise to unconditional bases and we also get an alternative prool
for the well-known fact that the Haar functions (for which ¢ = X{0,1) and
Y= X T X[:/:z,l)) form an unconditional basis (cf. [9, p. 207]).

2. Statement of results. First we define what we mean by a multires-
olution or a multiresolution analysis as it is commeonly called. We say that
({Vin}mez,¢) is an orthonormal multiresolution of L*{R;C) provided the
following four conditions hold.
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