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A partial differential operator which is surjective
on Gevrey classes M(R*) with 1 <d<2and d> 6
but not for 2< d <6

by

RUDIGER W. BRAUN (Disseldorf)

Abstract. It is shown that the partial differential operator P(D) = 41824 —0% oy +
i870% « THR¥) — FHRY) is surjective if 1 < d < 2 or 4 > 6 and not surjeckive for
2<d< 6.

1. Introduction. Following a conjecture of De Giorgi and Cattabriga
[7], it has been shown by Piccinini [10] that the heat operator is not surjec-
tive on the space of all real-analytic functions on R3. Hérmander [8] then
characterized the surjective partial differential operators with constant co-
efficients cn the space of all real-analytic functions on a convex open set
in RY. The condition is whether or not on the variety of the corresponding
polynomial an analogue of the classical Phragmén-Lindelof principle holds.
Concerning this problem in nonquasianalytic Gevrey classes I'd, Cattabriga
[5], [6], has investigated the heat equation, and he [5] and Zampieri [11] have
given sufficient conditions for surjectivity. A characterization of the surjec-
tivity, which is again expressed in terms of a Phragmén-Lindeldf condition,
has been established by Braun, Meise, and Vogt [3], [4].

Cattabriga’s result [5], [6] for the heat operator is that it is surjective
for d > 2, but not for 1 < d < 2. In [4], it is shown that other operators,
including the Schrédinger operator, show a similar effect. Switching of the
behavior of a Phragmén-Lindeldf condition when changing the Gevrey ex-
ponent d has also been noted in the context of right inverses. The existence
of & continuous linear right inverse has been shown by Meise, Taylor, and
Vogt [9] to be equivalent to some Phragmén-Lindeldf condition. In'this case,
it may happen that (D) has a right inverse for small d, but not for the
others. Tn all these cases, the behavior may change only once. In contrast
to this, we present here a partial differential operator that is surjective for
small ag well as for large d, but not for exponents in between. To be precise,

1991 E;;thematic:s Subject Clossification: Primary 36B65; Secondary 35A30.
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we show that the operator

ot o .0
=5 "5 TiEs MR — MY(R®)
is onto if and only if 4 € [, 2[U [6, oo, This answers the question whether
there are operators with more than one switch, that Professor Ratch posed
during a discussion in Ann Arbor in 1988,

The proof relies on the characterization of Braun, Meise, and Vogt [3],
[4]. First, we derive from this two more tractable conditions, one of them
necessary and one sufficient, which we then apply to the operator P(D)
above.

P(D)

2. Notation. We denote by N = {1,2,...} the natural numbers, by |z]
the Euclidean norm of z € CV, and by U,(z) the open neighborhood of
with radius 7. For a polynomial P € C[Zy, ..., Zn] we denote by V = P~*(0)
its variety and by P(D), D = —id, the corresponding differential operator,
‘We say that a function on an open subset G of the variety V' is plurisub-
harmonic if it is plurisubharmonic in the regular points of G and locally
bounded everywhere. We denote by PSH(G) the set of all plurisubharmonic
functions on G.

We consider the same classes of ultradifferentiable functions as Braun,
Meise, and Taylor [2].

3. DEFINITION. A continuous function w : CV — [0, co[ depending only
on |z| is called a weight function if it satisfies

(a) w(2t) = O(w(t)},

(¢) log = o(w}, (d) @ : ¢+ w(e') is convex on R.

We define the Young conjugate ©* of » by
" {y) = supzy —p(z).
w0

4, DEFINITION. For K > 0 we define

1
Eupic = {1 € 0=®Y) s 7)o (= Zo(lap)) <o
aeﬁg’r

for some m € N}

We endow &1} x with the inductive limit topology, and we set

Eoy(RY) = Pl”(;:j Efwyx -
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5. Remark. For w(z) = |z[*/¢ d > 1, the space &(wy Is the classical
Gevrey class I'? of order d.

Once a weight function w is fixed, we set for g > 0
PSH, (V) = {w € PSH(V) | ¢(z) ~ p/Im 2| = o(w(z)) as |z| — 00,2 € V}.

Braun, Meise, and Vogt [3], [4], have given the following characterization
of the surjective partial differential operators on &g, 3 (RY).

6. THEOREM. The operator P(D): £, (RY) — €3 (RY) is surjective
if and only if, for all >0, there are 6,k > 0 such that, for all L, > 0,

there are m,C.> O such that, for all ¢ € PSH, (V) satisfying (o) end (8),
also () holds, where

(
(@) for all z € V', p(z) < p|Imz| + dw(z),
(B) for all z € V, p(2) < LlTm 2| + qw(z),
(N) forallzeV, w(z) <kllmz| +ew(z)+ C.
7. PROPOSITION. The following condition implies the surjectivity of

P(D) : E{u}(]RN) — E{U_,}(RN):

(3)  There are K, A > 0 such that, for a > 0, there is R >  such that,
for all z € V with |2} 2 R and aw(z) < |[Imz} < Aw(z), there
are Dyt > 0 and (for some k) a k-valued holomorphic function f :
{¢eC||¢| <D, Im¢ >0} — CV with

(S1) if || < D, Im¢ >0, and w & f(C), thenw € V and |w — 2| <
w(z),

(52) fo(r )&ll sequences (Cn)n in {C € C | ¢l < D, Im¢ > 0} with
limy, oo &n € |—D, D[ we have lim sup,, ., |[Im f({)! < aw(z),
where [Im F({,)} means the largest of the k possible values,

(83} =z e f(it),

(84) tw(z) < D(K|Imz| + aw(z)).

