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Factorization of Montel operators
by

S. DIEROLF (Trier) and P. DOMANSKI (Poznad)

Abstract. Consider the following conditions. {a) Every regular LB-space is complete;
(b) if an operator T between complete LB-spaces maps bounded sets into relatively com-
pact sets, then T factorizes through a Montel LB-space; (¢) for every complete LB-space
E the space C(AN, E'} is bornological. We show that (a)=-(b)}=+(c). Moreover, we show
that if F is Montel, then (¢) holds. An example of an LB-space E with a strictly increasing
transfinite sequence of its Mackey derivaiives is given.

0. Introduction. In Banach space theory there is a famous result [11]
(see also [13] and [15, Theorem 6.3.4]) that every weakly compact operator
between Banach spaces factorizes through a reflexive Banach space. The
idea! of operators mapping bounded sets into relatively (weakly) compact
sets seems to be the proper analogue in the Fréchet setting of the ideal
of (weakly) compact operators in the Banach case. This leads to the fol-
lowing factorization problem: Does every Montel operator (i.e., an operator
mapping bounded sets into relatively compact sets) between Fréchet spaces
factorize through a Fréchet-Montel space? Surprisingly enough, it seems
that not much is known about it as well ag about the dual problem concern-
ing factorization of all Montel maps between (complete) LB-spaces through
a Montel LB-space.

The best result which could be derived {rom the known facts (see Corol-
lary 3.2 below) says that if E is a quasinormable Fréchet space, I is an
arbitrary Fréchet space and 7 : F — F is a Montel map, then T factorizes
through a Fréchet-Schwartz space.
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Since a positive solution to our factorization problem for complete LB-
spaces would imply a positive solution to the Fréchet space counterpart
(Proposition 3.7 below), we concentrate on the first question. We were un-
able to solve it but we discovered a surprising fact: a negative solution to
our problem would solve in the negative the old and honcurable guestion
of Grothendieck [1, p. 78, Probiem 1] of whether every regular LB-space is
complete, while a positive solution would solve in the affirmative a more
recent open problem [20, Ch. IV] of whether C'(fN, E) is bornological for
complete LB-spaces (8N denotes the Cech-Stone compactification of the
natural numbers). In the course of our study, we get plenty of new inlorma-
tien on the structure of compact sets in complete LB-spaces, which in turn
allows us to construct probably the first example of an LB-space F such
that all its Mackey derivatives of countable order are different. We define
the Mackey derivative EY) of E to be the set of all local limits in the com-
pletion E of local Cauchy sequences in F; inductively, we define the Mackey
derivatives of higher orders:

Bt = (BN and BW) = U E for limit ordinals 3.
<]

As a second by-product, we show that if F is a Montel LB-gpace, then
C(SN, E) is bornological.

We hope that the presented results will convince the reader that the
factorization problems (the one mentioned above and their “relatives”) are
essential in the study of Fréchet and LB-spaces.

1. Preliminaries. Let & be an lcs. Then (E) denotes the family of all
compact absolutely convex sets in E. If B is an absolutely convex bounded
set, then Ep denotes lin B equipped with the gauge functional of B as
a norm. By a bornivorous sef, we always mean an absolutely convex set
absorbing all bounded sets. A sequence (z,) in F is called local Clauchy
{locally convergent to z) if there is an absolutely convex closed bounded set
B in E such that (z,) is a Cauchy sequence (resp. is convergent to ) in
Eg. We call a subspace F' C E Mackey closed if it contains all local limits
of sequences in F. By the Mackey completion E of E we define the smallest
Mackey -closed space F contained in the completion of & and containing
E. The space E is called Mackey complete (or sometimes locally complete,
see [1] or [16]) if B = E. It is clear that B = & (see the definition of
E® in the introduction), where 2 denotes the first uncountable ordinal.
By E| and E{ we denote the strong and the inductive dual, resp. The latter

is the dual E' equipped with the bornological topology associated with the
equicontinuous bornology on E’.

icm
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If (By) is a sequence of sets containing 0, we define

ZBj ::{x:HnEN, mEZBj},

JEN i<n
Moreover, if E = indpen En, then S(F) denotes the family of all absolutely
convex sets which are compact in some step spaces of E. A space is called
countable quasibarrelled if every strongly bounded sequence in the dual is
equicontinuous. For the definition and basic properties of coechelon and
echelon spaces, see [16, 30.8], [1]. We will use the notation keo(ain) for the
coechelon space of type co defined by the matrix (ain)inen- LB-spaces are
always assumed to be separated. For other undefined notions from functional
analysis see [16] and [14].

