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Closed range multipliers and generalized inverses
by

K. B. LAURSEN (Kgbenhavn) and M. MBEKHTA (Villeneuve d’Ascq)

Abstract. Conditions involving closed range of multipliers on general Banach algebras
are studied. Numerous conditions equivalent to a splitting A = T A@®ker T are listed, for a
multiplier T' defined on the Banach algebra A. For instance, it is shown that TA@ker T' = A4
if and only if there is a commuting operator S for which T = T'ST and S = ST'S, that this
is the case if and only if such 5 may be taken to be a multiplier, and that these conditions
are also equivalent to the existence of a factorization T = PB, where P is an idempotent
and B an invertible multiplier. The latter condition establishes a conneciion to a famous
problem of harmonic analysis.

Introduction. In the study of muitipliers on, say, commutative semi-
simple Banach algebras, in particular in attempting to characterize circum-
stances under which a multiplier will have closed range, a factorization of
the given multiplier as the product of an idempotent and an invertible has
kept showing up as a plausible companion—certainly a sufficient, and possi-
bly equivalent, condition for closed range. In some spectacular special cases,
namely the group algebras L1(G) when G is a locally compact abelian group,
this equivalence does hold, as was shown by Host and Parreau in 1978. This
note takes steps to uncover the precise relationship between the two. We
do this by dealing with the issue in somewhat greater generality, and by
relating it to the concept of generalized inverse.

Commutativity keeps looming in the present approach, though, and as a
consequence the resulting conditions are slightly stronger than those men-
tioned before. It turng out that for an arbitrary centinuous linear operator
T on a Banach space X there is a factorization T = PB, where P’ and
B commute, and where B is invertible and P idempotent, precisely when
X = TX & ker T. Moreover, when X decomposes in this way, TX is nec-
essarily closed. The realization that these conditions also are connected to
the existence of a commuting generalized inverse then becomes our starting
point.
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When these general equivalences are considered for multipliers, a number
of other conditions appear, more of them as we narrow the class of algebras.
To single out two sample results, it is shown, in Theorem 10, that a multiplier
T on a semisimple Banach algebra 4 has a decomposition A = TA @ ker T
precisely when 0 is isolated from the possibly punctured spectrum a(TW{0};
and in Theorem 13 it is shown that if 4 is a C*-algebra then the range T4
of a multiplier T is closed if and only if TAQ ker T = A.

The organization of the material presented here is simple: we move from
the general to the particular. Concepts are introduced formally as they are
needed.

General linear operators. Let X be a Banach space and let B(X)
denote the Banach algebra of all bounded linear operators of X into itself,
equipped with the usual operator norm. For 7 € B(X), TX and ker T will
denote the range and kernel, respectively, of 7.

Much of what follows here is based on the following, essentially a con-
sequence of the open mapping theorem, These facts may well be known to
many, but a written source has eluded us, so we include a proof.

LEMMA 1. Let T € B(X) and suppose that TX Nker T = {0} and that
TX +kerT is closed. Then T™X is closed for every n € N,

Proof. We begin by showing that TX is closed in the given norm. In
this norm the space Xy := TX @ ker T is a Banach space, by assumption.
Moreover, it is routine to see that T7X is a Banach space, when equipped
with the norm

Tule=lul = _jaf o]
Moreover, since ||ul < ju] for any v € T°X, the injection TX — X is
continuous. '

Define J: TX x ker T — Xo by J(u,v) :=u+v. Then J is a continuous
bijection, so by the open mapping theorem, J is bicontinuous, hence TX =
J(TX x {0}) is closed in Xy, and hence also in X. :

Thus T has closed range. Since ket T N TX = {0}, kerT% = ker 7" and
thus ker 7™ = ker T for all n € N. We can now complete the proof by an
inductive argument: if 7 has closed range for some n € N, then, because
TX @kerT = TX & ker T™ is closed by assumption, 771X = T%(TX &
ker T) = IT™(TX @ ker ™) is closed, by [Kato, Lemmma 331].

