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Hausdorff and conformal measures for expanding
piecewise monotonic maps of the interval II

by

FRANZ HOFSAUER (Wien)

Abstract. We construct examples of expanding piecewise monotonic maps on the
interval which have a closed topologically transitive invariant subset A with Darboux
property, Hausdorff dimension d € (0,1) and zero d-dimensional Hausdorff measure. This
shows that the results about Hausdorff and conformal measures proved in the first part
of this paper are in some sense best possible.

1. Introduction. For the investigation of the dynamics of a map T on an
interval I Lebesgue measure on I is often considered as a natural measure.
It is also the Hausdorff measure of dimension 1. If one wants to investigate
T on an invariant Cantor set A C I of Hausdorff dimension d < 1, one
can try to find measures with similar properties. On the one hand, one can
consider d-conformal measures which are defined below {Lebesgue measure is
a l-conformal measure), and on the other hand, one has the d-dimensional
Hausdorff measure » restricted to A (for the definition and properties of
Hausdorff measures and Hausdorff dimension see [1]). For certain T-invariant
subsets A of expanding piecewise monotonic maps T equality of the unique
d-conformal measure on A and of v/v(4)} is shown in [5], provided that
»(4) > 0. Therefore the question arises whether v(A) = O is possible for
an expanding piecewise monotonic map T. In this paper we give examples
which show that the answer is yes. The reason why these examples have this
unexpected behavior is that they are far from having the Markov property.

We begin with a description of the results of [5]. A map T' from the
interval I to itself is called piecewise monotonic if there is a finite partition
Z of I into intervals such that T|Z is continuous and monotone for all
Z € Z. For simplicity we only consider piecewise monotonic maps which
are continuous on I. Furthermore, we assume that 7" exists and is Hélder
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continuous in the interior of each Z & Z, and that T is expanding, which
means that inf|(7%)| > 1 for some & > 1, where the infinum is taken over
the set on which (T*)' exists. Let A be a closed T-invariant topologically
transitive subset of I which has the Darbouz property. This means that

(1.1) TYNA)=TY)NnA Y CZlorsomeZ € Z.

A probability measure m concentrated on A which satisfies
(1.2) m(T(Y))= [[T%dm Y CANZ for some Z € £
¥

is called d-conformal.

Under the above assumptions on T and A, it is shown in [5] that there is
a unique d-conformal measure m on A with support 4 and without atoms
if d is greater than zero and equals the Hausdorff dimension HD{A) of A.
Furthermore, if v is the d-dimensional Hausdor® measure restricted to A,
the existence of ¢ € [0,00) is shown such that v = em. If additionally T
satisfies the Misiurewicz condition, then ¢ cannot be zero. The question
is, therefore, whether ¢ = 0 or equivalently » = 0 is possible in general.
The result of this paper is that v £ 0 can only be proved under additional
assumptions like the Misiurewicz condition, which is a weaker version of the
Markov property. Actually, the set A considered here is the closure of the
set A considered in [5]. This makes no difference, since this closure only adds
a countable set to A and since the measures we investigate have no atoms.
As only continuous maps are considered in this paper, it is not necessary to
use the more complicated definitions of [3].

The Darboux property is quite natural. Let F be a T-invariant subset
of I. Set A = I'\ J2,T7%(F). Then A is T-invariant and even satisfies
T~*(A) = A. This implies 7(Y N A) = T(Y N T~{A)) = T(Y)N A, proving
{1.1). Hence A also has the Darboux property.

In this paper we consider unimodal maps. We say that T : R — R is
unimodel if T is continuous, T'|(—oo, 0] is strictly increasing, and T[0, 00)
1s strictly decreasing. Interesting behaviour occurs if

(1.3) T*(0) <0 < T(0) and T2(0) < T%(0).

In this case the interval I := [T2(0), T(0)] is T-invariant and T [T is piecewise
monotonic with 2 = {[T%(0},0), [0, 7'(0)]}.
We consider the following family of unimodal maps:

Bz+Bt+1  for z € (—o0,0],
(1.4) T(z) = ~Br+Bt+1 forze 0,4,

—z+iEt+1 forzelt, 1],

—Br+ B+t  forzell oo,

where § > 2 and ¢ € [0,1]. If the parameters 4 and ¢ in (1.4) are chosen
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such that (1.3) holds and hence I := [T*(0), T(0)] is T-invariant, set
(1.5) A=T\JT7HF) with F=(t,1).
=0

Then A is T-invariant and closed, since F is T-invariant. Above we have
shown that 4 has the Darboux property. Furthermore, |T7(z)| = 8 for z €
R\ F and |T"(z)] = 1 for z € F. Observe that A and T|A4 do not change
if one redefines 7' on F. For example, one can redefine T on F' to have
T(F) C F. T|F piecewise monotonic, and [7| = § on all of R. Thejn T is
no more unimodal, but it becomes an expanding piecewise monotonic map
on I with piecewise Holder continuous derivative, so that the results of (8]
apply.

We shall show that for each d € (0,1) there are 3 > 2 and ¢t € [0,1] such
that T defined by {1.4) satisfies (1.3) and such that A defined by (1.5) is
topologically transitive, has Hausdorff dimension d and satisfies v(4) =0,
where v denotes the d-dimensional Hausdorff measure. The main tools for
the construction of these maps are kneading sequences and Markov diagrams
of unimodal maps. In Section 2 we show how one can construct un:nnoda,l
maps with prescribed kneading sequences. In Section 3 the Markov diagram
is introduced. It is a directed graph which reflects the dynamics of the trans-
formation T and which is used to estimate the length of certain int.ervals.
Finally, in Section 4 particular members of the family (1.4) of unimodal
maps are constructed and the result stated above is shown.

2. Unimodal maps and their kneading sequences. For a unimodal
map which satisfies T%(0) # 0 for i > 1, we define the kneading sequence
eies ... € {0,1}" as follows:

0 fTi(0) <0,
£ {1 if TH{0) > 0.
Furthermore, we say that (Ty)iejo,1) 18 & continuous family of unimodal maps
if each T; : R — R is unimodal, T:(0) > 0 for all t € [0,1], (t,acc) —
Ti(z) is continuous as a map from [0,1] x R to R, TE(0) > 0 and Ty 0) <
T#(0) < 0. The goal of this section is to find a member of a continuous
family of unimodal maps with a prescribed kneading sequen.c.e.

To this end we consider maps Q : N — N uU {0} which satisfy

(2.2) Qk)<k—-1 forkeN.

