194 A. Peris

[L0] P.Pérez Carreras and J. Bonet, Barrelled Locally Conver Speces, North-Iiul-
land Math. Stud. 131, North-Holland, Amsterdam 1987.

[11]  A. Peris, Quasinormable spaces and the problem of topologies of Grothendicck,
Ann. Acad. Sci. Fenn. Ser. Al Math., to appear.

[12] 3. Taskinen, Counterezamples to “Probléme des topologies” of Grothendicck, A,
Acad. Sci. Fenn. Ser. AT Math. Dissertationes 63 (1986).

(18] —, (FBa)- and (FBB)-spaces, Math. Z. 198 (1088), 330-365.

[14] —, The projective tensor product of Préchet-Moniel spaces, Studia Matl. 91 {1948),
17-30.

[18] G.Willis, The Compact Approimation Property does not imply the: Approximation
Property, ibid. 103 (1992), 99-108.

DEPARTAMENTO DE MATEMATICA APLICADA
UNIVERSIDAD POLITECNICA DE VALENCIA
E.T.5. ARQUITECTURA

E-46071 VALENCIA, SPAIN

Received October 28, 1992 (3017)

icm

STUDIA MATHEMATICA 106 (2) (1993)

Properly semi-/-embedded complex spaces
by

ANGEL RODRIGUREZ PALACIOS {Granada)

Abstract. We prove the existence of complex Bapach spaces X such that cvery
element F' in the bidual X™ of X has a unique best approximation w(F) in X, the
equality [F|| = [lr(F)|| 4 |[F - #(F}|| holds for all F in X**, but the mapping = is not
Tinear,

L. Introduction. Semi-L-summands were introduced by A. Lima [8) in
connection with his study of subspaces of Banach spaces having the so-called
“2-ball property”. A semi-L-summand of a Banach space X is a subspace
M of X such that every element  in X has a unique best approximation
m{x) in M and the equality ||z| = |7 (2)| + ||z = = (z)|| holds for all z in X.
If in addition the mapping « is linear, then Af is said to be an L-summand
of X, while otherwise M is called a proper semi-L-summand of X. A semi-
L-embedded (respectively: L-embedded, properly semi-L-embedded) space is
a Banach space X which is a semi-L-summand (respectively: I-summand,
proper semi-L-summand) of the bidual X** of X.

Real Banach spaces containing proper semi-L-summands are exhibited
in the quoted paper [8]. The casiest exaruple is the space of all real-valued
affine functions on the triangle, the set of constant functions being then a
proper semi-L-summand. Nonreflexive real or complex L-embedded spaces
are also well known: 1y, the preduals of infinite-dimensional von Neumann
algebras, and, more generally, the prednals of nonreflexive JBW*-triples [2]
are exainples of such spaces, and a complete information about them is
to he found in [7]. Recently R. Payd and A. Rodriguez [11] have proved
the existence of properly semi-L-embedded real spaces, the easiest example
heing the space of all real-valued continuous affine functions on a countable
infinite product of copies of the triangle. More recently E. Behrends [3] has
shown that a compact convex subset K of C? with the property that f(X)
is a disk for every linear mapping f : C? — € need not have a center of
symmetry, a fact which is equivalent to the existence of complex Banach
spaces containing proper semi-L-summands [12].
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Using Behrends’ result and by adapting the techniques in [11] to the com-
plex case, we shall prove in this note that also properly semi-L-embedded
complex spaces do exigt. This containg simultaneously the existence of prop-
erly semi-L-embedded real spaces and complex Banach spaces containing
proper semi-L-summands.

All Banach spaces considered in this note will be assumed to be complex.

2. Some results involving numerical ranges. Lot ¥ be o Banach
space in which a fixed norm-one element u (the “distinguished element”
of ¥') has been selected, and let us denote by D(Y,u) the sot of all elements
y* in the dual space of ¥ satisfying [ly*]| = y* (1) = 1. The numerical range
V(y) and the numerical radius v(y) of an element y in ¥ are defined by

V()= 1{u'():v" € DY)} and w(y) = max{]A: A& Vy)},
respectively. The largest nonnegative number L satisfying Liy|| < »(y) for
all y in Y is called the numerical index of ¥ and is denoted by n{Y"). For

elements ¢ in the bidual of ¥ we define the “small” numerical range V()
and the “small” numerical radius v, () by
Va(d) :={6(y") : " € D(Y,w)} and  wy(p) :=sup{|A|: X € Vi($))},

respectively. The largest nonnegative real number S satisfying S ¢
< u.(¢) for all ¢ in Y** is called the “small” numerical index of ¥ ** and is
denoted by n,(¥Y™**). It is proved in [9; Theorem 2.3] that, if K is a closed
convex subset of C with nonempty interior and ¢ is in ¥** with Vuld) C K,
then there exists a net {y,} in ¥ converging to ¢ in the w*-topology and sat-
isfying V(ya} C K for all a. From this result we easily obtain the following
proposition.