There is an elementary converse: if 72X is closed then T'X + kerT is
closed. Note that no assumption of direct sum is needed. In fact, if T2X is
closed, suppose Tz, + 2, — b, where z,, is in ker T". Then T2z, — Tb, so by
assumption there is a ¢ € X for which Th = T?¢. Since z 1= b — T'c € ker T,
b=Tc+z€TX +kerT. :
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As it happens these observations constitute most of the proof of the
following extension to general linear operators of [Alena~Laursen, Theo-
rem 3.1].

COROLLARY. Suppose T € B(X) satisfies TX Nker T = {0}. Then the
following conditions are equivalent.

(a} TX +ker T is norm-closed,

(b) T"X is closed for all n € N.

(c) T%X is closed.

(d) The induced map T X/ ker T — X/ker T has closed range.

Proof. Only the equivalence (a)<>(d) remains: as in [Ajena—Laursen],
let @: X — X/kerT be the quotient map. Then 77(X/kerT') = Q(T X +
ker T), hence Q@ (T (X/ker 7)) = TX 4+ ker T, so T (X/ ker T) is closed if
and only if the same holds for TX + ker T".

We shall say that T € B(X) has a generolized inverse, and write that T
has a g-inverse, or that T is g-inuvertible, if there is an operator S € B(X)
for which

T=T8T and S = 5TS.

Remarlk 2. (a) There is no gain of generality in requiring only that
T = T8T, because then §' = STS will satisfy T = TS'T, as well as
S =98,

(b) If T'= TST and § = ST5 then T'S and ST are idempotents for
which TSX =TX and kerT = ker ST

(c) Tt is easy to see that a g-inverse rarely is uniquely determined: if
T is g-invertible and T = T'8T, then S can be “anything” on ker 7. But
there is at most one g-inverse which commutes with the given 7' € B(X)
[Harte-Mbekhta, Theorem 9]. In fact, if S and S’ are g-inverses of T°, both
commuting with T, then 78" = T5TS = STS'T = 87T, and hence §' =
S'TS = 5T =5T5=25.

TarorEM 3. If X is o Banach space and T' € B(X), then the following
statemnents are equivalent.

(a) T has a commuling g-inverse.

L)Y TX pkerT = X.

(¢) T = PB = BP, where B € B(X) is invertible and P € B(X) is
idempotent.

(d) T'=TCT, where C € B(X) is invertible and TC = CT.

Proof. Suppose (a) holds. Let S be a g-inverse of T' for which T'S = Sﬂj‘.
Then the identity I =TS+ (I —T8) =TS+ (I - 5T), where I is the unit
of B(X), together with Remark 2(b) show that (b) holds.
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Assume (b). By Lemma 1, TX is closed. Moreover, since 72X = T(TX)
=T(TX @kerT) = TX and ket T N TX = {0}, it follows that T'|TX is
invertible. Define B := (T|T'X) & Jier . Clearly B is invertible. If we let P
be the projection of X onto T'X with ker P = ker 7', then T" = PB = BP.
This proves (c).

If (¢) holds then (d) follows with C = B~! by straightforward calcula-
tien.

If (d) holds then § := C?T is a commuting g-inverse of T".

The property “T" = TCT, where C' € B(X) is invertible” of (d) above is
called decomposably regular in [Harte-Mbekhtal.

