

STUDIA MATHEMATICA 106 (3) (1993)

On the weak (1,1) boundedness of a class of oscillatory singular integrals

by

YIBIAO PAN (Pittsburgh, Penn.)

Abstract. We prove the uniform weak (1,1) boundedness of a class of oscillatory singular integrals under certain conditions on the phase functions. Our conditions allow the phase function to be completely flat. Examples of such phase functions include $\phi(x) =$ e^{-1/x^2} and $\phi(x) = xe^{-1/|x|}$. Some related counterexample is also discussed.

1. Introduction. Oscillatory singular integrals have arisen in many problems in Fourier analysis and related areas. Such operators have been studied by many authors ([1], [2], [4], [5], [8]-[14]). In this article we shall focus on the study of the weak (1,1) boundedness of such operators.

For a given function f, we let λ_f be its distribution function, i.e. $\lambda_f(s)$ $= m\{x: f(x) > s\}$. The function f is said to be in $L^{1,\infty}$ if $||f||_{1,\infty} =$ $\sup_{s} s\lambda_f(s) < \infty$. An operator is said to be of weak type (1,1) if it is bounded from L^1 to $L^{1,\infty}$.

Let $\lambda \in \mathbb{R}$, ϕ be a real-valued function and $\varphi \in C_0^{\infty}(\mathbb{R})$. Define the operator T_{λ} by

(1)
$$T_{\lambda}f(x) = \text{p.v.} \int_{\mathbb{R}} e^{i\lambda\phi(x-y)} \frac{\varphi(x-y)}{x-y} f(y) \, dy,$$

where $x \in \mathbb{R}$. We now state our main result.

THEOREM A. Suppose $\phi \in C^3([0,d])$ for some d>0 and satisfies (i) ϕ is even or odd; (ii) $\phi'''(t) \geq 0$, for $0 \leq t \leq d$. Then the operators T_{λ} are uniformly bounded from L^1 to $L^{1,\infty}$, i.e. there exists a constant C which is independent of λ such that

(2)
$$m\{x: |T_{\lambda}f(x)| > \alpha\} \le C\alpha^{-1} ||f||_1$$
 for all $\alpha > 0$, $f \in L^1$.

Earlier results on the weak (1,1) estimates for oscillatory singular integrals can be found in [1], [2] and [10], among others. Recall that in [12]

¹⁹⁹¹ Mathematics Subject Classification: Primary 42B20.

Ricci and Stein proved the L^p boundedness of oscillatory singular integrals with polynomial phases. Shortly thereafter, Chanillo and Christ proved the weak (1,1) boundedness for operators with polynomial phases ([1]). In [10], the author obtained the uniform weak (1,1) estimate for the operators T_{λ} with real-analytic phase functions. Actually, the estimates obtained in [10] are valid for all dimensions and the analyticity of the phase was used in an essential way only for dimensions greater than one. For n = 1, the method in [10] can be used to prove the weak (1,1) estimates for T_{λ} with smooth phases. Namely, we have

THEOREM B. Let T_{λ} be given by (1). Suppose there is an integer $k \geq 2$, such that ϕ is in C^{2k-1} on $supp(\varphi)$ and $\phi^{(k)}(0) \neq 0$. Then the operators T_{λ} are uniformly bounded from L^1 to $L^{1,\infty}$.

Although Theorem B has not appeared before, its proof does not require new ideas. Therefore, we decide not to include a proof for Theorem B here. The reader may consult [8] and [10].

If the phase function ϕ satisfies $\phi^{(j)}(0) = 0$ for $j = 2, 3, \ldots$, the operators T_{λ} may fail to be uniformly bounded from L^1 to $L^{1,\infty}$. An example will be given by using a function constructed by Nagel and Wainger in [7]. This shows that Theorem B becomes false if the condition $\phi^{(k)}(0) \neq 0$ (for some $k \geq 2$) is removed. The phase function in the example is also convex, which shows that condition (ii) in Theorem A cannot be replaced by $\phi'' > 0$.