We say that such a map @ generates a sequence (r:)i>1 of integers if

(2.1)

. 3
(2.3) r¢=Rgu +1 fori=1 where Rg = 0and R; = ;” ‘
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Because of (2.2) the sequence (r;);»1 is uniquely determined by (2.3). Note
that r; = 1, since (2.2) implies Q(1) = 0.

Fore € {0,1} set ¢’ = 1if e = 0 and ¢ = 0 if e = 1. We say that a
sequence (7;);>1 of integers generates eres... € {0,1}" if e; = 1 and
(2.4) er;+jr1=¢; forl<j< g and eg, 1= e;";-“
for ¢ > 0, where R; is as in (2.3). Again (2.4) determines a unique 0-1-
sequence with first element 1.

Finally, we say that a map @ satisfying (2.2) generates a 0-1-sequence
ereq ... if Q generates (r;);>1 and (r;);>1 generates ejep. .., in which case
ez = 0 by (2.4), since ry = 1.

In [6] & map @ : N — NU {0} satisfying (2.2) is called a kneading map if
QU +1))iz1 = (QQ*(K) +D)iz1 for all k > 1 with Q(k) > 1,
where > denoctes the lexicographic order in (NU {0})™ and @? denotes the
second iterate of ). It is shown in [6] that a 0-1-sequence occurs as the
kneading sequence of a member of certain families of unimodal C'-maps if

it iz generated by a kneading map.

In this paper we consider unimodal maps which are not everywhere differ-

entiable. Hence we need additional assumptions on € to get similar results.
We use the following conditions:

(2.5) R(L})=0 and Qk+1)<k fork>1,
(2.6) Q(k+1) > QIQ*k)+1) forall k> 1 with Q(k) > 1.
Note that (2.5) implies (2.2). In order to show that 0-1l-sequences gen-

erated by maps @ satisfying (2.5) and (2.6) occur as kneading sequences
of unimodal maps, we need some lemmas. For a 0-1-sequence ejes ... with

e = 1 set
(2.7} n=min{k > 2:e, =1}
and define ¢ : N — N by a{1) = 1 and

(2.8) alk+1)= { a(k) I exy1 = epp1-app)

. f >
k + 1 if Ehyl = e;c-1-.1--m(k) or k 8 11

and b:{keN:k>n} - {keN:k>n} by br)=n and

(29) b(k _|_ 1) = {b(k) if ek-{—l = ek"l‘l-—b(k)

. fi >n.
E+1 if Eht1 = et}c{-l—b(k) or k2 n

We allow that » = co, which means that e, = 0 for & > 2. In this case no b

is defined and some statements in the following lemmas are vacuous or have
to be interpreted in the obvious way.

LEMMA 1. Let ereg ... be a 0-1-sequence generated by a map Q : N —
N U {0} which satisfies (2.5) ond (2.6). Let n and the maps a and b be as
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in (2.7)-(2.9). Then n >3 and
M) alk)=kfork<mn,aln)=n—1,Qk)=0fork<n—2, Qk) =1
fork>n—-1,

(i) k + 1 —a(k) < a(k) for k> 2 and k+ 1 —b(k) < b(k) for k = m,

(iii) a(k) # b(k) for k > m,

(iv) eps1_a(k) = Ekri-b(k) = €h+1 = Ekti—a(k) ¥ K 2 7.

Proof. Since Q(1) = 0 by (2.5), we get ry = 1 by (2.3) and ez = 0 by
(2.4). Hence n > 3. Since e; = ep = 1 ande, =0forl< k <n ‘x')y (2.7},
we get a(k) = k for k < n and a{n) =n—1 by (2.8). Together with (2.4}
this also implies that

(2.10) rp=1for k<n—2, ™2 2, Rp—z=n-2, R,_12mn.

Furthermore, (2.10) and (2.3) imply Q(k) = 0 for k < n—2and Qn—1) = 1
If Q(k) > 1, then (2.6) implies @(k+ 1) = 1, which finishes the proof of (i).

In order to show the other assertions, we write Sy instead of R +1 and
get py = max{i: 55 < k}. We show

(2.11) a(k) =8, fork=1.

For k = 1 we have pp = 0 and a(k) = 1, which shows (2.11) for
k = 1. We proceed by induction and suppose that (2.11) is shown for
k = . By definition of p; we have Sy < I < Sppr- HI+1 < Sp&l,
then pry1 = o1 and €41 = €141-8,, = Ei+1—a()) by (2.4) and the induction
hypothesis. Hence (2.8) implies a(l + 1) = a(l), and a{l +1) = Sp,,, follows
from the induction hypothesis. If I +1 = Sp.41, thfen P =m0t 1 and
el41 = ‘55+1~Sm = e§+1_a(l) by (2.4) and the induction h.ypothesm. Hence
(2.8) implies a{l + 1) =141, which equals Sp,,, - This finishes the proof of
(2.11). B

fnowhk > 2, then pp > Lasr =1, and k+1— a(k). 3 Poetl =
Sotpr+1) < Spu = a(k) follows from (2.11), (2.3) and (2.5). This is the first

of (ii).

par?ﬂextg v)ve do the same for the b(k)’s. By (2.7), (2.20) and (2.4) we get
e, =1and ey =0forn+l= Spo+2< k< Spa1,88Tn—1 5 S =n—1
by (2.3) and (2.5). Since e = 1, we see by (2.9) that

(2.12) blk)=k forn<k<Sn1.

¥k > 8, then pp > n—1 and we have Q{px) = 1 by (i)- Set up =
Q(Q2'Epk)+l) and v = Q(px+1). Note that ux < vi by (2.6). For k > Spn—1
we show that :

(2.13) b(k) = {

S'pk - TQ(Pk) 1f SPk S k’ < S}Jk + Suh H
Spi, 3 ifSPk+SqSk<5pk+sq+1,uk§_q<uk.
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This covers all k > S,_1, since Sy, + Sy, = Spy+t. For k = 5,1 — 1 we
have p = n — 2. Hence k = Sp, + 8y, — 1 by (2.3). By (2.5) and (2.10) we
get 1., = rg(n-1y = 1 and therefore k = Sy, + Sy, 1. Hence (2.13) gives the
correct result b(k) = k already for k = S,,_; — 1. We proceed by induction
and suppose that (2.13) is shown for k = I, where > 5,; — 1. In order
to show (2.13) for k = [ + 1, suppose first that S, <1 < 8y, + 8. This
implies pj41 = pr, since Sy, < rp41 by (2.6). Tl+1 < 8, + Sy, applying
the induction hypothesis and (2.4) twice we get

Cl41—b(l) T Cl41—8p 47y = B1=8p +802(,,) = Cl+i~-8y = G+l

since 1 +1-S5p, < rga(p)41 = Sy < Suy = rp41 by (2.3) and (2.6). By (2.9)
we get bl + 1) = b(l). As pi31 = p; the induction hypothesis implies now
(213) for k=14 1. If 1+ 1 =5, + 5, applying the induction hypothesis
and (2.4) twice we get

_ — ! N
eH_l_b('l) - el+l_SP1 +7'QEP1) H el+1—3p!+SQ2(p!) - eH-lmSm - e’l-}-l

since I+ 1 - 85, = rge(py41 = Su, < Sy = rpyq1 by (2.3) and (2.6). By
(2.9) we get b(I+ 1) =1+ 1. As priy = p; this equals 5, + Sy, and we
have (2.13) for k= [+ 1.

