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By Proposition 26(4), for all A € C, there exists F' € Fp such that
(A~ {(Soo + RBeo) + F)7! = Ko, where K is an essentially bounded kernel,
that is, Koo € Ip. Also, when A € 0(Ss + Reo), then this statement is true
with F' = 0. Now by (2), for all A € C, A~ (5, + R;,) + F' is Fredholm of
index zero on L?[0,1]. But

L%[0,1) = R{A — {Suo + Reo) + F) CR(A = (S, + R,) + F).

Therefore A — (S, + Rp) + F is invertible on L?[0,1]. Certainly, we have
(A~ (Sp + Ry) + F)~! = K,,. This proves hoth (3} and (4).
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Wavelet bases in LF(R)
by

GUSTAY GRIPENBERG (Helsingfors)

Abstract. Tt iy shown that an orthonormal wavelet basis for L*(R) associated with
a multiresolution is an unconditional basis for LP(R), 1 < p < oo, provided the father
wavelet is hounded and decays sufficiently rapidly at infinity.

1. Introduction. The purpose of this paper is to extend some of the
results in [8] on unconditional bases (see e.g. [5]) in wavelet form {(27™
~k)}m.kez for the space LP(R; C), 1 < p < cc. Here 9 is a mother wavelet,
that is, {27 ™/%2)(27"™ 8 —k)} s kez 18 an orthonormal basis for L (R; C) (and
e denotes a generic argument). The analysis in this paper is restricted to
the one-dimensional case where there is also a father wavelet ¢ such that if
Vi, is the space spanned by {@(27™ e —k) }rez and Wiy, is the space spanned
by {¢¥(27™ e ~k) }rez, then Vi1 = Vi & Wi, In other words, the wavelets
are associated with a multiresolution.

It is proved below that if i and ¢ are bounded and both decay sufficiently
rapidly at infinity, then we get an unconditional basis for L?(R;C) for all
p € (1,00). The main point of this paper is to show that no smoothness
assumptions on ¢ and ¢ (like those in [8] where it is required that | (x}| <
Cp(1 + {&|)~P for every p > 0). are needed for this conclusion to hold. This
means in particular that all the compactly supported wavelets constructed
in [2] give rise to unconditional bases and we also get an alternative prool
for the well-known fact that the Haar functions (for which ¢ = X{0,1) and
Y= X T X[:/:z,l)) form an unconditional basis (cf. [9, p. 207]).

2. Statement of results. First we define what we mean by a multires-
olution or a multiresolution analysis as it is commeonly called. We say that
({Vin}mez,¢) is an orthonormal multiresolution of L*{R;C) provided the
following four conditions hold.
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176 G. Gripenberg

(1) ¢ € L*(R;C) and V;, is the closed subspace of L*(IR;C) spanned by
{@(27™ o —k)}rez, for each m € Z,

(2) Vin C Vo1, mcE,

(3)  limpm— oo Pnf = f for every f € L*(R;C), where P, is the orthog-
onal projection of L?(R;C) onto Vi,

(4)  {e(® — k)}rez is an orthonormal set in L?(IR; C).

The function ¢ is then said to be the father wavelet or sealing funclion.

The definition of a multiresolution is frequently given in a slightly dif
ferent form (but with exactly the same content; see for examnple [1], [3] and
[6]-[8]), so that the fact that {p(27™ e —k)}rez spans V}, is a congequence of
the other assumptions. Condition (3) is often formulated as the requirement
that Um_uoo Vi, is dense in L*(R; C) and it is combined with the assump-
tion that ,>___ Vin = {0}, which follows from the other conditions (see
1, p- 443]). It is not really essential that {p(e — k)}rez is an orthonormal
basis, it would suffice (as is frequently done) to require that it is an nncon-
ditional basis, in which case it is a Riesz basis, but from such a basis one
can construct an orthonormal one.

Since ¢ € Vo € V_1 it follows that ¢ can be expressed with the help of
the functions {¢(2 @ ~k)}iez which span Vi, i.e.,

p=2) alk)p(2e—k),

keZ

where

(5) alk)= [ ¢(z)ploa~F)da.
i3

We call this sequence o the filter associated with the multiresolution and it
turns out to be crucial for the analysis and in particular for computations
involving the wavelets (cf. [11]).