If X is a topological completely regular Hausdorff space, then SK denotes

its Cech-Stone compactification. If A, B are sets, then AZ denotes the family
of all functions f: B — A.

We will need three known results on LB-spaces. The first is due to Mujica
[18] (see also [1, Theorem 3.12]).

TuroreM 1.1. Let E = indnen B, and let B, be Banach spaces. If there
exists o Housdorff locally convez topology 7 on E such that the unit ball in
each Ey is T-compact, then E is complete. In fact, there is a Fréchet space
Y such that B~ Y.

The second result is due to Pfister [19]; it was then improved by Cascales
and Orihuela [9], [10] (see also [21]).

TuroreM 1.2. If E is a DF-space or an LF-space, then every precompact
sel in F 1s metrizable.

Remark. As easily seen, if {A,) is a sequence of absolutely convex
precompact sets in E as above, then Eq ;= lin{A, : n € N} has a weaker
metrizable topology. Indeed, for every n there is a sequence (Uynn)men of
0-neighbourhoods in £ such that (U N Ag)men forms a 0-neighbourhood
basis in A,. The sequence (Umn N Eo)m nen BIVES @ O-neighbourhood basis
for the required metric topology on Eq.

We finish this section by a useful “density condition” result proved im-
plicitly in [2] and [3}:

THEOREM 1.3. Let E = indnen En be an LB-space and let B be a metriz-
able bounded set in E. Then for every sequence (a;) of positive real numbers
there 45 an m € N such that ZjSm a;B; contains a O-neighbourhood in B,
where B, is the unit ball in E,,.

2. Montel operators. In order to study the factorization problem,
we must frst study Montel operators. We call an operator T : E — F
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between lecs a bpc-operator if it maps every bounded set into 2 precampact
set. Obviously, every Montel operator is bpec.

PrROPOSITION 2.1. Let E, F be lcs.

(a) An operator T : E — F is a bpc-operator iff T' maps bounded se-
quénces into precompact ones.

(b) Let F be a countably quasibarrelled space. An operator T : E — F is
a bpc-operator iff T : F) — B is bpe as well.

(c‘).Let F be a metrizable space and let E satisfy one of the Jollowing
F:onclztzons: () E has o fundamental sequence of bounded sets; (i) B =
indnen Bn, where the E, are metrizable spaces; (iii) F = (induey Eu,
where the E,, are metrizable spaces. Then every bpc-operator T : E — F has
u separable range.

Remark. Part (c) almost immediately implies the assertion of The-

orem 1.2, and that proof seems to be more elementary than the original
one [19].

Proof. (a) Obvious.

(b) Let B be an absolutely convex bounded subset in E. If T is a bpe-
operator, then T{B) is precompact in F. This means that

T'lgro - (U°, 0 (F', F)|yo) — E,

is continuous for any O-neighbourhood U in E [14, 8.5.1]. In particular, 7"
maps all equicontinuous sequences into relatively compact ones. By (a), if
F is countably quasibarrelled, then 7" : F. — Ej is a bpc-operator.

i Let .-T: : Iy — B be a bpc-operator. Then as above we show that
T": (By ), — (FL )i, maps equicontinuous sets into relatively compact ones.
Since every bounded set B in E is equicontinuous in (EL),, the set T"(B) C
£ is relatively compact in (F{)], and thus also relatively compact in the
(weaker) topology of uniform convergence on equicontinuous subsets of F/.
The latter topology induces on F the original topology and therefore T ig ba
bpc-operator. |

(c) If F is metrizable and T'(E) is not separable, then there exists a
O-neighbourhood U in F and an uncountable family (#;);cy in F such that
_T(a:i) —T(z;) U ford,j € I, i # 5. We achieve a contradiction by praving
in all cases that (x;):;c; contains an infinite bounded subget. ‘

' This is trivial in case (i). If (ii) is satisfied, then, without loss of gener-
ality, we may assume that (2;);es is contained in some E,. Let (Up) be a
countable O-neighbourhood basis in E,. Then thereis a decreasing sequence

E}i utncountable sets (Im), I, C T, and a sequence of finite constants b, such
a

2; €bplUp  forallic I,

Factorization of Montel operators 19

Now, we find an infinite sequence of pairwise different elements {i,,) such
that 4y, € I;n. Obviously, (%, )mewn is the sequence we are looking for.

If (iii) holds, then for the restriction maps r,, : E — (Ey,)}, we can find a
decreasing sequence of uncountable sets (I,,), I, C I, such that {r,(z;): % €
I,} is bounded in (E,)y. Taking a sequence of pairwise different elements
(in)s tn € L, we find that (z;,)nen is bounded in proj,cn(Eyn)y. As all £,
are quasibarrelled the identity map proj, n(Ex)y, — £ maps bounded sets
into bounded sets.