On the other hand, Theorem A implies that the uniform boundedness of T_{λ} from L^1 to $L^{1,\infty}$ holds for many phase functions with vanishing derivatives at x=0. Examples of such phase functions include $\phi(x)=e^{-1/x^2}$ and $\phi(x) = xe^{-1/|x|}.$

2. Some reductions and lemmas. To prove Theorem A, first we make a few simple reductions. Since the singularities of the kernel of T_{λ} are along the line $\{x = y\}$, by using appropriate cut-off functions, we may assume that $\varphi(x) \equiv 1$ near the origin. Without loss of generality, we shall assume that ϕ is defined on [-1,1] and T_{λ} is of the following form:

(3)
$$T_{\lambda}f(x) = \text{p.v.} \int_{|x-y| \le 1} e^{i\lambda\phi(x-y)} \frac{1}{x-y} f(y) \, dy.$$

In order to prove Theorem A, it suffices to show that T_{λ} are uniformly bounded from L^1 to $L^{1,\infty}$ provided that ϕ satisfies the following conditions:

- (C1) ϕ is even or odd:
- (C2) $\phi'''(t) \ge 0$, for $t \in [0, 1]$;
- $\phi(0) = \phi'(0) = \phi''(0) = 0.$ (C3)

Let us clarify condition (C3). One may assume that $\phi(0) = \phi'(0)$

= 0 because replacing the phase function $\phi(x-y)$ by $\phi(x-y) - (\phi(0) +$ $\phi'(0)(x-y)$ does not change the operator norm. One may further assume that $\phi''(0) = 0$ because, if $\phi''(0) \neq 0$, the uniform boundedness of T_{λ} from L^1 to $L^{1,\infty}$ would follow automatically from Theorem B.

We now recall a few known facts.

LEMMA 1 (van der Corput). Suppose ψ is smooth and real-valued on [a,b]. If $|\psi'(x)| \geq \lambda$, and ψ' is monotone on [a,b], then

$$\left| \int_{a}^{b} e^{i\psi(x)} dx \right| \le 4\lambda^{-1}.$$

LEMMA 2. Assume that ϕ satisfies (C1)-(C3). Let T_{λ} be given as in (3). Then T_{λ} are uniformly bounded on $L^{2}(\mathbb{R})$, i.e. there exists a constant C which is independent of λ such that

(5)
$$||T_{\lambda}f||_{L^{2}(\mathbb{R})} \leq C||f||_{L^{2}(\mathbb{R})}$$

for $f \in L^2(\mathbb{R}), \lambda \in \mathbb{R}$.

Proof. If $\phi''(t_0) = 0$, for some $t_0 > 0$, then $\phi''(t) \equiv 0$ for $|t| \leq t_0$, which implies that ϕ is identically zero in $[-t_0, t_0]$. In this case, the uniform boundedness of $||T_{\lambda}||_{2,2}$ is well-known.

We now assume that $\phi''(t) > 0$ for $t \in [0,1]$. Since $\phi'(t)/t$ is increasing in [0,1], we have

$$\phi'(2t) > 2\phi'(t).$$

By Plancherel's Theorem, we find

(7)
$$\sup_{\lambda \in \mathbb{R}} ||T_{\lambda}||_{L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})} = ||H_{\phi}||_{L^{2}(\mathbb{R}^{2}) \to L^{2}(\mathbb{R}^{2})},$$

where H_{ϕ} is the Hilbert transform along the curve $t \to (t, \phi(t))$ in \mathbb{R}^2 , i.e.

(8)
$$H_{\phi}g(x_1,x_2) = \int_{-1}^{1} g(x_1-t,x_2-\phi(t)) \frac{dt}{t}.$$

By (C1), (6) (8) and a result of Nagel, Vance, Wainger and Weinberg ([6], Theorems 1, 2 and Lemma 2), we find

(9)
$$\sup_{\lambda \in \mathbb{R}} \|T_{\lambda}\|_{L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})} < \infty. \quad \blacksquare$$

- 3. The proof of Theorem A. Let $f \in L^1(\mathbb{R})$. For $\alpha > 0$, we make a Calderón Zygmund decomposition $f = g + \sum_j b_j$, where
 - (i) $||g||_{\infty} < \alpha$, and $||g||_{1} \le ||f||_{1}$;
- (ii) b_j is supported on an interval I_j , with $|I_j|=2^{n_j}$, and the I_j are pairwise disjoint;

(iii)
$$(1/|I_j|) \int_{I_j} |b_j(y)| dy \le C\alpha$$
, $\sum_j |I_j| \le C\alpha^{-1} ||f||_1$;

(iv)
$$d(I_i, I_i) \leq 2^{n_i}$$
 implies $|n_i - n_i| \leq N_0$, for some fixed N_0 .