Remark 4. The condition (b) of Theorem 3 is equivalent to the condi-
tion “0 € C is a pole of the resolvent (7 — A)~! of order 0 or 17 as well as to
the condition “T2X = TX and ker T = kerT?” [Heuser, Propositions 38.4
and 50.2]. Thig latter condition is also described by the phrase “T" has de-
scent and ascent both equal to 17. Recall that T is said to have descent n if
n is the smallest integer for which 77X = 7" X and to have ascentn if n
is the smallest integer for which ker T = ker 771,

Multipliers. We now specialize to multipliers on Banach algebras. We
shall let A denote a Banach algebra and assume throughout that A is without
order. This means that only the zero-element annihilates the whole algebra,
ie. that if aA = {0} or Aa = {0}, then a = 0. Just the basics of the
theory of multipliers defined on a Banach algebra without order will be
needed here, as described in e.g. [Larsen, 1.1]. To recapitulate briefly, a map
T : A— Aiscalled a multiplierif z(T'y) = (Tz)y for all 7,y € A. Because A
is without order, any multiplier turns out to be norm-continuous and linear;
the identities x(Ty) = T{zy) and (Ty)z = T(yz) hold for any x,y & A,
so that the set M(A) of multipliers may be described as the commutant
in B(A) of all operators of multiplication (on the right or on the left} by
the elements of the algebra A. The set M (A4) is a norm-closed commutative
subalgebra of B(A).

Note also that since (Ty) = T(zy) and (Ty)z = T{yz) for any r,y € A,
both the range TA and the kernel ker T are two-sided ideals of A.

If A is a Banach algebra without order and 7° is a multiplier on A, then
there is at most one g-inverse in M(A) of T; this follows from the commu-
tativity of M(A) and Remark 2(c). We shall see shortly, in Theorem 5, that
T € M(A) has a commuting g-inverse at all, this will necessarily be a
multiplier. This corresponds to the fact that if a multiplier has an inverse
(as a linear operator), then this inverse is necessarily a multiplier [Larsen,
Theorem 1.1.3].

The next result develops [Harte-Mbekhta, Theorem 9], which proves the
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implications (1)« (v) and (ij¢>(viii). It is also a partial extension of [Aiena—
Laursen, Theorem 4.2].

THEOREM 5. Let A be o Banach algebra without order. Let T € M(A).
Then the following conditions are eguivalent.

(i) T has a commuting g-inverse.
ii) T has a g-inverse S € B(A) for which TS € M(A).
{ili) T has o g-inverse S € B(A) for which T'S commutes with T.
(iv) T has a g-inverse S € M(A).
vITA@ kerT = A.
(vi) T?A=TA and ker T? = ker 7.
(vii) T = PB = BP, where B € M({A) is invertible and P & M(A) is
idempotent.
(vili) T is decomposably regular in M(A), i.e. T = TCT, where C is an
wnwertible multiplier.

Proof. (i)=(ii). Let S be a commuting g-inverse of T and let P :=
TS. Then, by Remark 2(b), P is an idempotent for which PA = TA and
kerT = ker P, ie. both kernel and range of P are two-sided ideals. This
implies that F is a multiplier, because if z = Pz + (I — Pz then zPy =
PxPy+ (I — P)zPy, and since {I — P)zPy € ker P PA = {0}, it follows
that zPy = PxPy. Similarly, (Pz)y = PzPy, hence (Pz)y = =Py for any
T,y € A.

(il)=-(iii). Trivial because M(A) is a commutative algebra.

(iii)={v). We know that if P := TS then PA=TA.Ifz € A then Ta =
Pz, for suitable z € A, hence if Pa = 0 then Te = P%2 = PTz = TPx =0,
and soker P C ker T'. It follows that A = TA+kerT.If z € TANkerT then
& = 0 provided we show that zTA = zker T = {0}. But 2T 4 = Tz A = {0},
so only 2 kerT = {0} remains; and if x = Tz € TA, while y € kerT, then
oy = (T2)y == z(Ty) = 0. This yields {v).

(v}es(vi). This was noted in Remark 4.

Note that by Theorem 3 we now have the equivalence of (i), (ii), (iii),
(v}, and (vi).

(v)y=»(vii). If we assume (v) (and hence also (vi)) then the projection
P: A — Awith PA=TA and ker P = kerT is a multiplier, by (ii}.
Consequently, B 1= T+ I — P € M(A). Note that B is the same operator
as the operator B described in the proof of Theorem 3, (b)=-(c), and hence
the present B is invertible. Since T'= BP = PB, (vii) follows.