Now, we list consequences for Montel maps.

COROLLARY 2.2. If either both F and I are Fréchel spaces or both are
LB-spaces, then the range of every Montel operator T': E — F is separable
and submetrizable.

Proof. Separability follows from 2.1(c) and 1.2. If E and F' are LB-
spaces, then the submetrizability follows from the remark after Theorem 1.2.

COROLLARY 2.3. Let F and F be Fréchet spaces ond let T : E — F be
an operator. Then the following assertions are eguivalent:

(a) T is a Montel map;
(b) T': F} — E{ is a Montel map;
(c) T' + F! — E{ is a Montel map.

Proof. By Proposition 2.1(b), it is enough to show (b)<(c). Since the
topology of F! is stronger than that of F, and since F}, and F have the same
bounded sets, we have (¢)=>(b). On the other hand, since every compact set
in E{, is separable and metrizable (Theorem 1.2}, the topology of FE coincides
on these sets with A(E’, E), by [16, 29.3(8)]. This completes the proof.

COROLLARY 2.4. Let E and F be complete LB-spaces and letT 1 E — F
be an operator. Then the following assertions are equivelent:

{a) T" is a Moniel map;
(b) T : F{ — Ey is a Montel map.

3. Factorizable operators. Let us first observe that under some ad-
ditional assumptions Montel operators factorize through Montel spaces of a
suitable type. The first part of 3.1 is due to Grothendieck.

PROPOSITION 3.1. Let E be a quasinormaeble les and let F' be o Banach
space. Then every Montel operator T : E — F is compact and, in particular,
it factorizes through a Fréchei~Schwartz space.

Proof By quasinormability of E, there exists a 0-neighbourhood V' in
E such that for every £ > 0 there exists a bounded subset B of I satisfying
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V C B+eT~"{Br), where Bp is the unit ball in F. Thus (V) C T(B)+eBp
and T(V) is relatively compact in £

Now, since T' is compact, it factorizes through a compact map § between
Banach spaces. By [15, 6.3.10], it follows easily that S factorizes through a
Tréchet—-Schwartz space.

By embedding the space F as a closed subspace in a product of Banach
spaces, we obtain easily:

COROLLARY 3.2. Let B be o guasinormable Fréchet space and let F be
a Fréchet space. Then every Montel map T : E — F factorizes through a
Fréchet-8chwartz space.

COROLLARY 3.3. Let E be an LB-space and let F be a complete LB-

space. Then every Montel operator T': E — F factorizes through a complete
semi-Montel les.

There also exists a Fréchet analogue of Corollary 3.3.

PROPOSITION 3.4. If B, F are Fréchet spaces and T : E — F is a Montel
map, then T factorizes through a semi-Montel space.

Proof. The same reason as in 3.2 allows us to restrict ourselves to
Banach spaces F. For G an Ics, denote by n{G) the topology in &' of
uniform convergence on compact sets in . Now, by Corollary 2.3 and
Proposition 3.1, 7" : F) — EJ is compact and it is continuous as a map
T (F, 1 (F)) - Ej. Thus T : (E}), — F = (F',n(F)). On the
other hand, by Theorem 1.2 and [16, 29.3(8)], every compact set in E| is
also compact in F. Therefore T : F} — E! is compact. Thus 7" extends
to a continuous map Ty : ((E), nc(E{)) — (F.),. Since (EL) is dense in
the domain of 7} and F is closed in (Fy)i,, we have ImTy C F. Every
m(E{}-bounded set in (B!}’ is bounded in (BY), and thus it is also equicon-
tinnous. On equicontinuous sets in (EY)’, the topology m.(E!) coincides with
o((E{), ), and ((B])', n(E!)) is a semi-Montel space. This completes the
proof because T factorizes through 7.

We are interested in a much stronger question if every Montel map be-
tween Fréchet (complete LB-) spaces factorizes through a Fréchet-Montel
(Montel LB-) space. First we reduce the problem a little.

PROPOSITION 3.5. The following assertions are equivalent:

(a) Fuery Montel operator between Fréchet spaces factorizes through a
Fréchet—-Montel space;

(b) Every Montel operator T : E — F, where E is o Fréchet space and
F is a separable Banach space, factorizes through a Fréchet-Montel space.
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Proof It is enough to show (b)=-{a). Let T : E — G be a Montel map,
where I and & are arbitrary Fréchet spaces. By Corollary 2.2, the closure A
of the range of T’ is a separable Fréchet space. Obviously, H can be embedded
in the product of a sequence of separable Banach spaces H,; we define
in i H — H, to be the respective projection. By (b}, the map i, o7 factorizes
through a Fréchet~Montel space Gy, and [[,cyinoT @ B — [Len Ha
factorizes through the space [], ¢y Gnand amap U : [ ey Gn — [en Ha-
Now, T : E — H factorizes through the Fréchet-Montel space U —*(H).