Having found the filter v we can define the mother wavelet 1 as follows:
(6) Y=2Y (~D*a(l - kp(2e —k).
keZ
It follows from these definitions that the sets
{27727 & =k} pez
and
{27 (270 0 =), 27227 @ — )} gong ez

where mg € Z is arbitrary, are orthonormal bases for L2(R;C) (see e.g. (3]
or [8]).
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One of the mogt useful properties of the wavelets is that, under appropri-
ate assumptions, they form bases in a large number of other spaces as well
(see [8]). Here we shall only consider the spaces LP(R; C) where 1 < p < co.

TueorrM 1. Let ({Vi,mez, ©) be an orthonormal multiresolution of
L*(R;C) and let v be the associated mother wavelet. Denole by v, ond
ok, Jor my ke € o, the functions 27"/ (27™ e —k) and 2= 2p(277 @ — k)
respectively. Assume that ¢ € L®(R; C) and that

(7) f,nobssup]zp Mde < oo
0 ly|=

Then the sets
{z—mjzw(gm-m . ""k)}m,kez
and
{270/ %p(277 & k), 27/ 2p(27 @~k mimo et

where mg € Z is arbitrary, are unconditional bases for LP(R; C) where 1 <
P < 0.

Moreover, for every p € {1,00) and mqg € Z there exists a constant Cy
such that for each f & LP(R; C),

@ 2| (2 b Plomato)P)

‘1 m,keZ

<l my

Lo(R)

<C H( Z o) [P [%mm 6 (@) | )1/21 :

Lr(R
M kE? (R

and

O g | (it eme Fiomoato)l

k&%

T Z I(f’ wm‘kﬂg|1vl"ru,k(');2) v ‘

inker
mSang

SHAlleem

<Gy (Z‘ {f, Prng i)

kEL

Lr(R)

2

w(o)?

o) 12
) ”Lv(m’

+ E |(fa¢m‘k>‘2|°:bm,k(°)

m.REZ
mEmp

where {f, g} fR
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If one assumes that the wavelets are sufficiently regular, as is done for
example in [8] where they are assumed to be r-regular, one need not assume
that the wavelets arise from a multiresolution to get the first basis above;
but the second basis (which presupposes the existence of a multiresolution)
has many advantages in that the basis functions are much better localized
because the dilation factor 2-™ is bounded away from zero.

It is clear that a necessary condition for the previous result to hold is that
w and ¥ belong to LP(R; C) for all p € (1, c0). In this sense the assumptions
used above are not best possible, but for most practical purposes (7) is a
quite reasonable requirement.

The proof is based on the following result.

PRrROPOSITION 2. Let ({Vin}mez, ) be an orthonormal multiresolulion of
L3(R; C) and let ¢ be the associated mother wavelet. Denotle by 1,1 and
Cm.p, for m, k € Z, the functions 27™/2(27™ e —k) and 27"/ 2p(27™ e —k)
respectively. Assume that ¢ € L°°(R; C) and that (7) holds.

Let T : Z2 — {~1,1} be an arbitrary function and define the operator T, :
L*(R; C) — L*(R; C) either by Trtpm i = 7(m, k)¢ i for all m, k € Z or by
i’ﬂﬁg,k = T(mak)"/)m,k Jorallm < mg, k € Z and T*r@’nm,k = Trg-1, k%1, ka

€ 4.

Then one canm, for each p € (1,00), extend 1o to a continuous operator

from LP(R; C) into diself such that

1
(10) EHJ”HLP(R) SN fllormy € Coll f

Jor some constant Cp, independent of T.

Lr(RY »

Once this result has been established, the rest of the proof is essentially
the same as in [8], but for completeness it will be given below.

3. Proofs. First we show that the mother wavelet ¢ is hounded and
satisfies the same moment condition as the father wavelet .

LEMMA 3. Let ({Vi.}liez ) be an orthonormal multiresolution of
LA(R;C) and let v be the associated mother wovelet. Assume that ¢ €
L*(R; C) and that (7) holds. Then v € L®(R;C) and

[
(11) f z ess sup|Y(y)| dz < oo.
0 lylza

Proof Denocte by ¢, the function

i = esssup |p(z)].
|2 ]e]-1

The filter o associated with the multiresolution is the sequence o € £2(Z; C)
defined by (5). We immediately see that
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k/3 co
(12) e < ( [+ [ )le@)lle2e - 1)l do
-0 k/3

< 2ol mp(lRl/3+ 1), keZ.