Now suppose that Sp, + 55 < 1 < 8p + Sgu1 and w < g < v If

I4+1 < 8, + Sg41 we have pry1 = py, as Sy < 741 by (2.3). Applying
the induction hypothesis and (2.4) twice we get

El41-p(l) = €l+1-8p, —58; = El+1-5,, = €41

since [ +1 -5, —8; <rep1 and 141 -85, < 841 < rypp1. By (2.9) we get
b{l + 1) = b(I). As piy1 = p1, the induction hypothesis now implies {2.13)
fork=1+1LI14+1=25,+ 5.4 and ¢+ 1 < v we have prp1 = pr, 88
Syg+1 < rp,41 by (2.3). Applying the induction hypothesis and (2.4) twice
we get

— 4 I
Cl+1-b() = Clt1-8, -8, = Gp1-g, = €4

since [+ 1— 5, =8, =rgppand {+1-5, = 5,1 < rp41. By (2.9) we
get bl +1) =1+ 1. As pji1 = py, this equals Sp, ., + Sy, and (2.13) for
k = 1+1 follows. Finally, if | +1 = S, + 8,41 and ¢+ 1 = v, we have

{+1=25,51 by (2.3) and pj41 = pr+ 1. Applying the induction hypothesis
and (2.4) twice we get

=g, ) = Clpl

e =£ =] = ¢ =¢
1+1-5(1) Ei"'l"“JH"SQ EIH-].-SM - e’f‘pt.|.1 “Op L

since [ +1 — Sp, — Sy = rgr1. By (2.9) we get b(l+ 1) = b(l). As Su, = Iyt
we have b(l) = Sy, 11—y, by the induction hypothesis. As py1 =p; + 1 we

get bl + 1) = 8y, — rQ(p,y), which is (2.13) for k == [+ 1. This finishes
the proof of (2.13).
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Now we can show the second part of (ii). For n < k < S,_1 it is trivial,
since b(k} = k by (2.12). Hence suppose that k > Sp_1, so that Qo) =1
and (2.13) applies. By (2.5) we have up < Q(pr) and ve < pi. If Sp. £k <
Spy, + Sy, then k+ 1 - b(k) < Suy + rQ(py), Which does not exceed rp,, 88
uy, < Q(px) — 1, and b(k) = Sp, — Sq2(p,)» Which is larger than rp, by (2.5).
If 8, + 54 £ k < Sp, + Sga1 and up £ g < vg, then E+1—bk) € rgp
and b(k) > Sy, > Sgi1, 88 Pr > vy = g+ 1. This shows (ii) in all cases.

We have a(k) = Sp-2 # b(k) for n =S, 2 +1 <k < Sn_1 by (2.10)-
(2.12). It k > Sp—1, then Q(px) > 1 by (1) and alk) = Sp, # b(k) by (2.11)
and (2.13). This proves (iii).

Finally, suppose that exi1-a(h) = €k+1-b(k) # ep+1 for some k > n. By
(2.8) and (2.9) we get a(k+1) =k +1 =0k + 1), which contradicts {iii).
Hence (iv) is also shown. =

For a continuous family (T})sefo,y of unimodal maps we define
(2.14) P, (0,1} =R by Py(t)=TF(0) for k>0.
The maps Py are continuous and we have
(215)  Py=0 and Py(t)=Ty(Pe-s(t)) fork=1 and t € [0,1].
This recursion formula implies immediately that
(2.16) Po(t) =0 = Ppiult)=Pe(t) for k> 1.
Since Ty(z) < T3(0) for all z € R by the definition of unimodal maps, (2.15)
implies that
(2.17) Py(t) < P(t) fork>1andte€[0,1].
The assurptions T3(0) > 0 for £ € [0, 1], T5(0) = 0 and T3(0) < T2(0) < 0
imply |
(218)  Py(t) >0 for t €[0,1], Py(0) >0 and Pi(l) <Ofor k=2
since T'|(—c0,0] is increasing and hence T3(0) < T2(0) < 0 implies TF(0) <
T2(0) < 0 for k > 2. After these preparations we can show

LEMMA 2. Let ejes... be the 0-1-sequence generated by o map Q : N —
N U {0} satisfying (2.5) and (2.6). Let n and the maps a and b be as in
(2.1)(2.9). Let (Ty)iep,y be a continuous family of unimodal maps and let
the maps Py, for k > 0 be as in (2.14). For k > 1 there are nonempty
intervals (cx, dy) C (0,1) with the following properiies.
(i) We have ¢y = 0 and Pa(ca} = 0. Ifk > 3 and a(k) = a(k — 1), then
ex = cho1. [f k> 3 and a(k) = k, which is equivalent to a(k) # a(k — 1) by
(2.8), then cg > Cg—1 ang Pk(c;c) = {. ’



220 F. Hofbauer

(1) If k < n, thendy = 1. If k > n and b(k} = b(k — 1), then dj, = dj—;.
Ifk > n and b(k) = k, which is equivalent to b(k) # b(k — 1) by (2.9), then
dy < dy_1 and ch(dk) = ),

(i) If £ > 1 and e, = 1 then Pe(¢) > 0 fort € (g, dy). If k> 1 and
ey = 0 then Fi(t) <0 fort € (e, di).

(iv) For k 2 n and t € (cy, dr) we have either Poyy_yr)(t) < Prya(t) <
Prp1-s(y(t) or Poyi-py(£) € Peyr(t) < Pogroage ().