ProrosITION 3.6. The following assertions are equivalent:

(a) Fvery Montel operator T : E — F, where E and F' are LB-spaces,
factorizes through e Montel LB-space.

(b) Bvery Montel operator T': E — F, where E ts a Banach space and
F is an LB-space, factorizes through a Montel LB-space.

A similar equivalence holds whenever we assume in (a) and (b) that F
s a complete LB-space.

Proof. It is enough to show (b)=-(a). Let E = indpen Iy, where the
E,, are Banach spaces. Since Ty, := T'|g, is a Montel operator, it factorizes
through a Montel LB-space H,. Thus @7, : @ E, — F factorizes through
the Montel LB-space D H,,. Obviously, F = @ E,/Y for some closed sub-
space Y of @ E, and T factorizes through @ H,/(PTn)(Y), which is &
Montel LB-space as a quotient of a Montel LB-space (it is complete by The-
orem 1.1, and thus all its bounded sets can be lifted by the Grothendieck
Factorization Theorem).

Now, we explain the relation between the factorization problems for
Fréchet and LB-spaces.

PropPOSITION 3.7. Let E and F be Fréchet spaces and let T : E — F be
an operator. Then the following assertions are eguivalent:

(a) T' factorizes through a Fréchet-Montel space;
(b) T': F{, — EY factorizes through a Montel LB-space;
(¢) T' : F/ — E! factorizes through o Montel LB-space.

Proof We have (a)=-{b)=(c), by Corollary 2.3.

(¢)=>(a). If T' : FY — E! factorizes through a Montel LB-space G, then
T" : (B!, — (F))}, factorizes through the Fréchet-Montel space Gy, and an
operator U : G}, — (F/);,. Obviously, 7"|g = T and T factorizes through
the Fréchet-Montel space U 1(F).

Unfortunately, in the dual situation we only hawve

ProPOSITICN 3.8. If B and F are LB-spaces and T : E — F s an op-
erator factorizing through a Montel LB-space, then T' : F| — Ej factorizes
through o Fréchet-Montel space.
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Remark. We do not know if the converse to the implication in 3.8 holds;
if the factorization problem for LB-spaces has a positive solution, then, by
Corollary 2.4, the solution to the above problem is also in the affirmative.

The above results (Corollary 2.3 and Proposition 3.7) imply immediately
that a positive solution to the factorization problem for complete LB-spaces
gives a positive solution to the corresponding Fréchet space problem. We do
not know if the converse holds as well.

4. Various classes of compact sets. As was explained in the previous
section, in order to solve the “Montel factorization problem” for complete
L.B-spaces or Fréchet spaces it is essential to study absolutely convex com-
pact subsets in LB- or dual-LB-spaces. This is the aim of the present section.

Let us introduce first some definition, We call a subset Ky € E fac-
torizable if there is a K € K(F) containing Ky such that the embedding
ix : Exg — E factorizes through a Montel LB-space. By 3.6 and 3.7, it is
clear that both factorization problems would have positive solutions when-
ever every absolutely convex compact set in a complete LB-space were fac-
torizable. We denote the family of all absolutely convex factorizable subsets
of E by K:(E).

Let £ be any family of closed absclutely convex sets in an LB-space
E. Then we define inductively an increasing transfinite scale of families of
absolutely convex sets. First, L&) denotes the family of all closed absolutely
convex subsets of £ such that there exists a closed bounded set B ¢ F such
that for every £ > 0 there exists L € £ satisfying

KCeBA+ L.
If @ is an arbitrary ordinal number, then
' . pletl) (E(a))(l) ,
and if 4 is a limit ordinal, then
£ .= U L)
a<f

LEMMA 4.1. If L consists of precompact sets, then the same holds for
£, Hence, if E is complete and £ consists of compact sets, then £ also
consists of compact sets.

Proof Obvious.