(vii)=>(iv). Let § := PB~%.

(iv)=(v). Since M(A) is commutative, this follows from Theorem 3,
(a)=(Db). : S

(vii)=(viii). If T = PB = BP, where B € M(A) is invertible and
P € M(A) is idempotent, then TB™'T = PBB™'T = PT =T.
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(viii)=>(i). If T = T'CT, where C is an invertible multiplier, then § :=
CTC € M(A) is a commuting g-inverse of 1.
This completes the proof of Theorem 5.

Semiprime and semisimple algebras. An algebra A is said to be
semiprime if {0} is the only two-sided ideal J for which J? = {0} [Bonsall-
Duncan, Definition TV.30.3]. Alternatively, as is casily seen, A is semiprime
if and only if ada = {0} implies that ¢ = 0. It is then straightforward to
see that a semiprime algebra is without order. We shall need one fact about
multipliers on semiprime algebras, related to Remark 4, namely that they
have ascent < 1, Le. that ker T2 = ker T: if T?z = 0, then (T'z)a(Tz) =
T(zT(ax)) = T?(zaz) = (T?z)az = 0, for any a € A, hence Tz = 0.

THEOREM 6. Let A be a semiprime Banach algebra. Let T € M{4).
Then the following conditions are equivalent with the conditions mentioned
tn Theorem b.

(ix}) TPA=TA, ie. T has descent < 1.
(x} T has finite descent.

Proof. Since A is semiprime T has ascent < 1, and so the equivalence
of the two conditions listed here is a general fact [Heuser, §38].

(v)=(ix). This was noted in proving the implication (b)=s(c} of Theo-
rem 3.

(ix)=>{v). This is a consequence of Remark 4.

COROLLARY 7. Let A be o semiprime Boanach algebra. Let T € M(A).
Any of the conditions of Theorem 5 entals that dist(0, o(T)\{0}) > 0.

Proof Obviously only the case 0 € ¢(T") need concern us. From The-
orem 5{(v) and Remark 4 we conclude that 0 € C is a pole of (T'— A)~! of
order 1. The corollary is immediate from this. We can also argue directly:
the operator T'— A is invertible if and only if (7' — A)|T'A and (T — )| ker T’
both are invertible. The corollary then follows since T'|T" A is invertible, while
o(T|ker T = {0}.

COROLLARY 8. Let A be a semiprime Banach algebra. Let T € M(A). If
T2A =TA then TA is closed.

Proof. Combine Theorems 5 and 6 with Lemma 1.

The converse is false (cf. Remark 12). However, there are circumstances

in which a converse does hold, e.g. if 4 is a C*-algebra, as Theorem 13
below shows. Also, [Host—Parreau, Théor&éme 1] shows that if A is the usual
convolution group algebra L'(G) of a locally compact abelian group @, then
a multiplier with closed range will be the product of an idempotent and an
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invertible, i.e. satisfy condition (vii) of Theorem 5. Other situations in which
a converse holds are described in [Aiena—Taursen, Coroliary 4.9].

Recall that a Banach algebra is semisimple if the kernels of all irre-
ducible representations have trivial intersection [Bonsall-Duncan, Defini-
tion II1.24.13]. Any C*-algebra is semisimple (cf. e.g. [Rickart, Theorem
(4.1.19)]). Semisimple Banach algebras are semiprime [Bonsall-Duncan,
Proposition IV.30.5], and the two classes are distinct, even within the cate-
gory of commutative algebras: any commutative algebra which is an integral
domain will be semiprime; thus for instance weighted convolution algebras
LY(R4,w), where the weight w is chosen so that w(t)'/* — 0, as t — oo,
in corder to make the algebra radical, will be semiprime, but not semisim-
ple. About multipliers on semisimple Banach algebras we need to note the
following.