This decomposition may be obtained via a Whitney decomposition of the set where the Hardy-Littlewood maximal function of f is greater than α ([1], [15]).

Let $\lambda > 0$ be sufficiently large and $\omega = \phi^{-1}(1/\lambda)$. Define S_{λ}^1 and S_{λ}^2 by

(10)
$$S_{\lambda}^{1}f(x) = \int_{\omega < |x-y| < 1} \frac{e^{i\lambda\phi(x-y)}}{x-y} f(y) \, dy \,,$$

(11)
$$S_{\lambda}^2 f(x) = T_{\lambda} f(x) - S_{\lambda}^1 f(x).$$

Let

(12)
$$H_a f(x) = \text{p.v.} \int_{|x-y| \le a} \frac{f(y)}{x-y} \, dy.$$

Then we have

LEMMA 3. Let M be the Hardy-Littlewood maximal operator. Then

$$|S_{\lambda}^2 f(x)| \le 16Mf(x) + |H_{\omega/4}f(x)|.$$

Proof. By the definition, we have

$$(13) |S_{\lambda}^{2}f(x)| = \left| \int_{|x-y| \le \omega} \frac{e^{i\lambda\phi(x-y)}}{x-y} f(y) \, dy \right|$$

$$\leq \int_{|x-y| \le \omega/4} \left| \frac{e^{i\lambda\phi(x-y)} - 1}{x-y} \right| |f(y)| \, dy$$

$$+ |H_{\omega/4}f(x)| + \int_{\omega/4 \le |x-y| \le \omega} \left| \frac{f(x)}{x-y} \right| \, dy$$

$$\leq \lambda \int_{|x-y| \le \omega/4} \left| \frac{\phi(x-y)}{x-y} \right| |f(y)| \, dy + |H_{\omega/4}f(x)| + 8Mf(x) \, .$$

Since ϕ is increasing on [0,1], we find

$$(14) \int_{|x-y| \le \omega/4} \left| \frac{\phi(x-y)}{x-y} \right| |f(y)| \, dy \le \sum_{2^j \le \omega/2} \int_{2^{j-1} \le |x-y| \le 2^j} \frac{|\phi(x-y)|}{|x-y|} |f(y)| \, dy$$

$$\le \sum_{2^j \le \omega/2} \frac{\phi(2^j)}{2^{j-1}} \int_{|x-y| < 2^j} |f(y)| \, dy$$

By (13) and (14), the lemma is proved.

Remark. By Lemmas 2 and 3, we conclude that both S^1_{λ} and S^2_{λ} are uniformly bounded on $L^2(\mathbb{R})$.

For each j, let $\omega_j = \max\{\omega, 2^{n_j}\}$, and

(15)
$$T_{\lambda,j}^{0}f(x) = \int_{\omega_{j} \le x-y \le 1} \frac{e^{i\lambda\phi(x-y)}}{x-y} f(y) \, dy,$$

(16)
$$T_{\lambda,j}^1 f(x) = \int_{-1 \le x - y \le -\omega_j} \frac{e^{i\lambda\phi(x-y)}}{x-y} f(y) \, dy.$$

We have

LEMMA 4. There is a constant C which is independent of λ and α such that

(17)
$$\left\| \sum_{j} T_{\lambda,j}^t b_j \right\|_2^2 \le C\alpha \|f\|_1$$

for t = 0, 1.