It is clear from the above definition that whenever £ is closed under
taking closed absolutely convex subsets, then £(Y D £, Similarly, it is easily
seen that the procedure of creating £(*) stops at most at the level £,
where (2 is the first uncountable ordinal. We call a family £ stable whenever
it is closed under taking finite sums and absolutely convex closed subsets.
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For our purpose the scale §(*)( E) will play a central role. For the sake of
convenience we define S((E) := S(E) and S\-V(E) to be the family of all
finite-dimensional absolutely convex compact sets. If E is an LB-space, then
(SEV(E)WD = SONE). By an easy inductive procedure, we can prove:

ProrosiTion 4.2. If E, F are [B-spaces, F is complete and T : E — F
18 an operator, then for every ordinal o,

T(S(E)) € S@(F) and T(Ke(E)) C Ke(F).
We now present the main result:

THEOREM 4.3. Let F be a complete LB-space. For every ordinal c,
S E) consists only of factorizable sets, i.e., S(M(E) C K(F).

The proof is based on the following lemmas.

Levmma 4.4. Let £ be a family of closed absolutely conver compact sets
in an LB-space E. Suppose thot for every K € L there i an increasing
sequence of sets K, € £ for n € N such that K is compact (eguivelently,
precompact) i indpen Ey,, . Then £ C Ki(E).

Proof This is an easy diagonal argument: we define inductively (K;;)
C £ such that K is compact in indj>p Ex,; and

K C Ky C Kps CKp2 C...

Now, if (Ky;) is defined for 4 < I, then we find an increasing sequence
(K15)j=1 such that K q; is (pre-)compact in ind;»; Fx,; and

K15 € Ky ; forg>1.

By the Mujica Theorem 1.1, F := ind;»o Fk,, is a complete space and
every bounded set in it is contained in some multiple of some K; ;. On the
other hand, the construction implies that K;; and K are compact in F.
This completes the proof, since the embedding ix : Ex — E factorizes
through F.

LEMMA 4.5. Let L be a stable family of absolutely convex compuct sets
in an LB-space E. Then the following assertions are equivalent:

(a) K € £,
(b) There ezists a sequence (K,) C L, a vector (a,) in b1 and a closed
absolutely conver bounded set B in E such that

—r—ee————E
KC Z an(BNK,)
nEN

(c) There exists o sequence (K,) C L, a vector (a,) in i and o closed
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absolutely conver bounded set B in E such thal

————F
KCY an(BNKn) ;
neN

(d) There exists a set O € L) such that for every e > 0 there is a set
K. € L satisfying

KCeCH+ K.
Proof. (a)=(b). Assume that
K< ()1/2YB+ K,
negR
for some closed absolutely convex hounded set B in F and K, € £. Then
every x € K splits as
T=Zn+Yn, Un€(1/2")B, z,€K,.

Putting zq := 0, Ky := {0} we obtain

n
mmZ(mj ~Zi—1) =Y — 0 InEpasn— co.
i=1
On the other hand,
T;—Tj1 € (I{j +Kj_1) ﬂ(l/gj +1/2j“1)B,
and this completes the proof for a; := 1/2f + 1/27-1,
{b)=(c}). Obvious.
(¢)=+(d). Let (K,) C £ and (a,) € I, satisfy

—_— i [
KCY an(BNK,)
neElN

for some closed absolutely convex bounded set B. Let (b,) € 1 be chosen in
such a way that 0 < b, < 1for n € N and a, /by, — 0 a5 n — co. We define

P
Ci=> b, (BNK,)
nEr
For each £ > 0 there is an n, € N such that Zn:mc b, < &; hence (since K,
are compact in E)

Te & g
CCY bu(BNKy)+eB CY by(BNK,)+eB

n=1 ) n==],
and C € L), Moreover, for every € > 0 there exists m. € N such that

o fbn <& formn>me.
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Thus, since the K,; are compact in K,

KT (BN Kn)E C > an(BOKL)+ Y (an/bn)ba(B N Kn)

neRl n&me n>me

B

and the second summand on the right hand side is contained in eC.
(d)=+(a). Obvious.

LEMMA 4.6. If £ is a family of closed absolutely conver compact sels in
a complete LB-space E satisfying the assumptions of Lemma 4.4, then L)
also satisfles the same assumptions and, in particular, LN € Ke(E).

Proof. Let K € £, Then, by 4.5, there exists C € £}) such that
K C ({120 +Ka),
neM
where K, € £ for n € N. By the assumption and using a diagonal process,
we can find a sequence {L,} in £ such that, for every n € N, K, is compact
in indpen Er,. We will show that K is precompact in indpewn B¢, , where
Cpi=C+L, LW,
Let {a;) be any sequence of positive numbers. Choose 77 € N such that
1/2% < 3 sen @;- Then
: KC(/2nW+ K,
and, by compactness of K, in indnen Er,,, there is a finite set A C Ky such
that
Kn (; A +Zﬂ,ij .
JEN
Consequently,
KCA+Y a0+ al; CA+Y a0y
jeN JEN JEN

Since F is complete, Cp is compact and, by Theorem 1.1, ind,en Ec, is
complete. Therefore, K is compact.

