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On the weak (1,1) boundedness of a class of
oscillatory singular integrals

by

YIBTAO PAN (Pittsburgl, Penn.)

Abstract. We prove the uniform weak (1,1) boundedness of a class of oscillatory
singudar integrals under certain conditions on the phage functions. Our conditions allow
tho phase funetion to he completely flat. Examples of such phase functions include ¢(z) =

i 2 — Ji . .
e~/ and Plie) = we 1715, Some related counterexample is also discussed.

1. Imtroduction. Oscillatory singular integrals have arisen in many
problems in Fourier analysis and related areas. Such operators have been
studied by many authors ([1, [2], [4], [B], [8]-{14]). In this article we shall
focus on the study of the weak (1, 1) boundedness of such operators.

For n given function f, we let Ay be its distribution function, i.e. As(s)
= m{z : f(z) > &}. The function f is said to be in LY if |[fll1ee =
sup, $As(4) < 00, An operator is said to be of weak type (1,1) if it is
bounded from L' to LY.

Let A & R, ¢ be a real-valued function and ¢ € C§°(R). Define the
operator T by

S PLE =2
) Tyfe) = pov. [ e#en EETY iy gy
um Ty
where » ¢ IR, Wo now state our main result.

TrorsM A. Suppose ¢ € CH{0,d}) for some d > 0 and sadisfies (i) ¢
by even or odd; (3) @ (8) = 0, for 0 £ ¢ < d. Then the operators Tx are
uniformdy bounded from L' to LY, d.e, there ezists a constant C' which is
independent of A sueh thal
(2) m{x [T f (@) > o} < Ca™ || Fll
forala >0, fel.

lsarlier resulls on the weak (1,1) estimates for oscillatory singular in-
tegrals can be found in [1], [2] and [10}, among others. Recall that in [12]
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Ricci and Stein proved the L? boundedness of oscillatory singular integrals
with polynomial phases. Shortly thereafter, Chanillo and Christ proved the
weak (1,1) houndedness for operators with polynomial phases ([1]). In {10],
the author obtained the uniform weak (1,1) estimate for the operators 7'y
with real-analytic phase functions. Actually, the estimates obtained in [10]
are valid for all dimensions and the analyticity of the phase was used iu an
essential way only for dimensions greater than one. For n = 1, the method
in [10] can be used to prove the weak (1,1) estimates for T, with smooth
phases. Namely, we have

TuroreM B. Let Ty be given by (1), Suppose there is an inleger k 22 2,
such that ¢ is in C2~% on supp(p) and ¢*¥1(0) # 0. Then the operators
Ty are uniformly bounded from L' fo LY.

Although Theorem B has not appeared before, its proof does not require
new ideas. Therefore, we decide not to include a proof for Theorem B here.
The reader may consult [8] and [10].

If the phase function ¢ satisfies pUH(0) = 0 for j = 2,3,.. ., the operalors
T, may fail to be uniformly bounded from L' to LY. An example will be
given by using a function constructed by Nagel and Wainger in [7]. This
shows that Theorem B becomes false if the condition ¢{*(0) # 0 (for some
k > 2} is removed. The phase function in the example is also convex, whicl
shows that condition (ii) in Theorem A cannot be replaced by ¢” 2 (.

On the other hand, Theorem A implies that the uniform boundedness of
T from L' to L1°° holds for many phase functions with vanishing deriva-
tives at = = 0. Examples of such phase functions include é(z) = ¢~/ o and
b(x) = ge~ /121,

2. Some reductions and lemmas. To prove Theorem A, first we make
a few simple reductions. Since the singularities of the kernel of 1’y are along
the line {r = y}, by using appropriate cut-off functions, we may assume
that @{z) = 1 near the origin. Without loss of generality, we shall agsume
that ¢ is defined on [~1,1] and T} is of the following form:

UV
(3) Tif(z)=pv. [ eV ——jly)dy.
' la—yi<1 oy

In order to prove Theorem A, it suffices to show that T are uniformly
bounded from L' to L1* provided that ¢ satisfies the following conditions:
(C1) ¢ is even or odd;

(C2) " (t) =0, fort €[0,1];
(C3)  o(0) = 4'(0) = ¢"(0) = 0.

Let us clarify condition (C3). One may assume that ¢(0) = ¢'(0)
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= () because replacing the phase function ¢z — y) by ¢z — y) ~ (0(0) +
¢ (0)(z - y)) does not change the operator norm. One may further assume
that ¢”(0) = 0 becanse, if ¢"(0) £ 0, the uniform boundedness of T’ from
L to LY would follow automatically from Theorem B.

We now recall a few known facts.