PROPOSITION 1. ng(¥Y™**) = n(Y).

Proof. Let ¢ be in ¥** and let ¢ be an arbitrary positive number,
Then there exists a net {y,} in ¥ converging to ¢ in the whtopology aud
satisfying v(ya) < v:(4) + ¢ for all ¢ Since (YY) |va | € vy for all o and
the norm on Y™ is w*-lower-semicontinuous, we have WY )] < vy(¢h) +e.
Now n(Y]) < ny(Y**), and the converse inecuality is clear. w

The following corollary is immediate.
CoroLLARY 1. n(Y) =1 (if and) only if u (6} = |||l for all & in Y**.

If K is a bounded subset of a Banach gpace X and x* iy a norm-one
element in X*, then the diameter of Rez*(K) measures the “width” of
K in the direction determined by z*. By a set of constant width in X we
mean a bounded closed convex subset K of X such that diam(Re z*(K))
remains constant when z* runs over the unit sphere of X*. This condition is
equivalent to the fact that K~ K contains the open unit ball in X with center
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zero and radius the diameter of K [11; Proposition 1.1]. Asg a consequence,
if X is a Banach space and K ig a set of constant width in X™ not reduced
to a point, then || defined on Ch X hy

1A @ a] == sup{ X+ ()] : t € K}
is a nonn generating the usual product topology on CEX. Note also that, as
a consequence of [10; Corollary 3.9, sets of constant width in dual Banach
spaces are w*-closed,

LemMa 1. Let X be o Banach space, K o sel of constant width in X*
not reduced Lo « point, and congider the Banach space ¥V o= C @ X under
the norm

|\ @ ] = max{|A+#(x)| : £ € K}.

Then the bidual norm of |-] on Y** = C ¢ X** (also denoted by |-1) is
given by

|Ab Fl=sup{|A+ F(t)]: t € K}.

Proof. Fach ¢ == Az in Y defines a continuous affine function ¥ from
the (w*-) compact convex set K into € by means of the formula §{t) =
M t(z) for all £ in K. Moreover, by the definition of the norm |- Jon Y, the
mapping 4 - 7 is a linear isometry from ¥ into the Banach space A(K, C)
of all complex-valued continuous affine functions on K endowed with the
suprenum norm, which preserves the natural distinguished elements, namely
wi= 10 for ¥ and the function of constant value one for A(K,C). Since
by the Hahn-Banach theorem such an isometry also preserves numerical
ranges, we may apply [1; Corollary 2.11] and use the natural identification
YV'=CgeX*toobtainforally=A@zinY,

Vig) =V(@) = §E) = A+ K@) =16 K)(y).
It follows from the Hahn-Banach separation theorem that 16K = D(Y, ).
Since clearly n(Y") = 1, the proof is concluded by applying Corollary 1. =

3. The main result. Now that Lemma 1 has been proved, the remaining
part of the argument to show the existence of properly semi-L-embedded
(complex) Banach spaces will be very similar to the one in {11] for the real
case, We only need to consider a particular type of sets of constant width,
which will play in the complex case the analogous role to that of general
sets of constant width in the real case, and apply the fact that, according
to Behrends’ result [3], such “proper” particular sets do exist in C* suitably
normed. By a round set in a (complex) Banach space X we mean a bounded
closed convex subset K of X such that, for every z* in X*, the closure
2 (K)~ of *(K) is a disk in C with radius }||2*|| diam(X’). Examples of
round sets are the so-called pseudoballs [4], namely closed convex subsets
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of X whose w*-closure in X** is a ball; hefore the above cited resull of
E. Behrends, no other examples were known.

LEMMA 2. Let X be an L-embedded space, K a round sel in X™ not re-
duced to a point, and consider the Banach spuce Y = Ceh X under the norm

I} @ z] = max{|\ +#(z)] : £t € K},

Then V is o semi-L-embedded space. Moreover, if for I in X, w(J") de-
notes the best approwimation of F in X and iy (F) denotes the conler of the
disk F(K)~, then for A\@ F in Y** = C O X", (A-b jig (F ~ w(F))) (1)
is the best approwimation of AGF inY.

¥

Proof. Without loss of generality we may assume diam (/) == 2. Then,
since round sets are sets of constant width, we may apply Lenuna © 1o obtain
for every ¢ = A@ F in ¥**,

[o1= A+ u(F) +[F].