This shows in particular that o € £*(Z;C) and therefore we conclude that
¥ € L™ (R; C) because by (6),
W) 2 |l = k)ilp(2z ~ k)|, z€R.
KEZ
Now we get for almost every z 2 0,
[3z/2)

()< (D + S

h=—00 k=|3x/2|+1

Je{1 = &)llgp(2z - k)

<lalla@es@/2)+ s o) Y le(zs— k)
k<—|82/2] k=|32/2]+1
< (lelescar + 2z ) Y () il /2)
kel

by (12). Observe that this inequality holds for almost every @ < 0 as well,
and hence we get the desired conclusion. m

Proof of Proposition 2. We shall only consider the case where T,
is defined by Tethm,x = 7(m, k)b, for all m, k € Z, because the proof of
the second case is almost the same, the only difference is that the notation
is messier. Moreover, we see that if we can prove the second inequality in
(10), then we get the first as well, because T? is the identity operator.

It follows from the orthonormality of %y, , that T is an isometry from
L2(R; C) into itself. Suppose for the moment that we know, in addition, that
T, is of weak type (1, 1) uniformly in 7 (see {10, p. 20]). Then we immediately
see from the Marcinkiewicz interpolation theorem (see [10, Theorem I.5])
that T can he extended to a bounded operator (uniformly in ) on LF(IR; C)
when 1 < p < 2, and since T, satisfies (I%.f,¢) = (f,Trg) for all f &
LR C)NLP(R; ©) and g € LA(R; C)NLY(R; C), this result can be extended
to all p € (1,00). Thus we see that the only thing that remains to be provecd
is that T) is of wealk type (1,1) (uniformly for all 7).

We use the notation

L & 27k, 27 (k + 1)),

e = 27k = 1),27(k +2),

Let § € LY(IR;C) N L3(R; C) be arbitrary and fix a positive number ¢. It
follows from [10, Theorem I.4] that there exists a set A C Z? such that the

myk € 4.
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intervals {Im,x}(m, ke are disjoint,
{13} [f{z)| <e almost everywhere on £ def R U T s
(rmk)eEA
and
(14) g 27™ f |f(z)|de < 2e, (m,k) € A.
Im,k

An immediate consequence of {14) and of the fact that the intervals
{Zink }im ke 4 are disjoint is that

(15) > oam<

(m,k)EA

—Ilfllm&

Let us denote by Py, the orthogonal projection in L2{R;C) onto the space
Vin spanned by {©{27™ « —k)}rer and define the functions g and h by
Q=XF.f+ Z P"‘”“(le,kf)’

(mk)ed

h=f-g= Y (= Pulx, -

{m,k)EA

(16)

(In the second case we would define g = x p.f + 3, 1yesmame Pl )9

First we must show that g € L*(R; C) and obtam an approprlau hmmd
on the L%-norm. By (13) we get

(1) f ep@)f@)Pde= [ |f(@)Pde< [ elf(a) o -
F F
NOW we have
(18) Py, ) =2 027 o =f)amu
JE#
where

a"fﬂ,]\“,j = 2_7”‘ f w(g--—-qnm o J)j(“r) d:I.! .

I'm. k

Again we denote by y, the function @, = ess Sup|, »je -1 lie(2)].
is easy to see from (14) that

Then it

(19) |fbm,k,j| S. 2599*(}5 - .7) .
From (18) we get '
. 2
(20) P (x J &
H(m%e/l ( Im,k: f) LZ(R)
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g 2 Z Z Z |amakej||a'1nl,kf’1jf

{m,R)EA (m' k' Yen Ji' el
m'<m

x [ e e - i)l z — )| de.
R
Fix the integers m and k. It follows from (19) that

(21) Z z [ty | e o | f (27" =~ j) H‘P(Zwm x —j')| dz

(! RyeA Sl

m’(m
< Z Z 452‘.0*("9"'3')‘?*(#“.5"’)