Proof. We shall prove (17) for t=0. The proof for t=1 is similar. Let $L_{\lambda,i,j}(x,y)$ be the kernel of $(T_{\lambda,i}^0)^*T_{\lambda,j}^0$. Then, we have

$$L_{\lambda,i,j}(x,y) = \int_{\omega_i \le z - x \le 1, \omega_i \le z - y \le 1} e^{i\lambda(\phi(z-y) - \phi(z-x))} \frac{dz}{(z-y)(z-x)}.$$

Suppose $\omega_i \gtrsim \omega_j$. We shall need the following two inequalities:

$$(18) |L_{\lambda,i,j}(x,y)| \le C\omega_i^{-1} (1 + \ln(\omega_i/\omega_j)),$$

$$(19) |L_{\lambda,i,j}(x,y)| \le C(\lambda \phi''(\omega)\omega)^{-1}|x-y|^{-2}.$$

(18) can be proved by taking the absolute value of the integrand and the argument is straightforward. To prove (19), we let $A = \max\{\omega_i + x, \omega_j + y\}$, $B = \min\{1 + x, 1 + y\}$, and

$$J_r = \int_A^r e^{i\lambda(\phi(z-y)-\phi(z-x))} dz,$$

Oscillatory singular integrals

285

for $A \leq r \leq B$. We find

$$\left| \frac{\partial}{\partial z} (\phi(z-y) - \phi(z-x)) \right| \ge \phi''(\omega) |x-y|,$$

$$\frac{\partial^2}{\partial z^2} (\phi(z-y) - \phi(z-x)) = \phi'''(\xi) (x-y),$$

for some $\xi = \xi(x, y, z)$ which lies between z - x and z - y. By van der Corput's lemma, we have

$$(20) |J_r| \le C(\lambda \phi''(\omega)|x-y|)^{-1}.$$

By (20) and integration by parts, we find

$$|L_{\lambda,i,j}(x,y)| = \left| \int_A^B \frac{d}{dz} \left(\int_A^z e^{i\lambda(\phi(t-y)-\phi(t-x))} dt \right) \frac{dz}{(z-y)(z-x)} \right|$$

$$\leq C(\lambda \phi''(\omega)\omega)^{-1} |x-y|^{-2},$$

which proves (19). Now we prove that, for fixed $i, x \in I_i$, the following holds:

(21)
$$\sum_{j:\omega_{j} \leq \omega_{i}} \left| \int_{I_{j}} L_{\lambda,i,j}(x,y) b_{j}(y) dy \right| \leq C \alpha,$$

where the constant C is independent of i, α and x. To prove (21), we break the summation into two parts

(22)
$$\sum_{j:\omega_j \le \omega_i} = \sum_{I_j \in S_i} + \sum_{I_j \in F_i},$$

where $S_i = \{I_j \mid \operatorname{dist}(I_j, I_i) \leq \omega_i, \ \omega_j \leq \omega_i\}$ and $F_i = \{I_j \mid \operatorname{dist}(I_j, I_i) > \omega_i, \omega_i \leq \omega_i\}$.

If $\omega_i=2^{n_i}$ and $I_j\in S_i$, then $1\leq |\omega_i/\omega_j|\leq 2^{N_0}, \ |S_i|\leq 2^{N_0}.$ By (18), we get

(23)
$$\left| \sum_{I_j \in S_i} \int L_{\lambda,i,j}(x,y) b_j(y) \, dy \right| \le C\alpha.$$

If $\omega_i = \omega$ and $I_j \in S_i$, then $\omega_j = \omega_i$. Hence

(24)
$$\left| \sum_{I_j \in S_i} \int L_{\lambda,i,j}(x,y) b_j(y) \, dy \right| \le C \omega^{-1} \alpha \sum_{I_j \in S_i} |I_j| \le C \alpha \, .$$