LemMa 1 (van der Corput). Suppose v is smooth and recl-valued on
[0, B]. If |4/ ()] 2 A, and 3" is monotone on [a, b], then

b
(4) [ ei“”(“’)dm’ < 4rt
0

LEMMA 2. Assume that ¢ satisfies (C1)-(C3). Let T be given as in (3).
Then Ty are uniformly bounded on L2(R), i.e. there exists a constant C
which s independent of A such that
(5) N5 2wy € CIF |22 (s
for fe LA(R), AeR.

Proof U ¢"(ty) = 0, for some tp > 0, then ¢”(t) = 0 for jt| < fo,
which implics that ¢ is identically zero in [—tg, o). In this case, the uniform
boundedness of ||[Th]|22 is well-known. .

We now assime that ¢/(£) > 0 for ¢ € [0,1]. Since ¢'(£)/t is increasing
in [0, 1], we have
(6) #'(2t) > 20'(2).

By Plancherel’s Theorem, we find

(7) sup [Tl @—s2m = |5l 2 2y 22wy 5
ck
where H, is the Hilbert transform along the curve ¢ — (t, 6(t)) in R?, Le.
; dt
(8) Hygley, o2y = [ gla—t,a — o)) 7
-1

By (1), (6)-(8) and a result of Nagel, Vance, Wainger and Weinberg ([6],
Theorams |, 2 and Lemina 2), we find

(9) sup || T ]| p2 gy pay < 00 W
AER

3. The proof of Theorem A. Let f € L'(R). For a > 0, we make 2
Calderén Zygmund decomposition f = g+ 25 by, where
(i) llglloo < o, and [lgll < fll1; ' N
(it) by is supported on an interval I;, with |I;] = 2™, and the I; are
pairwise digjoint;
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(i) (L/10) fy, 185 ()ldy < Ca, ;151 < Ca* flhs
(iv) d(I;, I;) < 2™ implies |n; — n;| £ Ny, for some fixed No.

This decomposition may be obtained via a Whitney decomposition of
the set where the Hardy-Littlewood maximal function of f is greater than

a ([1], [18]).

Let A > 0 be sufficiently large and w = ¢~*(1/A). Define S} and 5% hy

, eirdlz—y)
(10) Sifle)= [ ?y"‘f(y)d?fa
wslr~yl£1
(11) Sif(w) = Taf(z) - Sif(2).
Let
(12) Huf(z)=pv. [ g{?—)dy.
le-glza” ¥

Then we have
LeMMA 3. Let M be the Hordy-Littlewood mazimal operator. Then
|93/ ()] < 16Mf(2) + [ Hosaf ()| -

Proof By the definition, we have

be(fr y)
a3y 183 = [ S f(J)dyl
| —ylLw ¥
t}\!,b(ﬂ _
< —""j“—l‘f (v)| dy
l[z—y<w/4
+ [Hypaf(z) + f f( Sz dy
wigle-ylgw
<3 4)(% y) o L
<x = )y [Hoa )|+ 8M ).
p——— ‘

Since ¢ is increasing on [0, 1], we find

g f ?%Uf;"—)lf(y)kdysZ' i

le—y| Sw/4 WEw/2 ity e

=3 DI A TP

2J<w/2 |:r—‘y|§2-’

. =0 peyy

|:c
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i+l ("b
<BMf(a) f
2 Lw /2 ol
< 8Mf(x fqﬁ £)dt < BAT M f(z) .

By (18) and (14), the lanma s proved. =

Remark, By Lemmas 2 and 3, we conclude that both S} and 53 are
uniformly bounded on L2 (R).

For vach j, lel w; = max{w, 2"}, and

el . @i)\(p(m_.y)
(15) if@) = " ya,
wiSa—yst ¢ Y
} i ei)\q&(m_y)
(16) T, (o) = f DI

r—y

1€y S
We have

LuMMa 4. There 48 o constant C which 1 independent of A and « such
that

(17) [ ZT;{,jb,,-HZ < Callf
d

fort =01
Proof. We shall prove (17) for £ = 0. The proof for £ = 1 is similar.
Let Ly, (,y) be the kernel of (T§ )*T} ;. Then, we have

dz

ei,\(cp(ZWT/)Mrb(z—w)) —
==

Lixa ey y) = '
wihs wElwyga-psl
Suppose wy = wy. We shall need the following two inequalities:
(18) i ()] € Cos (L i)
(14) [ Lo (o, 9)] € C (A" (w)w) Al'-’”""‘/l—z-

(LK) can be proved by taking the absolute value of the integrand and the
argrment iy straightforward. To prove (19), we let A = max{w; + 2, w; + v}
B = min{l + 2,14y}, and

b f A=) 3(2))
A
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for A <r £ B. We find

d

(3= 4) = ¢z = @)| 2 " Wr -~y

2

2 9la—3)— 9z = =) = " (O - ¥),

for some ¢ = £(z,y,z) which lies between z — z and z — y. By van der
Corput’s lemma, we have
(20) 7. £ CO" (w)lz -yl
By (20) and integration by parts, we find
2d/ dz
Lozl =1 [ = iX($(t—p)—(t—a)) dt)“__;__"_
Eris (@9l Afdz(;[e (z-y)z—2)

< O (w)w) e ~ 9|72,
which proves (19). Now we prove that, for fixed ¢, z € I;, the following holds:
(21) ’ [ Loz, )b

dy‘ < Ca,
it w3<w I;

where the constant C is independent of 4, & and z. To prove (21),
the summation into two parts

Jiwy Ko I;e8: ILieF;

where S; = {Ij | diSt(Ij,I-g) Swy, wy < wz-} and F; = {IJ I diSt(I_:,',[i) > wy,
Wi S wi}.