The last lemma implies immediately:

COROLLARY 4.7. If E is a complete LB-space, then Kﬁl)(E) = Ko (E).

Proof of Theorem 4.3. By Lemma 4.6, it is enough to observe that
for every K € SI"U(E), the map iy : Ex — E factorizes through a finite-
dimensional Banach (Montel!} space.

Summarizing, for all compiete LB-spaces F we have
SEVE)CSEYSSIEYC ... .
c 8ti(m) c St (EYC ... C SYWI(E) CKi(E) C K(E).
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The factorization problem for complete LB-spaces is equivalent to the ques-
tion of whether

Ke(E) = K(E)
always holds. The authors do not know if

SYN(E) = K(E) or even SUNE) = Ki(B).

We will show in the next section that all the other inclusions can be strict.

5. Examples. The first result contains the most important example.

"THEOREM 5.1. For every countable ordinal o there is a Montel coechelon
LB-space E, of type oo such that every absolutely convex compact set in E,,
belongs to S(“H)(EQ)A Moreover, let B v= {(z) : |zn| < 1}; then every
bounded set C such that C+aB 2 B for some a < 1. satisfies G & S(”‘)(E)

COROLLARY 5.2. For every countable ordinal o there is a Montel LB-
space Fyy such that K(Fy) C 8 (F,) but K(F,) € SUNE,) for any f < a.

Proof For successors o the result follows directly from Theorem 5.1.
Now, let o be a limit ordinal and let o; " o. We define F,, := Dicn Ea.s
where the E,, are defined according to Theorem 5.1.

COROLLARY 5.3. There exists o complete LB-space E such that for every

countable ordinal «, there exists an absolutely convexr compact set O, in F
such that Cy, & SYN(E) but ¢, € S (E).

Remark. Obviously, it is impossible to find a Montel LB-space with
such properties.

Proof. Dencte by FEyp,o the nth step in the space F, constructed in
Theorem 5.1. Now, we define a Banach space E,, to be the Iy direct gum

En = ( @ En,::v)
a<f? R

and set E = indpen Ey. The required property of £ follows from the fact
that E contains all E, as complemented subspaces (use Proposition 4.2).

Proof of Theorem5.1. Set E_; := s/, where s is the space of rapidly
decreasing sequences. Then F_, satisfies the corresponding condition for
the family & F”(E) of finite-dimensional compact sets. Indeed, by the Riesz
Lemma [12, Lemma, p. 2], forany o < 1 and any finite-dimensional subspace
¥ in I, there exists a vector z in the unit ball of leo such that d(¥,z) > a
but all compact sets are in S0,

Now, let o] = o if o is nonlimit, and let (os) be a strictly increasing
sequence of nonlimit ordinals with o A o if o is a limit ordinal. Let

Eo, = hoo(al)),
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and define a coechelon space F = koo(ai;,) of donble sequences by

i™™ fori>mn,
a"’:j:'n' =

Q] ;
a5 for i < n.

Asgsume that
CC)bBy+Ks,
b>0
where K € SBE) for some fixed 8 < o and B, is the unit ball in the pth
step space of E. In particular, for b= zr?(1—a), 7 > p, ar 2 3, we have
BCaB+bB,+Ky.
Let P: E — E,_ be the projection, P({z;}) = (£+;). Then
P(B) C cP(B} + P(K3)

where ¢ = a + (1 — a)/2 < 1. Since P(B) is of the form B but in Eg,, it
follows by the inductive hypothesis that P(K) is not of the form & (e} By );
a. contradiction by Proposition 4.2. .

Moreover, By C (1/n)Bpy1+ Ky, where K, is a bounded set in @_ign Ea,
and, by the inductive hypothesis, compact of type Sle,

Remarks. (a) It is clear from the proof that Ej is the dual of the.\. famous
example of a Montel non-Schwartz Fréchet space due to Grothendieck and
Kéthe [16, 31.5]. _ ‘

(b) All absolutely convex compact sets in Moscatelli type LB—s-pa?,ces
are of type S but modifying the Moscatelli construction {for the original
construction see [6], [17], and also [5]) we can also obtain examples of the
type given in Theorem 5.1. .

(¢} The authors have recently proved that K = & () always holds in
coechelon spaces of type oo [22].