Proof We use induction on k. Set ¢; = 0 and dy = 1. As Pi(¢) > 0 for
t € (¢1,d;) by (2.18), as ¢; = 1, and as n > 3, all assertions hold for k = 1.
Therefore suppose that [ > 2 and that all assertions are shown for & < [

We first consider the case | < n. The induction hypothesis implies
Fi_1(ei-1) = 0if I > 3, since a(j) = j for j < n by Lemma 1(i). Hence
Py(ei—1) = Pi(ci-1) > 0 by (2.16) and (2.18) if | > 3. Furthermore, P3(c;) 2
0 and P(dy—1) < 0 for I > 2 by (2.18) and induction hypothesis. If now
I <n, set d) =1 and let ¢; be the largest zero of P, in [¢;-1, 1], which exists
a8 Pe1) 2 0. As P(di) = B(1) < 0, we have ¢; < d; and Pi(t) < 0
for ¢t € {c,dy). f 1 > 3 we have Py(ci—1) > 0 and hence ;.1 < ¢. All
agsertions are shown for ¥ = 1 if | < n, since ¢, = 0 and a(l) = [l in
this case. f I = n > 3, set ¢ = ¢;1 and let d; be the smallest zero of
Py in (g.1,di_1), which exists since P(;—1) > 0 and Pi(di_;) < 0. We
have Pi(t) > 0 for ¢ € (¢, dy), proving (iii) for k = 1, as e, = 1. Further-
more, ¢—1 < di < g1, which shows (ii) for k = I, since b(n) = n. As
a(n) =n—1=a(n~- 1) by Lemma 1{i) we also have (i} for k = . Finally,
using (2.17}, for ¢ € (e, d;) we get Py(t) = 0 < Bi(t) < Py(t). Together with
(2.15) this implies Py(¢) < Pp(t) < Pi(t), as T|[0, 00) is decreasing. We
have shown (iv) for k = [ = n, since a(n) = n— 1 and b(n) = n, finishing
the induction step for I < n.

Now we consider the case ! > n. As a(2) =2 we have F,g)(c2) = 0. If
Pa(_k-1)(ck—1) = 0 is shown and if k <1~ 1, we get Pyy(cr) = 0 by (i),
which says that either Pyry(ce) = 0 or Pygy(cx) = Pogk—1)(ck-1). Hence
}.3?(;_1)(0;_1) = 0. Similarly we get Py—13(di—1) = 0 using b(n) = n and
(ii). Setting ¢ =1 —a{l — 1) and j = I — b({ ~ 1), from ({2.16) we get

(2.19) Pilci—1} = Pi(ei~1) and Pld_;) = Pi(di-1).
Furthermore, Lemma 1(ii} implies ¢ < (I — 1) and j < b(l — 1). This gives
(2.20) G <o and di_y < dy,

because otherwise the induction hypothesis would imply (i) = a{l — 1) > i
or b(j) = b{l — 1) > j, which contradicts (2.8) or (2.9).

Suppose first that e; = e;. Set s =1 if g = gj =1, and s == -1 ife; =
ej = 0. By (iii) for k = i and k = j we have sign P;(t) = sign P;(t) = s for
t € (c-1,di1). By (iv) for k = 11 we get sign Pi(f) = sfort € (¢r_1,d;—1).

icm

Hausdorff and conformal measures 221

Set ¢; = ¢;1 and dj = dj_1. Since e; = ¢; = e; by Lemma 1(iv) and since
this implies a(l) = a{l — 1) and b(l) = b{l — 1) by (2.8) and (2.9), we get
(i), (i) and (ili) for k = I. Finally, P, P; and P; have the same sign on
(¢1-1,di—1) = (ci,d;) and T} is monotone on (—co, 0] and on [0, co). Hence
we get (iv) for k = I from (iv) for k = [~ 1 and from (2.15), as a(l) = a(l 1)
and b(l) = b(l - 1).

Suppose now that e; # e;. In this case (2.20) and (iii) for k¥ = ¢ and
k = j imply that sign P;(c;-1) # sign Pj(di-1). Therefore sign Py(ci-1) #
sign Py(d;_1) by (2.19). We have either e; = e; or e; = ¢&;. Tn the first case
set ¢ = ¢;~1 and let d; be the smallest zero of P} in {e1-1,di~1). Then
e < d; < dj.1. As e; = e; and as sign Pi(¢;) = sign Pi(e) by (2.19), we get
(iii) for k = I from (jii) for k = i. Since e; = e; = € we get a(l) = a{l — 1)
and b(l) = . Hence (i) and (ii) hold for k = I. By (iv) for k =1 -1 and
(2.19) we get either Po(t) = 0 < Ri(t) < Fi{t) or Py(t) = 0> B(t) = Fi(t)
fort € (¢, dy). Since T} is monotone on (—co, 0] and on [0, 00), together with
(2.15) this implies (iv) for k =1, as a(l) = a(l— 1) and b(l) = 1. This finishes
the case e; = e; # ;. The proof in the case e; = e; # e; is similar, getting
d; = dj_y and choosing ¢; to be the largest zero of F; in (e11,di-1).

Now we can show

THEOREM 1. Let (Ti)iep,y) be o continuous family of unimodal maps.
Suppose that Q : N — NU{0} satisfies (2.5) and (2.6). Then thereis q € 0,1]
such that T;‘"(O) £ 0 for k > 1, the 0-1-sequence erez ... generated by ¢ is
the kneading sequence of Ty, T2(0) < 0 < T,(0} and T2(0) < T2(0).

Proof. For k > 1 let (¢x,dx) be the intervals found in Lemma 2. Set
g = limg_, o0 ¢, Which exists, since (ci}e>1 is increasing and bounded by 1.
If n < co we have card{k : a(k) # a(k — 1)} = oo and card{k : b(k) #
b(k—1)} = co by Lemma 1(ii). Hence Lemma 2 implies that g € (c,dx) for
all k > 1. Now Lemma 2(iii) and (2.14) imply that T/(0) # 0 for k > 1 and
that eyes. .. is the kneading sequence of Ty. If n = oo, then a{k) = k for
k> 1 by Lemma 1(i), and ejep... = 100... by (2.7). By Lemma 2 we get
g € (ck,dy] = (e, 1] for k > 1, and Lemma 2(ii1), (2.14) and (2.18) imply
that T,(0) > 0 and that T#(0) < 0 for k = 1. Hence ere.. - 1s the kneading
sequence of Ty, also in the case n = oC. :

Tt remains to show the last assertion. Since n 2 3 by Lemma 1 we have
ey = 1 and ez = 0. Hence T2(0) < 0 < T(0) by (2.1). We have Pilei) =0
for infinitely many k > 2 by Lemmas 1(ii) and 2(i). For these k we get
Pir1(cx) > 0 by (2.16) and (2.18) and hence TE+LH(0) > 0 by (2.14). By
Lemma 2 we have T2 (0) = Py(c) < 0 for k > 2 as eg = 0. We see by
induction that T2 (0) < 7%,(0) implies T! (0) < T2(0) for I > 3, since
T|(=o0, 0] is increasing. This contradicts TE+1(0) > 0, and hence T§ (0) >
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T2 (0) holds for infinitely many k. Since ¢ = T7(0) is continuous for j = 2
and j = 3, letting k ~ oo we conclude that T2(0) > 77(0), which finishes
the proof. m