Now the fact that ¥ i a semi-L-embedded space, as well as the information
about the metric projection ¥Y** — ¥ claimed in the statement, follows as
in the proof of the implication (iii)=>(i) in [11; Theorem 1.4]. m

In our complex context, the argument in [11; Lemnma 1.6] gives that
pseudoballs in a Banach space Z are those round sets i in Z {or which the
mapping 2* — ux(z*) (= the center of the disk z*(&)") from Z* into C
is linear. Moreover, as in the proof of [11; Proposition 1.7], if M is a closed
subspace of Z, if ¢ : Z — Z/M denoctes the quotient mapping, and if K is a
round set in Z, then q(K)™ is a round set in Z/A, and it is a pseudaball if
and only if ug is linear on the polar A" of M in Z*.

Now recall that an M-ideal of a Banach space is a clused subspace whose
polar is an L-summand in the dual Banach space, and that a Banach space
is called AM-embedded if it is an Af-ideal in its bidual. The dual E* of an
M-embedded space E is an L-embedded space and the metric projection
T ¢ E** - E* is nothing but the Dixmier duality projection on E***
corresponding to the decomposition E*** = E* ¢ EY [5]. Reading Lemnia 2
in the particular case of X being the dual of an M-embedded space £, we
see that ¥ is L-embedded if and only if px (0 £*** — C) is linear on the
polar EY of E in E***. Therefore we have:

Lemvua 3. Let E be an M-embedded spaee and K o round set in ™
and consider the Banoch space Y = C @ E* under the norm.
1) & ol = max{|A + t(x)] : t € K}.

Then Y is a semi-L-embedded space, and it is an L-embedded space if and
only if q(K)™ is o pseudoball in E**/E, where g : E* — E**/E denotes
the guotient mapping.

1
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Our last lemma is

LemMma 4. Let K be a sel of constand width in the dual of o Banach
space Z, and assume thot K(z) is a disk in C for every z in Z. Then K is
a round set in Z*.

Proof. We may assume that diam{K) = 2, and it is enough to prove that
F(K)™ is a disk in C for every norm-one element £ in Z**. For such an ' let
{74} be a et in the closed unit ball of Z converging to I in the w*-topology
of 2%, By agmgumption, for each o, A(2,) I a digk in C (say, with center
Ae) with rading < 1. If A is any limit point of the (bounded) net {A.} and
tisin A, then from the inequality [£{zn) — Aa| £ 1 we obtain |F(¢) - A < 1.
Now F(K)™ i a set of congtant width in € (hence diametrically complete
[10; Corollary 8.9]) with diameter two and is contained in a disk of radius
one. It follows that F(K)~ is a disk, as required.

Now we conclude the proof of the main result.
THEOREM 1. There exists o properly semi-L-embedded {complex) space.

Proof. By ]3], there exists a compact convex subset J of C? without a
center of symmetry and with the property that f{.J) is a disk for every linear
mapping f: C?* — C. As is well known and easy to see, such a set J has
nonempty interior in C* and J — J is absolutely convex. It follows that there
exists a (unique) norm | - || on C? such that J — J-= {w € C? : |w| < 1}.
Moreover, denoting by T the Banach space (C?, | - |}, it is clear that J is a
round set in T which is not a ball. Let E = co(T) be the Banach space of
all null sequences in T so that E** equals I (T") (the space of all bounded
sequences in 7, and write K := {{w,} € loo(T) : wp € J for all n in N}.
Then F is an M-embedded space [5; Theorem 3.4] and it is easy to see that
K is a set of constant width in E™. Moreover, for f in E* = [;(T™) (the
space of absolutely convergent series in the dwal 1™ of T}, K(f) is a ball
in C, hence by Lemma 4, K is actually a round set in E**. Now Lemma 3
gives ug that ¥ := C & E* with the norm

A D 2| = max{|A+ t(z)| 1 t € K}

is a semi-L-embedded space. To prove that ¥ is a properly semi-L-embedded
space, again by Lemma 3 it is enough to show that ¢{K)~ is not a pseu-
doball in E**/E, where ¢ : E** — E™/E denotes the quotient mapping.
Recall that every finite-dimensional Banach space has the so-called “inter-
section property” [6], and that this property passes from a given Banach
space to any le-sum of copies of that space and also to any quotient by
an M-ideaj [6; Proposition 1.1]. Now assume that ¢{X)~ is a pseudcball
in £**/E. Since E**/E has the intersection property, (K )~ is a ball in



202 A, Rodriguez Palacios

B**/E [4; Theorems 4.3 and 3.4], hence J is a ball in T' {11; Lemuna 1.9], a
contradiction. =
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