6. Relation to the classical problems. The aim of this section is to
show the following main result:

THEOREM 6.1. (a) Let E be an LB-spuce (equivalently, o Bgnach space)
and let F be a complete LB-space, F = indpen Fp. If there exists o Montel
operator T+ E — F which does not factorize through o Montel LB—quce,
then the Mackey completion of indnen C(BN, Fy) is o Mackey complete (i.e.,
regular) moncomplete LB-space. ,

(b) Let F be a complete LB-space. If for every LB—space (equivalently,
Banach space) E, every Montel map T’ :gE — F foctorizes through a Montel

-space, then C(BN, F) is bornological. _

b (Scz; There em’sgif an l)fB—space E = indyen By su_ch that the space G =
ind,en C(BN, En) has o strictly increasing transfinite sequence of Mackey
derivatives G of countable order. : :
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Remarks. (a) It is an open problem posed by Grothendieck [1] if every
regular LF-space (or LB-space) is necessarily complete.

(b) The problem of under what conditions (K, F) is bornological for a
completely regular Hausdorff topological space K and an LB-space F was
studied in {4}, [7], [8] and [20]. Up to now the problem remains open even
for simple compact spaces K like SN or the Alexandrov compactification of
the natural numbers (i.e., for ¢o(F)). The solution has been known only for
compactly regular LB-spaces F' (i.e., when K(F) = S@(F). As we know
from the previous section, this case is far from being general. The proof
below implies a positive solution for K = AN and complete LB-spaces F
satisfying S(P(F) = K(F). Quite recently L. Frerick and S. Dieralf solved
the problem for Montel DF-spaces F. For some new surprising connections
to other problems see [23].

(c) It seems that up to now, no example has been known of an L.B-space
G for which G'*) is not Mackey complete (as is the case in Theorem 6.1(c)).

(d) In Theorem 6.1 we can substitute N by 8I for any infinite discrete
set .

(e) If F is a Fréchet space, then the space M(F, C(K)) of Montel oper-
ators with the strong topology (K is an arbitrary compact set) is topologi-
cally isomorphic to C'(K, F}). Unfortunately, this observation does not help
in proving Theorem 6.1{b).

Before we start the proof we first define, for K compact and E an LB-
space,

Ci(K,E) = {f: K — E continuous : f(K) is factorizable}
and we equip this space with the uniform topology induced from C(K, E).

‘THEOREM 6.2. For every infinite discrete set T and any LB-space E, the
space Ce(BI, E) is bornological.

COROLLARY 6.3 (cf. [3, L5(b)(2)]). For every infinite discrete set I and
every Montel LB-space E, the space C(8I,E) is bornological.

Remark. By Theorem 6.2 and the remark (b) after the proof of
Theorem 5.1, the space ({3, E) is bornological for every LB-space F of
Moscatelli type.

Proof of Theorem 6.2, Let 7 be an arbitrary bornivorous set in
C¢(BI, E). For some sequence of positive numbers (ar) we have

U2 (anB N Ce(BIE)) = U,
) ) neN
where B, is the unit ball in the Banach space B, E = indpen F,,. We will
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show that Uy containg the (-neighbourhood

Vo= (Z(an/Z)Bn)ﬁI N GBI, E).

neN

Let f € V. By the definition of C;(8I, E), there exists an increasing
sequence of compact absolutely convex sets (K,) in E such that

(i) Kn C By;

(ii} F' = indpen Ex,, is a Moniel space;

(ii1) absconv f(BI) is relatively compact in F.
In particular, by (iii), f € C(8I,F). Since f(8I) is compact in F, by The-
orems 1.2 and 1.3, there exists a finite set 4 C f{BI) and m € N such
that

nsm
Thus for any i € I we find a(i) € A and b,(4) € (ar/2)K,, for n < m such
that

Fliy=a@)+ Y bali).

n<m

Moreover, A © f(B8I) C 3 ,en(@n/2)Bn, and because A is finite, there exists
I € N such that

AC Z(an/Q)Bn .

n<l
Thus, there are functions ¢, : T — (a,/2)B, of finite range such that
ai) =Y cali).
n<l
Extending ¢, for n < I and b, for n < m continuously to 81 we obtain
FEY =" cnld)+ Y bald)
n<l nsm
for all i € 51 and
cnt BT — (an/2)Bn,  bn: BT — (an/2)K, .
Since the ¢, have finite range and K, are factorizable sets, we conclude that
en, b € Cy(AI,E). Finally, f € Up.

Let £ be a family of absolutely convex compact subsets in an LB-space
E. Let K be a compact space. Then we define

G.C(Ka E) = {f € G(K,E) : EI-K-O € JC: f(K) c KO}
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THEOREM 6.4, Let E be a complete LB-space. With the above assump-
tons,

Co(K, BYY € Oy (K, E).
If K = I for some infinite discrete set I, then the converse inclusion holds
as well.