Remark. Theorem 1 is not the best possible result. One can show that
the assertion of Theorem 1 remains true if (2.8) is replaced by

Q(1y=0 and (Qk+ z))lZI < (k% ...)
and if {2.6) is replaced by
QU+ D)1 > (Q(Q*K) +D)iz1 for all k > 1 with Q(k) > 1,

where > denotes the lexicographic order in (NU{0})Y. We have only proved
the simpler result, since it is sufficient for the examples we construct and
since it has a simpler proof.

fork>1,

3. The Markov diagram and its properties. Our main tool for
the investigation of unimodal maps is the Markov diagram, which we now
introduce. Let T : R — R be a unimodal map satisfying (1.3), so that
I = [T*(0),T(0)] is T-invariant. Set Iy = (T2(0),0), I; = (0,7(0)) and
V= {Iy, 11}, so that T'|Y is monotone for ¥ € ). Let C be an open interval
contained in an element of V. We say that I is a successor of C'if D # 0
and if D =T(C)NY for some ¥ € Y. Since TY is strictly monotone for
Y € Y, D is again an open subinterval of some element of I, so that we can
iterate the formation of successors. We write ¢ — D if D is a successor of
C. Let D be the minimal set which contains J and which is closed under
taking successors. The finite or countable directed graph (D, ) is called
the Markov diagram of T|I. '

Now suppose that 7%(0) # 0 for k£ > 1 and that the kneading sequence
e1eg ... of T is determined by a sequence (r;);»1 of integers with ry = 1 as
in (2.4). We describe (D, —) in terms of the r;’s. To this end set ¢; = T%(0)
for 4 > 0. Let {(a,b) denote the open interval (a,d) if a < b, and (b,a) if
a>b Fori>1setV; = (c;ci-p,;.1) where j is such that B; < i < Rj4;.
Since ry = 1, by (2.1) and (2.4) we get

(3.1) Vi = Il, Vo=1Is and V;C Ie‘.
Furthermore, for 7 > 1 we show that
. B ifig{Re:k>1}
32) TVpNnl,,,K =V, g foo= Iy I
(32) TW)N Ly, w1, TW)NIg {Vrk ifi= Ry, k1.

By (3.1) we have T(V}) = (ciy1,ci—g,), Where R; < i < Ry If ¢ <
Rjy1 then both ¢y and ¢;_g; arein I, by (2.1) and (2.4). This implies
that T(V) N Loy, = T(Vi) = Vir and T(V)NL, | = 0. I i = Ry
then ¢ip1 € Iy, and ¢ip, = ¢, € Iei-+1 by (2.1) and (2.4). Hence

for i > 1.
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T(Vi)mIeH-x = (C"H-la 60) = Vg and T(Vi)nIeg_H = (c'r'j+1: CU) = VT;‘+1' This
last equality follows from the definition of V. ,,, since rj11 = Rgyeny +1
by {2.3). Hence (3.2) is shown. .
Now (3.1) and (3.2) imply that D = {V;: 4 > 1} and that the arrows 1n
(D,—) are -
{3.3) Vi —Vigy fori>1 and Vg, —Vp forj=1.
For later use we deduce some further properties of the Markov diagram.

LEMMA 3. If D is the only successor of C then T(C)=D. If D and E
are different successors of C, then T(C) = DU EU{0} and DNE = 9.

Proof. Since (T2(0),T(0)) = Iy U Iy U{0} and Iy N Iy = B, this follows
from the definition of successor. m

LEMMA 4. If DoD1 ... Dy is a path in (D, =), then THMi o T7H(Ds)) C
D, for 0< 5 < n and T™((Nimp T (Ds)) = Dn-

Proof We get TV (N, T7H(Dy)) = Nid T_i(Dvé.l..j.) for0<j<n by
induction on j, since T(D;) D Dj41 by Lemma 3. This implies the desired
result. w

LEMMA 5. Fiz D € D andn > 1. Let P be the sei of all paths in (D, —>)
of length n starting with D. Then D \U?___—O1 T-4({0}) is the disjoini union
of the sets (1" T~4(Ds) for ali DoDy ... D1 €P.

Proof. This follows easily by induction on n using Lemma 3. »

Now set Y, = {(1'os T~H¥;) # 0 : ¥; € Y}, which is the set of maxin}al
open intervalgon Erglzcﬁ T is monotone. Set K = {O,T(O),TZ(O)}, which
are the endpoints of the intervals in ). The intervals in Vu ahrflpairiwme
disjoint and their union is I\ Uiy T-4K). For @ € I\ Uiy T7HE)
let ¥, (z) be the unique element of Vy, which contains . E\lrthermorei, for
o € I\, T™HK) set Do(z) = Y1(z) and Di(z) = T{D;—1 (x))NY1(T* (=)
for 1 > 1. We then have

—HK ; ; ' bove

LemMa 6. Fz € T\ S, T~(K) and Di(z) )."o*r'z > 015 as a ;

then Do(z)D1(x) ... s an infinite path in (D, —) with T"(z} € Dn(z) and
T™(Vy1(z)) = Dalz) forn 20.

Proof. We get T™(x) € Dn(z) for n = 0 by ind.uction. In particul.ar,
Dy(z) # 0 for n > 0 and Do(z)I (z)...1is a path in (.D,.—>). Tt remains
to show T™(Ypi1(2)) = Dafz) for n 2 0. For. n = 0 this is the definition
of Do(x). Suppose that { 2 1 and that this is shown. for n = l.- 1: We
have Yi4(z) = Yi{z) N T-HYi(T!())), because the flght hand 51dle is 33
element of Vj41 and contains z. Hence T*(Yi41(z)) = T (v (:c))l:WYl(T‘(w)) =
T(Dy-y(2)) N Y1 (THz)) = Di(x) and the lemma is proved by induction. =
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LEMMA 7. Suppose that T is a unimodal map with T*(0) # 0 for i > 1,
For each k = 1 there is an open interval U which contains 0 such that ench
path DDy ... Dy in (D, —) of length k+ 1 satisfying U NN_, T~ D;) # 0
containg o V; € D with j > k.