To treat the other part, we use (19). For $x \in I_i$, $I_j \in F_i$, and $y \in I_j$, we have $|x - y| \le C \min_{z \in I_j} |x - z|$ and

$$\left| \int L_{\lambda,i,j}(x,y)b_j(y) dy \right| \le C(\lambda \phi''(\omega)\omega)^{-1} \int_{I_j} \frac{|b_j(y)|}{|x-y|^2} dy$$

$$\le C\alpha(\lambda \phi''(\omega)\omega)^{-1} \int_{I_j} |x-y|^{-2} dy.$$

Hence

(25)
$$\sum_{I_{j} \in F_{i}} \left| \int L_{\lambda,i,j}(x,y) b_{j}(y) dy \right| \leq C \alpha (\lambda \phi''(\omega) \omega)^{-1} \int_{|x-y| > \omega} |x-y|^{-2} dy$$
$$= C \alpha (\lambda \phi''(\omega) \omega^{2})^{-1} \leq C \alpha (\lambda \phi(\omega))^{-1}$$
$$= C \alpha.$$

(21) now follows from (22) (25). By (21), we observe that

$$(26) \quad \left\| \sum_{j} T_{\lambda,j}^{0} b_{j} \right\|_{2}^{2} \leq 2 \sum_{\omega_{j} \leq \omega_{i}} |\langle T_{\lambda,i}^{0} b_{i}, T_{\lambda,j}^{0} b_{j} \rangle|$$

$$\leq C \alpha \sum_{i} \int |b_{i}(x)| dx \leq C \alpha^{2} \sum_{i} |I_{i}| \leq C \alpha ||f||_{1},$$

which concludes the proof of the lemma.

We are now ready to prove Theorem A.

Proof Theorem A. For $\alpha > 0$, we have

$$m\{x: |T_{\lambda}f(x)| > \alpha\} \le m\{x: |S_{\lambda}^1f(x)| > \alpha/2\} + m\{x: |S_{\lambda}^2f(x)| > \alpha/2\}.$$

By Lemma 3 and the well-known boundedness properties of the operators M and H_a , we can find a constant C such that

(27)
$$m\{x: |S_{\lambda}^{2}f(x)| > \alpha/2\} \le C\alpha^{-1}||f||_{1},$$

where C is independent of λ . To obtain a similar estimate for $S^1_{\lambda}f$, we write $f = g + \sum_j b_j$. Let I_j^* be the 4-fold dilates of the I_j and $\Omega = (\bigcup_j I_j^*)^c$. Then we have

(28) $m\{x: |S_{\lambda}^1 g(x)| > \alpha/4\} \le C\alpha^{-2} \|S_{\lambda}^1 g\|_2^2 \le C\alpha^{-2} \|g\|_2^2 \le C\alpha^{-1} \|f\|_1$, where we used the uniform L^2 boundedness of S_{λ}^1 . To finish the proof, it suffices to show that

(29)
$$m\left\{x \in \Omega: \left|S_{\lambda}^{1}\left(\sum_{j}b_{j}\right)(x)\right| > \alpha/4\right\} \leq C\alpha^{-1}\|f\|_{1}.$$

Since $S^1_{\lambda}(\sum_j b_j)(x) = \sum_j (T^0_{\lambda,j}b_j)(x) + \sum_j (T^1_{\lambda,j}b_j)(x)$, for $x \in \Omega$. By Lemma 4, we find

$$m\left\{x \in \Omega: \left|S_{\lambda}^{1}\left(\sum_{j} b_{j}\right)(x)\right| > \alpha/4\right\}$$

$$\leq C\alpha^{-2} \left\|\sum_{j} T_{\lambda,j}^{0} b_{j} + \sum_{j} T_{\lambda,j}^{1} b_{j}\right\|_{2}^{2} \leq C\alpha^{-1} \|f\|_{1}.$$

The proof is now complete. •

Remark. The idea of using an $L^1 \to L^2$ argument to prove weak type bounds for oscillatory integrals was used in [1] and [3]. See also [10].

4. An example

THEOREM C. There exists an odd, C^{∞} function $\phi(t)$, defined for $-1 \le t \le 1$, with $\phi''(t) \ge 0$ for t > 0, such that T_{λ} are not uniformly bounded from L^1 to $L^{1,\infty}$.