By Corollary 4.7, we get immediately

COROLLARY 6.5. For every compact set K and every complete LB-space
E, C¢(K,E) is Mackey complete.

Proof of Theorem6.4. Let f € Cp(K,E)Y C C(K, E). Then there
exists a bounded absolutely convex set B in E such that for every a > 0,
(f+a(B¥NC(K,E))NCe(K, By #0.

Thus for every a we find f, € Cz(K, E) such that f — f, € aB¥ NC(K, E)
and f(K) C f.(K) 4+ aB. Since f, € Cp(K,E), it is obvious that f €
Cﬁ(l) (K, E)

Now, let f € Cry(8I,E). Then, by 4.5, there exists a compact set
Ky € £Y and K, € £ such that

F(81) () (ako + ).

a>0

For every i € I there exist g,.(i) € aKp and (i) € K, such that f(i) =
galt) + ha(2). We can extend hoth functions continuously to g, : 57 — Ky
and hg : B — K, such that

F@) = g (8) + ho(i) fori e 8I.

Moreover, go € olK5' N C(BI, E)) =: oL, and h, € Cr(BI, E). Hence
he — fin {Cz(BI,E));, as a — 0, i.e,, h, tends to f locally since L is a
closed ahsolutely convex bounded set in C(81, E).

LEMMA 6.6. For every infinite discrete set I and every compact sel K in
an LB-space E there is an f € C(BI, E) such that f(BI) = K.

Proof Obvious, by Theorem 1.2.
Proof of Theorem 6.1. (a) Obviously,
ind C(ON, ) = Cs (6N, F).

By Theorem 6.4, the Mackey completion of ind,ey C(8N, F,) is equal to
Csiay (BN, F). On the other hand, by Theorem 4.3,

Cgion (BN, F} C Cy(BN, .
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By Lemma 6.6 and Proposition 3.6, if there exists a nonfactorizable Montel
map T : FF — F for some LB-space E, then

Cr(BN, F} # C(BN, F}.

This completes the proof, since C{AN, F) iz the completion of the space
indnen C(AN, F,) 20, 1.7.2].

(b} If the assumptions are satisfled, then, by Proposition 3.6, C¢(8N, F)
= C(pN, F}. By Theorem 6.2, C(AN, F) is bornological.

(c) Let us take for E the LB-space constructed in Theorem 5.1. Then
Lemma 6.6 and Theorem 6.4 imply that F is the example we are looking
for.

Added in proof. After the paper was submitted the authors solved in the affirmative
the Montel factorization problem for eperators with the domain being a Fréchet Kéthe
space of type 1 [22)].
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Integrability theorems for trigonometric series
by

BRUCE AUBERTIN and JOHN J.F. FOURNIER (Vancouver, B.C.)

Abstract. We show that, if the coeficients (a» ) in a series ap/2 + Y one 1 n COS(RE)
tend to 0 as n — oo and satisty the regularity condition that

20 oo 1271 24 1/2

Z{z{ > !an—a-n+1l] } < o0,

m=0 ~j=1" n=jam

then the cosine series represents an integrable function on the interval [—=,n]. We also
show that, if the coeflicients (bn) in a series 3,y bnsin(nt) tend to 0 and satisfy the
corresponding regularity condition, then the sine series represents an integrable function
on [—m, 7] if and only i 3752 |ba|/n < co. These conclusions were previously known
to hold under stronger restrictions on the sizes of the differences Aan = an — dny1 and
Abp = bp — bpt1. We were led to the mixed-norm conditions that we use here by our
recent discovery that the same combination of conditions implies the integrability of Walsh
series with coeflicients {en) tending to 0.

We also show here that this condition on the differences implies that the cosine series
converges in L'-norm if and only if a, logn —~ 0 as n — oo. The corresponding statement
also holds for sine series for which 3757, |bnl/n < oo. If either type of series is assumed
a priori to represent an integrable function, then weaker regularity conditions suffice for
the validity of this criterion for norm convergence.

1. Introduction. We outline one proof of the integrability results in
this section, and comment further on that proof in Section 2. We present
another proof of the integrability results in Sections 5 and 6. We also state
two theorems about Li-norm convergence in Section 1, and show in Section
3 how these statements follow from the integrability results. We begin this
section by recalling some earlier work on these questions, and we say more
in Sections 4 and 5 about how our results compare with other work.

About eighty years ago, W. H. Young [36] related integrability of series
to properties of differences of coefficients by showing that if the coefficients
in a cosine series tend to 0 and form a convex sequence, then the series
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