(' keA JJ €D

m' <m

x [ le@ e = )p@ " 5~ )| do
T

— 12 T ool

hi'ed

x S [le@ == k)le@ e~ 4~ k)| de.
(m' kedA R
m'<m

For fixed integers j and j' we get

(22) Yo [l e - -kl e - i - K){da
(m' E)ed R
m'<m ’
m (eFLeTmtT 1
=3y X
PEZ mf e 00 ;‘}1:;]2—771'»{-71-1‘
(m' kN EA
x [ 1@ (24§ K) = i = R)lfe()] da
B
m [i)-l)? m' o .1 f
2Ty e
PEL M =00 K m=p2™™ f
(m’,k:’)EA
X fzp*(2‘m+mfm+r+p)tp*(w)dw,

R
where 7 = —j — k - [2“”‘*””/ 4']. If p and q are fixed nonnegative integers,
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then we have

(23) [ @u(2% + p)pu(z) do
R

—g-imly oo

[ )o@t +pipu(a)de

—00 _gmq—lp

j? wu(2) dz + o] L1y 2n {0/ 2}

gl
2mIT iy

< galize )

o0
< pulzmmy [ welo)de + loulinmes(2/2)
/2
and it is clear that the inequality we got holds for negative p as well.
Recall that the intervals {In i }om 5yea are disjoint, the length of Tt
is 2™ and that if m' < m and p2~™+™ < K < (p+ 1)27™ " then

Tt it C Imp. It follows that for each integer p we have

mo (p+12Tmmy

S e,

mi=—oo k-‘ng—-m'-!-m
(m’ kYA

If we use this estimate together with (23) in (22) we get

>, Jelo

(m',k')ea R
m’<m

My —§ o k)pu2"™ 2 — §' - k) dz

<2 (lpallzm Z ftp* dw+H%limmth=«p/2)

PEE |p|/2 pel

Our assumptions imply the series ¥ ou, fl':T/Q pu(z)dz and 3oy u(p/2)
converge and therefore it follows from (15), (20), (21), and from the in-
equality above that there exists a constant ¢; such that

(24) H Z P XIm .
(m,k)ed
Since T, is an isometry on L*(R; C) it follows from (16) and (17) that
1 TrgllEemy < 201+ el fllneqm -

Lgtm < ciellflinmy

and therefore

(25) m({z e R |(Trg){z)| 2z ¢/2}) < '61‘8(1 +e)lfllerm) -
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We proceed to congider the second term in the decomposition T f =
Trg + T h. By definiticn we have

Toh = Z (!, K By et b Yoo g

m! k' Eh

= Z: T(an,fcl) Z ((X,Imlkf—‘Rn,(XIm.kf))rwm',k’>¢mf,}c’-

! b G2 L RE A
The set {4 ban' <rekez 18 an orthonormal bagis for the orthogonal com-
plement of ¥, in L*(R; C) and hence for each (m, k} we have

(xr  Frthme )y m/ <m,
(( -rm kf I m(XI )) wmr k’) = {O’ IqTL,k: 3 m, .
Thus

(26} Toh= 3 > 7 KV xy,  fotbme s 1P
m,hEA m' kel
m' &m
We denote by F™* the set R\ Upn wyen Do i @nd we will calculate an
estimate for [o.|(Tyh)(x)| de. We have

en o [] X

R\, o m' k'eZ
m’ <m

< J 2K

R\L;, , m' k' €2

m k XI r«f ?/l)rnfk’>w7n’ k’( ) dx

Im,fe f’ ";/*’m’ & > I ‘,‘!ibmf,k’ (m)| dx

m' <m
s S Y (f W @im )| dz) dy
Im.k m! k‘ cZ ]E\Im_ &
'm’gm
< flf(@l)‘dlf Z eb*"*uf’llbmf,lcf('l f I"/)m’,h'(m”dm-
Im”hl m’ k'Cﬁ Y&ELm, b R\I