To prove Theorem C, we shall use a function which was constructed in [7] by Nagel and Wainger. Let $\{r_n\}$ be a sequence of positive numbers such that $r_1 \leq 1$ and $r_{n+1} \leq r_n/4(n+1)$. Let $B_n = (r_n, nr_n)$ and $B'_n = ((n+1)r_{n+1}, r_n)$. Let h(t) be a C^{∞} function on [-1, 1] such that (i) h is odd; (ii) h(t) > 0 for $t \in \bigcup_{n=1}^{\infty} B'_n$; (iii) h(t) = 0 for $t \in \bigcup_{n=1}^{\infty} B_n$. Define the function ϕ by

(30)
$$\phi(t) = \int_{0}^{t} \int_{0}^{s} h(\tau) d\tau ds.$$

Clearly, $\phi \in C^{\infty}$. Since $\phi''(t) = 0$ for $t \in B_n$, there exist constants σ_n and ζ_n such that $\phi(t) = \sigma_n t + \zeta_n$, for $t \in B_n$. The following estimate can be found in [7].

PROPOSITION 1 ([7], p. 248). There exists a sequence of positive numbers $\{\lambda_n\}$ such that $\lim_{n\to\infty} \lambda_n = \infty$ and

$$\left|\int\limits_{0}^{1}\sin(\lambda_{n}\phi(t)-\sigma_{n}\lambda_{n}t)\,\frac{dt}{t}\right|>(\ln n)/2\,,$$

for n = 1, 2, ...

Proof of Theorem C. Let ϕ be given as in (30). For $\beta \in \mathbb{R}$, let $f_{\beta}(x) = \chi_{[-2,2]}(x)e^{i\beta x}$. Then we have, for $x \in [-1,1]$,

$$T_{\lambda}f_{\beta}(x) = \int\limits_{|x-y| \le 1} \frac{e^{i\lambda\phi(x-y)}}{x-y} f_{\beta}(y) \, dy$$
$$= \int\limits_{-1}^{1} e^{i\lambda\phi(t)} e^{i\beta(x-t)} \, \frac{dt}{t}$$
$$= 2ie^{i\beta x} \int\limits_{0}^{1} \sin(\lambda\phi(t) - \beta t) \, \frac{dt}{t} \, .$$

Let $\beta_n = \lambda_n \sigma_n$. By Proposition 1, we find

$$m\{x: |T_{\lambda_n}f_{\beta_n}(x)| > \ln n\} \ge m([-1,1]) = 2$$

while $||f_{\beta_n}||_1 = 4$. Therefore, (2) cannot hold uniformly in λ .

Remark. It is easy to see that the function ϕ defined in (30) satisfies $\phi^{(k)}(0) = 0$, for $k \geq 0$.

References

- [1] S. Chanillo and M. Christ, Weak (1, 1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141–155.
- S. Chanillo, D. Kurtz and G. Sampson, Weighted weak (1,1) and weighted L^p estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145.
- [3] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36.
- [4] Y. Hu, Oscillatory singular integrals on weighted Hardy spaces, Studia Math. 102 (1992), 145–156.
- Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat. 30 (1992), 311–320.
- [6] A. Nagel, J. Vance, S. Wainger, and D. Weinberg, Hilbert transforms for convex curves, Duke Math. J. 50 (1983), 735-744.
- [7] A. Nagel and S. Wainger, Hilbert transforms associated with plane curves, Trans. Amer. Math. Soc. 223 (1976), 235-252.
- [8] Y. Pau, Uniform estimates for oscillatory integral operators, J. Funct. Anal. 100 (1991), 207-220.
- [9] ---, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64.
- [10] —, Weak (1, 1) estimate for oscillatory singular integrals with real-analytic phases, Proc. Amer. Math. Soc., to appear.
- [11] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals and Radon transforms I, Acta Math. 157 (1986), 99-157.
- [12] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I, J. Funct. Anal. 73 (1987), 179-194.
- [13] P. Sjölin, Convolution with oscillating kernels on H^p spaces, J. London Math. Soc. 23 (1981), 442–454.
- [14] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton 1986, 307–355.
- [15] —, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton 1970.
- [16] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge 1959.

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF PITTSBURGH PITTSBURGH, PENNSYLVANIA 15260 U.S.A.

Received February 18, 1993

(3042)