Proof. Since ¢; := T(0) # 0 for § = 1, the definition of the intervals V;
and (3.1} imply that O is in the closure of V; if and only if ¢ = Ry, + 1 for
some m = 0. Let ¥V be the interval in Yy which has ¢; as right endpoint,.
Then T-(Y) contains 0 in its interior. Choose U C T~ 1Y) such that
VinU=0forj € {l,....,k}\ {Rm +1 : m > 0}. Since (Vo) T7(I,.,,)
is in Y, and contains e; in its closure, it equals V., We get Ti(U) C fﬂi
for 1L £ i € k by Lemma 4. If now DoD; ... Dy is a path in (D, —) with
UNM_,T-%(D;) #0, then UN Dy # @ and hence Do = V; with j > k or
with 7 = R, + 1 for some m > 0.

In the first case the proof is finished. In the second case note that D; C I,
for 1 £ < k, since D; is contained in one of the two disjoint intervals Ip
and Iy by (3.1), since TH({U) C I, for 1 < i < k, and since T*(U) N D; # 0
by Lemma 4 and the choice of DgDy ... Dy. As Vi4, is the only successor
of Vi for Ry, < 1 < Rpy1 by (3,3), Dq = Vg, +1 implies D; = Vg 141 for
1 <4 < Ppyq1. Furthermore, (3.1) and (3.3) imply D; = V; for rpqa <8 <k,
since Dy C I,,. We have either Dy, = Vr_ 441 o Dg = V. In both cases
we get Dy € {V; 14 > k}, finishing the proof. '

LEMMA 8. Let T be a unimodal map with T*(0) # 0 fori > 1 and suppose
that Q@ : N — N U {0} is a map which satisfies (2.2) and which generates
the kneading sequence eies ... of T. Suppose that there is en | > 2 with
Q(#) =0 for i <1 and with QiY > 2 for i > 1. Then

(i) er, =0 fork>2,
iy VinJ =0 fori > 2, where J is any subset of [y with T'(J) C J,

{iii) e1eq ... does not contain three consecutive ones,

(iv) if DoD1Ds is a path in (D, ) with D; C Ity for 0 < ¢ < 2, then
D; =V for some i €{0,1,2}.

Proof Weshow (i) by induction. 2 <7 <lthen Q) =Q(j—1) =0
and hence r; = r;_y = 1 by (2.3). Therefore (2.4) implies eg, = ep, 41 =
e} = 0. Now suppose that j > ! and that (i) is shown for all k e {2,.. .J,jn-l}.
By (2.4) and (2.3) we get ep, = €r,1 = €Ry,,,+ This equals 0, since Q(7) €
{2,...,7— 1} by (2.2) and the assumptions. Hence (i) is shown.

In order to show (ii) suppose that V; NJ # § for some 1 > 2. Let & be
such that Ry_; < i < Ry. Then k > 2. Since Vjy4; is the only successor of
V; for Rp_1 < j < Ry by (3.3), we get T~ {(13) = Vg, by Lemma 3. As
T(J) C J, we get Vg, NJ # 0. But (3.1) and (i) imply that Vg, < Iy, which
contradicts J N1y = 0, and (ii) is shown.
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We show by induction on k that e1ez...eg, does not contaln three con-
secutive ones for k& > 1. Since Ry = 1 and Ra = 2, this is trivial for & < 2.
If 7 > 3 and if it is shown for k < j, it also follows for k = j using (2.4)
for i = j — 1 and observing that eg, ;+2 = €r;+1 = ¢t =0if Q) =0,
that er,_,+3 = ez = 0 if Q(4) > 2, and that eg, , =0 by (i). Hence (iii) is
shown.

If DoD1 Dy is a path in (D, ) with Dy < I for 0 £ ¢ < 2, it is not
possible that D; = Vi for 0 <3 <2 and some & > 1, because otherwise
(3.1) implies ey = epq1 = ex+2 = 1, contradicting (iii). The only elements
Vi, of D with another successor besides Vi1 are those with k = R; for some
4 by (3.3). Hence there are an 1 € {0,1,2} and a j 2 1 with D; = Vg,. But
then ep, = 1 by (3.1) and (i) implies that j = 1. Hence D; = V1, showing
(iv). m

4. Construction of the examples. In this section we construct uni-
modal maps which have the desired prop erties. To this end we use the results
of Section 2 and define maps @ : N — NU {0} satisfying (2.5) and (2.6). Fix
an integer u > 4 and a sequence (v;)i»1 of integers such that 2u; < v S 02
for i > 1. Set

-1
wi=ut y (25 —1)+v fori>1
=t

and define
Q) =0 for1<j<u,

(4.1) Qw; —f)=w; —J—2 fori>land 0 <3 < v,
Qlw; + ) =w; —J—2 foriz>land 0<j <.

It Zollows easily that Q defined by (4.1) satisfies (2.5). In order to show (2.6)
let k > 1 be such that Q(k) > 1, which is equivalent to k>u HFQR¥NE)=0
we have Q(Q2(k)+1) = Q(1) = 0 < Q(k+1), since k > u. If Q%(k) 2 1 and
hence Q(k) > u > 4, applying (2.5) twice we get QQP(k) + 1) < Q*(k) <
Q(k) — 1. This implies (2.6), since Qk) -1 < Q(k+1) for k > 1 follows
casily from (4.1).

Therefore the map Q defined by (4.1) satisfies (2.5) and (2.6). Farther-
more, it satisfies the assumptions of Lemma 8. Theorem 1 gives the existence
of unimodal maps with kneading sequences generated by @. We investigate
the Markov diagram (D, —) of such maps.

We use the description of (D,-=) given in Sectior 3 in terms of the
sequence (r;)i>1 defined by (2.3). We have D = {Vi 11> 1} with the arrows
of (3.3). We say that a path DoD1 ... Dy _y of length n is uniquely extendable
to'a path of length m > n if there are D, € D for n <4 < m such that D;
is the only successor of Di1 in (D, —). In this case it follows easily from
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Lemma 3 that

n—1 m—1
(4.2) T~ = [ 77Dy,
3==0 t=0

which we need later. Fix s > 1 and set

Wy

g1
= Z ?‘j—i—ZT.wk._uk .
k=1

JE=ilg —Ug

Let P be the set of all paths in (D, —) starting with Vg, _,+1 which have
length . Now we can show

LeMMA 9. Suppose that s > 2. Then the paths in P do not contain V)
and their number is (s — L)vs + 1+ 2v,(v, + 1). The number of paths in P
ending at Vy, is at least vs. There are at least %us(vs + 1) paths in P which
are uniquely extendable to a path of length [ 4 vg 1.