7y b
m' <

Next we fix m’ €< m and derive the estimate

@8) Y esssupltpm p (@) [ [

HeZ YELm & R\I:nlc
2™ (k~1) oo
= Z esssup|y(2” ™y k )\( f + f )2"’“ (27 ™ —~ k)| dx
klc? yEImk —ao 2m(k+2)
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ammidm g1y~ o
=3 esswo Wl f o+ [ )Gl
k'€Z yez—™ Im-k»'k’ =0 2—-n1f4»971(k+2)_kl
kg oo
=3 essw Bl [ o+ [ )@l
e VEIR 2 ) oo

me’ 43 + W

Let 1, = es85Up|y 5 s|~1[t(y)| and assume that k' > 2-m =1 Then we
have

k1_2—m’+7u

esssup () [ () de < ()% pegwy -

—m!
yE[R 27 m g ) e

If -2~ bmtl < o g=mtm=1 thap

kl_g—-m.’+m. __Qu'rr:'-)-m -1

esssup  [v(y) [ W@)|de < Wliew [ W)ldez,

—rf
ye[kI,Q e »i1n_|_kr} —o o

and if k' < —2~m'Fm+l then

kf*z—m'—{-m

esssup  [9(y)l [ (@) de S (k4 27T [yl gy

YE[Rr 2= M g g e

By breaking the second integral into parts in a similar manner we conclude
that

-
k"-—? m' 4m o

(20) ) esssup 1@!)(1/)%( [+ f )I%b( )| da

R:’EZJyE[klagmm’ Fm gty e

2”~m’+rn+l+k‘f

o0

< 41w S k)

k= [2=md b 1
mg—-rnn’v{urra-ul

+ 26| oo gy 27T 2 [ l(=)ldx.

00

Now it ig easy to check that

S ) =Y k) (o) + )

mte—oo kl._.l’g~m’+m—l" k=1

f (@ + Lpu(z) dz,
0
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and also that

g m! rrre L

i 2-~m'+m f |"t/)(:c)|da'

PR3] )
o e (o)
i
< fow Y 2vtacd oo,
0 i = logg (@) | w1 0

If we combine the last two inequalities with (11), (27), (28), and (29), then
we sec that there exists a constant en such that

f ’ Z WL R kf,"prn’.k’)"/)m’,k’ (-T') dz < co f Jf(y)‘ dy?

LAV AN m' A eZ Lonike
et

and therefore by {26) in particular that
f (T k(@) dz < coll £llne )

Recall that by (15) we lmve m(R\ F) < 3||f

w({z € R [|(Th)@)] 2 £/2)) €

When we combine this result with (25) and with the fact that T, f =
T.g + Trh we see that T, is of weak type (1,1), uniformly in 7 and the
proof is complete. m

Li(r)/€ and hence

(R) -

Now we can establish the main result.

Proof of Theorem 1. Fix a number p € (1,00) and choose an
arbitrary function f that belongs to L¥(R;C) N L*(R; C).

We denote by {85152 either {27™/2(27™ o -—k)}m kez or {27™0/2 x
P(27 & —k), 2“"*”/21/)(2“”i » —E) hngmg,kez. Thus f can be expressed as

0
§ =S 15,609,
=0
In particular, it follows that for almost every x € R the series 3 5m|(f, &) [*
x {¢b; () |* converges. It is a consequence of the theory of Rademacher series

(see [12 Theorem 8.4, p. 213]) that there exists-a constant ¢, such that
1 bl
- L(Sineame@)” < [ [0
? 0 J=0

F=0
<a(SI ¢j>[2|¢j(x)\"’)m,

j=0

P
(z) sign(sin{2/ T 7)) ’ dr
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for almost every z € R. (Here we take e.g. sign(0) = 1.) If we integrate

over R and denote by 7% the operator that takes f to Z;’io(f, byl
% sign(sin(2/*177)), then we conclude that

El"H(il(f, ¢;~>|2\¢j(-)|2)1/2|
P =

1
< [T fI, dr
0

4

Lo(R)

¥

| (j;i(f, o3 ¢4(4)F) 1/2 ||m>'

When we combine these inequalities with {10) (the identification of the
real number T with a mapping: Z x Z — {~1,1} is obtained by consider-
ing the mapping 7 — {sign(sin(2?*177)}}32, and reordering the indices)
we conclude that (8) and (9) hold for our function f. Since LP(R;C) N
L*(R;C) is dense in LP(R;C) we see that these conclusions hold for all
functions in LP(R; C).

The statement about the unconditional bases now follows from [5, The-
orem 7.1} because it is clear that both sets span dense sets in LP(R; C), and
the proof is complete. m

g
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