If w; = 2™ and I; € S, then 1 < |w;/w;| < 2%, |8
get
(233 | Z f Ly 5(z,y)b; (y dy‘ < Cao.

I;e8;

Ifw; = w and I; € 5, then wy == w;. Hence

(24) \ > [ Dsenbly)dy| < cola ST 5] < Co
1ES: [;€8;

To treat the other part, we use (19). For z € I;, I; € Fi, and y € I}, we
have |z —y| < C'minger; | — 2| and
f 2~y y\z

| f LA KN :L' :lj
< Ca(A" (W)™ [ e —y| ™ dy.
I

we break

<2No By (18), we

dy‘ < (A" (w)
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Hence
@) 3| [ baislewhv) d] < Cap i) [ el dy
Iely fo—~y|>w
= Ca(M"(ww?) ™ € Ca(Ag(w))™
= Clo.

(21) now follows from (22)-(23). By (21), we observe that

(268) “LT” FJH 2 2 L ITM?’MTD il

< sz [ Ibi(e)|dz < Ca® > |L] < Col Fln

whicli concludes the proof of the lemma,
We are now ready to prove Theorem A.
Proof Theorem A. For @ > 0, we have
m{z: [Thf()] > o} < mfz: |53/ (2)] > a/2} +m{z - [S3f(z)] > o/2}.

By Lemna 3 and the well-known boundedness properties of the operators
M and H,, we can find a constant ¢ such that

(27) m{z @ |85 f () > o/2} < Ca™ | f1,

where (7 is independent of ). To obtain a similar estimate for S} f, we write
J = g+30; by Lot I¥ be the 4-fold dilates of the I; and 2 = ({J; I7)*. Then
we have

(28) mfa: |Skg(a)| > a/4} < Ca?||Shall3 < Ca"zllgliz < Co™ |,

where we used the uniform L? boundedness of 5}. To finish the proof, it

suffices to show that
s;(zbj)tmﬂ > o/} < O .
J

(28) 'm{m €2
s E}'}(Tf\j,] )J + Z (T b (.L

Siuce 8337 b)) for z € £2. By

Liemann 4, wo fined

w‘i.{u: CHPR AS'}\(E:IJ_.;)(LH)} > cx/ll}
i

The prool is now complete. m

Remark. The idea of using an L* — L? argument to prove weak type
bounds for oscillatory integrals was used in [1] and [3]. See also [10].
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4. An example

THEOREM C. There exists an odd, O function (1), defined for -1 <
t < 1, with ¢""(t) > 0 for t > 0, such that Ty are not uniformly bounded
from L o LYo,

To prove Theorem C, we shall use a function which was constructed
in [7] by Nagel and Wainger. Let {r,} be a sequence of positive munbers
such that r; < 1 and rpey < v /dn+ 1). Let B, = {1y, ne,) and 1) ==
{((n + )rpp1,rn). Let h(t) be & €™ function on [~1,1] such i]m,t; (i) h i
odd; (i) h{t) > 0 for ¢t € |J°0, By; (iii) h(t) = 0 for ¢t € 5 . Deline
the function ¢ by

(30) a(t) = f f r)drds.
0

z“l

Clearly, ¢ € C*. Since ¢''(£) = 0 for ¢ € B,, there exist constants o,
and {, such that ¢{2) = out + ¢, for t € By. The following estimate can be
found in {7].

ProPOSITION 1 ([7], p. 248). There exists a sequence of positive numbers
{An} such that liMyeees Ay = 00 and

= TpAnt) %E

1

f sin{ A, &(t) > (lnn)/2,
o

forn=12,...

Proof of Theorem C. Let ¢ be given as in (30). For § ¢ R, let

Jalz) = xg_g’z}(m)ewm. Then we have, for « € [-1,1],
cirb(a—y)
Tafple)= [ e le(u)dy
eyl Y

1
= [ gty at

-1 ¢

1
= 2ie% [ sinra(t) - ) L.
0
Let 8, = Apon,. By Proposition 1, we find
miz : [T, fo, (2)] > Inn} > m([-1,1]) = 2,

while || fg,[l1 = 4. Therefore, (2} cannot hold uniformly in A. w

Remark. It is easy to see that the function ¢ defined in (30) satisfies
o) (0) =0, for k > 0.
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