Proof. We give the proof by examination of all paths in (D, ) starting
at Vg, .,+1- To this end let P(j) be the path Vg, ,1VRr, ,12... Vg, in
(D,—) for 7 > 1. It has length r;. It follows from (3.3) ‘that the p;.ths
in (D, —) starting at Vi, _ 41 are exactly the paths P{j1)P(j2)FP(sa) ...,
where 71 = w, and where Jiqy1 = f; + 1 or jip1 = Q{f;) + 1 for ¢ > 1. This
defines a directed graph in which each vertex has exactly two successors;
part of it is shown below:

wy —Wg+l—...—owst+vs—1— Ws + Vs

1 1 4

wg—l—wy —2— ... = Wg—Us b Wg] — Usg—]— ... =W — V3 W] — U]
1 1 1 i 1
We we — 1 ws — Vs + 1 W1 — Vg1 1 wo — vy + 1

Exa@ination of all paths in this graph starting at w, corresponds to exam-
ination of all paths in (D, —) starting at Vg, _,+1.

First we consider the paths in the above figure which end at wy — vy,
They correspond to the paths

Plwg)Plwy + 1) ... Plws +0)Plwy — i = 1) ... Plw; —vg)... Plwy — v)

in (D, —), where 0 < i < v,. They all end at P(w; — v1) = P(u) = V., and
have length

Wai We—t=—1 s—1
Z Tj + Z Tj + z :'T'wk U 9
F=w, Fe=wg—vg k=1

“.which equals I for each i by (4.1) and (2.3). Hence we have found v, paths
in P of length ! ending at V. :
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Next consider the path in the above figure which ends at ws + v,. It
corresponds to the path

P(ws)Pws + 1) ... Plws +vs) = VR, oy +1VRu, st - - VR, 40,
in (D, —). Its length is

wy s We
Z Ty = Z Tkt Tw,+v,
k=wa k=wy —vs+1

and its length without the last part P(ws + vs) is Y b, —vat1 TR AS
Pavatvy = Ruyto,~2 + 1 by (4.1) and (2.3} we get

Ws WweSvy
: Z rr <1< Z Tk -
k==wy —v,+1 k=1w,

Therefore the initial segment of length [ of this path ends at some element
of its last part P{ws + v,) and belongs to P.

Next consider the paths in the above figure which end at one of the last
¢ — 2 elements in the last row. They correspond to the paths

P(w,) ... Plws +i)P(ws —i—1) ... Plw, —vg) ... P(w; —v;)P(w; —v; + 1)

in (P, —), where 0 < i < wgand 2 <7 & 5 1. Using {4.1) and (2.3)
one sees that the length of these paths does not depend on i and equals

l_;i -+ Ty —ty+1s where lj = g;w,, —, Th + ZZ;; T —v - The Iength. without
the last part P(w; — v; + 1) is I;. We have [; <1 < Ij 4 uj-vy41 Since

Zi_:i Pagpmue = Bag_1—ug-1 since wj—1 — Vj-1 S Wi — U — 1, and since
Rupjmng—1 T 1= Twju;+1 by (4.1) and (2.3). Therefore the initial segment
of length ! of each of these (s — 2)vs paths ends at some element of its last
part P(w; — v; + 1) and belongs to P.

Finally, consider the paths in the above figure which end at one of the

first v, elements in the last row. They correspond to the paths

Plwg)Pws + 1) ... Plws + i) Pws =1~ 1) ... P(ws - j)Plws —j+ 1)
in (D, —), where 0 < i < j < vs. For fixed i and j, the length of such a path
is :

Wy AL ry —1—1
E e+ 5 i+ Twe—741 -
k=w, h=wy—§

Using (4.1) and (2.3) one sees that this equals

Uy
Z P+ Ry, —j1+ 1= By, +1
k=g —3 _
and hence depends neither on ¢ nor on j. The length of these paths without
the last part P(ws —j+1) is Yopo,,, _; Tk, Which is less than I. Furthermore,
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{(4.1) implies 7oy, _, = Ry, ,—2+12 we1—12 %1, andl € Ry, — 7w, <
R, +1~v4_1 follows. This shows that the initial segment of length ! of each
of these v, (vs +1) paths ends at some element of its last part P(ws ~j+1)
and belongs to P. Each of them is uniquely extendable to a path of length
{+w,_1, since each element of P{w, -7+ 1) except the last one has a unique
successor in (D, —).

This finishes the examination of the paths in (D, —) corresponding to
paths in the above figure. All paths in (D, -+) of infinite length starting at
VR, _.+1 are continuations of the examined paths. Hence we have found all
paths of P. All assertions of the lemma follow immediately except the first
one. But P{j) contains V3 only if j = 1. Since P(1) does not occur in the
examined paths, the first assertion also follows.

Now we can estimate certain elements of (D, ). The length of an inter-
val J is denoted by [J].

LeMMA 10. Let T be defined by (1.4), suppose that (1.3} holds, so thal
I = [TZ(O),T(O)] is T-invariant, and suppose that the kneading sequence
of T is generated by @ defined in {4.1). Let A be defined by (1.5). Suppose

that d € (0,1) and that m is an ofomless d-conformal measure on A. Then
inkaI IVkld/m(Vk) =0,

Proof. Let F be as in (1.5). Since [T”| = S outside F by (1.4), we see
from (1.2) that

(4.3) m(T()) = m(U) U CY\FforsomeY €y

since m(T(T)) = m(TUN.A)=m(T(UNA}) by (1.1). For s > 2 let I and
P be as before Lemma 9. Set R = {ﬂi;é T-YD;): DyDy...Di_1 € P}. By
Lemma 8 we get V; N F =@ for ¢ > 2 and hence Lemma 9 implies that the

elements of the paths in P have empty intersection with F. Now Lemma 4
implies that

(44) YW eRand0<i<lthen T"{W)CY\FforsomeY €.

Set ks = Ry, —1 + 1. Then m(Va,) = Y er m(W) and |Vi,| = 3w e W]
by Lemma 5, since m has no atoms, and m{W) = m (T~ (W))F~4U-1) for
W € R by (4.3} and (4.4). Since v, different paths in P end with V,, by
Lemma 9 and since elements of R corresponding to different paths in P are
disjoint by Lemma 5, we get m(Vy,) = v,m(V,)8~4 -1 by Lemma 4. By
(4.4) and the mean value theorem we find that |W| = |T'-Y(W)|s~U-Y
for W € R and using (4.2) that [W| = |{THvs-2~1(W)|g~Etve-:=1) for
those W & R which correspond to the —%vg(vg + 1) paths in P which are
shown in Lemma 9 to be uniquely extendable to paths of length I + v,_;.
As [T'(W)| < I =: cfori > 0and W € R and as v, > 1, wetget
Vi,| € 80,68~ 0=1) 4 42~ 0+v-1=2) The estimates of m(Vy,) and |V, |
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now imply

Vi, |* e
m(V,) = m{Va)
By (4.1) and (2.3) we have r; = 1 for 1 <4 < u and Ry = w. Hence (3.3),
Lemma 3 and (3.1) imply 7(V,) D Vi and T%(V,) = I. By (1.2) we get
m{V,) > 0. Since 2u,_1 < v; £ v2_, for s > 2, since § > 1, and since
d € (0,1), the right hand side of (4.5) tends to zero for s — oco. This proves
the lemma. w

THEOREM 2. For each d € (0,1) there are 8> 2 and t € [0, 1] such that
the map T defined by (1.4) satisfies T*(0) < 0 < T(0) and T2(0) < T3(0),
and such that A defined by (1.5) is {opologically transitive, has Hausdorff
dimension d and satisfies v{A) = 0, where v denotes the d-dimensional
Housdorff measure.