LemMMa 9. Let A be a semisimple Banach algebra. If T € M(A) 1s
nonzero then T' is not quasi-nilpotent,

Proof. Suppose |[T™]/" — 0 as n — co. To show that T = 0 it
suffices to show that ||(aTz)”||Y™ = ||(T(az))}*||"/® — 0 as n — oo, for
every a,z € 4, as this would place T'z in the radical of A [Bonsall-Duncan,
Proposition IT1.25.1], hence show that Tz = 0, for any x € A. By an easy
inductive argument (Ty)" = (T"y)y""! for every n € N and every y € A,
and hence it follows that

(aTa)™ |1 = |T"(az)(az)"~ | V™ < IT™|"az] -
This proves the lernma.

The next result shows strong analogies to the sitnation for normal opera-
tors on Hilbert space. It is well known that a normal operator N on a Hilbert
space H has a nontrivial Riesz decomposition of the form H = ket NG NH
if and only if 0 is an isolated eigenvalue of N.

TurorEM 10. Let A be a semisimple Banach algebra with multiplier
algebra M(A) and let T € M(A). Then the conditions of Theorerns b and 6
are equivalent to

(xi) dist(0, o(TI\{0}) > 0.

Proof. If dist(0, c(T)\{0}) is positive, and if 0 € o(T), then by Re-
mark 4 we must show that 0 is a pole of (T — X\}™* of order 1, i.e. show
that when the Riesz functional calculus provides us with closed T-invariant
subspaces M and N for which A = M &N and 0 ¢ ¢(T|M), while o(T|N) =
{0}, then TN = {0}. Clearly M C T'A and kerT' C N. It remains to see
that N C kerT. Since T'|N is a quasi-nilpotent multiplier, it follows from
Lemma 9 that the proof will be complete once the semisimplicity of N
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has been noted; and this is standard (cf. e.g. [Bonsall-Duncan, Corollary
II1.24.20]).

COROLLARY 11. Let A be o semisimple Banach algebra. Let T € M(A).
If dist (0, o (T)\{0}) > 0 then TA is closed.

Proof. By Theorem 10, TA = 7% A. Now apply Coroliary 8.

Remark 12. Consider the disc algebra A := A(D) of complex-valued
functions, defined and continuous on the closed unit dise I, analytic in its
interior, and let T, be the multiplication operator defined by (7, f)(¢) =
Cf((), for every f e A(D) and every ¢ € D. Then T, € M(A),

T A={fe Al f(0)=0}
and

TPA={feA|f0)=F(0)=0}.

Both T, A and T2A are closed, but obviously distinct. This shows that the
converse of Corollary 8 does not hold. Since 0 € o(T%), but is nonisolated,
this example also shows that the converse of Corollary 11 is not true, either.

We can also see that condition (v) of Theorem 5 cannot be relaxed to
that of Lemma 1, i.e. to the requirement that TA @ ker T be closed: since
ker T, == {0}, T, A@ker T, is closed, but none of the conditions of Theorem 5
holds for 7. This observation contrasts with [Aiena-Laursen, Theorem 4.2],

There are other important cases in which converses do hold, namely if 4
is a C*-algebra. An argument which was also employed in proving [Aiena—
Laursen, Proposition 3.3] will establish the following. This result contains
an analog of [Harte-Mbekhta, Theorem 8].

THEOREM 13. Let A be a C*-algebra and let T € M(A). Then the fol-
lowing statements are equivalent to (1)-(x) of Theorems 5, 6 and 10.

(xii} T A 1s closed.

(xili) TA@ ker T is closed.

Proof. (xiii)=-{xii). This is Lemma 1.

(xil)=(ix). Since T'A is a closed two-sided ideal in a C*-algebra, T'4 has
a bounded approximate identity, hence, by Cohen’s factorization theorem,
TA = (TA)® But T is a multiplier, so TaTh = T?(ab). Consequently,
TA=TA.

Since the implication (v)=>(xiii) is trivial, the proof is complete.

COROLLARY 14. A multiplier T with closed range on a C*-algebra A is
infective if and only if it is surjective.
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