Proof. Let Q be defined by (4.1), where u > 4, and where (vi)iz1 18
such that 2v; < wvip1 < vf for i > 1. Let (D, —) be the directed graph
determined by Q using (2.3) and (3.3). Here it is not yet clear what the
vertices V; in this graph are, but the arrows are fxed. Choose u so large
that the spectral radius p of the 0-1-matrix associated with (D, —) and
considered as an [*~operator is greater than 24 This is possible since d < 1.
Set B = /¢ > 2. By Theorem 1 there is then £ € [0,1] such that T defined
by (1.4) satisfies (1.3) and that its kneading sequence is generated by Q.

By the results of Section 3 the Markov diagram (D,—) of 1" has spec-
tral radius o. It follows easily from (4.1), (2.3) and (3.3), that (D,—) is
irreducible. Since A is just the set I without the interiors of the maximal in-
tervals on which T* is monotone for each k > 1, it follows from the results of
[4] that A is topologically transitive and that hiep(T|4) = hiop(T1]) = logo.
Let (s) denote the topological pressure of the function & + —slog [T ()]
on (4,T|A). It is shown in [7] that the Hausdorff dimension HD(A) of A
is the unique zero of w(s) for s = 0. As |T'| = B on A, we get 7(s) =
hop(T|A) — s log B by Theorem 9.7 of [8]. Hence HD(A) = heop(T'|A)/ log B-
Since hiop(T|A) = log g the choice of 3 implies HD(A) = d. .

It remains to show that »(A) = 0. To this end set Ag = A\Uso T7HGE),
where (7 is an open interval in I. Then A¢ is a closed T-invariant subset of
A. We show

(4.6) Ag# A = HD(Ag) < HD(A),

With the same proof as for A we get HD (Ag) = hiop(T|4c)/ log 8. Hence
(4.6) follows if we show hiop(T1Ag) < hiop (T'|A). Since hyop(T|A) =log 0 >
0, we can assume that hiop(T]4c) > 0. In 2] and [3] an isomorphism of TII
to a shift space with finite alphabet is constructed which preserves invariant
measures without atoms and, in particular, ergodic measures with nonzero

(4.5) (84 v A0 b0 9
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entropy. Since shift spaces are expansive, there exist ergodic measures of
maximal entropy on closed invariant subsets by Theorems 8.2 and 8.7 of
[8]. This property then also holds for closed T-invariant subsets of I with
positive entropy. Hence there are ergodic measures A and p of maximal
entropy for (A, T|A) and (Ag, T|Ag) respectively. Furthermore, it follows
from the results of [2] and [3] that A is unique and has support A, as A
is topologically transitive. If Ag # A this implies that u # A and hence
is not a measure of maximal entropy for (4, T'|A). Now Theorem 8.6 of [§]
implies hiop(T'|A) > Ry = heop(T|Ag), proving (4.6).

By Theorem 1 of [5] applied to 4\ Ujey T (K), where K = {0,T(0),
T2(0)}, there is an atomless d-conformal measure m on A. Suppose that
p(A) > 0. By Lemma 10 there is k > 2 with a = |Vi|¢/m(V3) < 3v(4).
For this & let U be an open interval which contains 0 as in Lemma 7. By
Lemma 8 and (2.1) we have T2%(0) < 0 for all k > 2. Therefore T%(0) ¢ F
for i > 0, which gives 0 € A and Ay # A. Let H be an open interval
containing the closure of F' such that T2(H) < I, = (0,7(0)). Since the
boundary of F is an orbit of period two which belongs to A and is contained
in H, we get Ag # A. By (4.6) we have HD(Ag) < HD(A) and hence
v(dg) = 0 for G =U and G = H. Since |T'| = 5 on A, one easily shows
that v(ANT~YHC)) = 0if C € 4 and v(C) = 0 (cf. the proof of Theorem 6
in [5]). Therefore v(ANU; T (Ag)) =0for G=U and G = H.

Set B = A\ Uiy T~ Ay U Ag U K). Since also countable sets have
v-measure zero, we get v(A) = v(B). If z € B then z ¢ {Ji2, T%(K) and
hence D;(z) is defined for 4 > 0. If z € B then T7(z) € U for infinitely
many j. For these j we get T9(z) € U N M, T (Dit4(2)) and hence
Diyi(z) € {Vi:1 2k} for some i € {0,1,...,k} by Lemma 7 and the choice
of U. Hence Dj{z) € {V; : I = k} for infinitely many j. Furthermore, if
x € B then T?(z) € H for infinitely many j. By the choice of H this implies
that 79 (z), 79t (2) and 797%(z) are in I and hence D;(z), Dj+1{(z) and
Djia(z) are subsets of Iy by (3.1). One of them is then V] by Lemma 8(iv).
Hence D;(z) = W for infinitely many j. Since each path in (D, —) from V;
to {V; : 1 > k} has to contain V}, we conclude that D;(z) = V} for infinitely
many jifz € B.

Fix § > 0. For each 2 € B there is an n(z) > (log |Vi| —log )/ log B with
Dy (z) = Vi. Set Wy = Yy(py41(z). Then T(W,) is contained in some
element of I for 0 < i < n(z). By Lemma 6 we have 77(#) (W,) = V4. Since
VeNF = 0 by Lemma 8(ii) and since T'(F) C F, we have T (W,)NF = @ for
0 < 4 < n(z). This implies m(W,) = 374®)Im(V}) and [W,| = 8~ ")
using (4.3) and the mean value theorem. Therefore |W,|* = am{W,). Let
I be a subset of {W, : # € B} which still covers B and which has the
property that no three different intervals in it have a common point. Then
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Swew W = Ve m(W) < 20 Since [W] < 6 for W € U by the
choice of n{z) and since § > 0 was arbitrary, the definition of the Hausdorff
measure implies that ¥(B) < 2a. This contradicts the choice of &, since
y(B) = v(A). Hence v(A) = 0 and the theorem is proved. m
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