Proof. Let K, 4 be as in (S). Since we may enlarge K, we can assume
that KA > 1. Wefix p > 1,set § =1 and k = (4/m)(u(A+ 1)+ 6CL)K,
where ¢, is a constant with w(2z) < Cuw(z) for z > 2. Now let L and &
be given. We apply () with a = (en/8)(u{A 1) +6Cy, + L)™' and choose
= &(20,)"", Let ¢ € PSH, (V) with () and (8) be given. We prove (v)
for z € V with |2| > R, where R > 2 is the constant appearing in (S). The
other z are taken care of by choosing an appropriate C.

If [Tm z| > Aw(z), then by (o),

&
(z) < pllmz|+ fw(z) < (u + Z) [Tm 2] < &|Im 2.

If |Im 2| < aw(z), then by (5).
w(z) < L|Imz| + qu(z) < (La+ nw(z) < sw(z).
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Thus we may assume aw(z) < [Imz| < Aw(z). Let D, ¢, and f be as
in (8). Because of (1), we can define a function by

%(() = max w(w), [€|<D, Im{>0.

bit9)

This function is upper semicontinuous and subharmonic at those points
where the number of distinct values of f({) is maximal. Thus by (8], 4.4, it
is subharmonic. By (S1) we have, for (] < D,

[l £(C)] < 17(0) — 2| + [T 2] < w(z) + |fmz]
and
w(f(Q)) < w(lz] + w(2)) £ Cuwl(z),
provided R is reasonably large. Thus («) implies

P(() £ plIm f(O)] + 6w(f(Q)) < pilmz| + (p+ 6Cy )w(z)
< (p{A+ 1) + 6C, )w(z).

For a sequence ((.), tending to a point in |—D, D{, we have, by (5) and
(52),

limsup ¥ () € Law{z) + nCywiz).
n—r00
Thus by a classical estimate for the harmonic measure of a half disk (see [1],
proof of Theorem 3—4)

o Ap(A+1)+ 60,
wity < DA UE D

Because of (33), (54), and the choices of &, 1, and a,

P2 < B(i6) < = (a(A + 1) + 6C,)K[Im

w(z)t+ (La+ Cunlw(z).

+ (%(M(A + 1) + 6C,, + L)a + Gw)tv(z)
= k{lm z| + gw(z) .

Our necessary condition relies on pasting techniques of Hoérmander [8],
proof of 2.1. There, a variant of the following well known fact is used. It can
be proved by solving a Dirichlet problem in one variable,

8. LEMMA. There are ¢ > 0 and a plurisubharmonic function H : D =
{z € CV | |z| < 1} — R, continuous up to the boundary, such that

H(z) <|[Imz| forallzeD, H{(z)<|[Imz|-c foriz|=1,
H{y)>0 forye DNRY.
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9. PROPOSITION. Assume that V has the following property: For all
o > 0 there is o sequence (0, nen in V with im0 |9n| = 0o and

i .| Imby| [T 8,
30 < liminf —— < limsu ,
( } - n.-—+oop w(gn)

T w(f)n)
(ii) for eachn € N there is an irreducible component Vi, of VNU,,,1(8n)
that conteing 8,, satisfying

liminf infaev, [lm 2|

0.
N0 [Trn 8y, >

Then the operator P(D): S{w}(RN) — E{w}(RN) is notl surjective.

Proof. Let ¢ denote the constant of Lemma 8, and let C, be a constant
with w(2z) € Cuw(z) for sufficiently large 2. Set =1 and let § and k" be
given. For g = ¢(8k')~1 there are 6, as in the hypothesis. A subsequence is
enough, so we may assume the existence of

T |Im Qn‘

b= T}Eléo 1) €10,0] .
We let k = ¢{85)1. As k is larger than k', it suffices to disprove (y) for k
instead of k', Let 2a denote the inferior limit in (ii). We choose L = 4k/a-+1
and € = kb/2. Let ' > 0 be arbitrary. There is n with w(f,) > C/e and

1 )
(1) -ibw(ﬁn) < [Tm 6y, | < 2bw(@r),
(2) inf |lmz| > allmé,|.

2€Vn

We define 9 € PSH(V N Ug,)(0n)} by 9|V, = 4k|lm 6| and ¥ = 0 on the
other components of V N U, 1(8n), if there are any. We let now forz eV,

— Reé,
o(z) = B (LI].H;:\,?/’(::) - w(Gn)H(E-«S(é;%—)), |z — O] < w(fn),
\Im 2], |z — O] = w(fn).
For |z = w(#,)| = w(#,) we have
$(2) w0, H (w(%‘ijﬁ'm> < 4k[Tn ] + (I z] - cw (@) < |zl
Thus ¢ € PSH, (V). For |z - 0] < w(l,) we have
hl2) + cu(()“).lf(i:w(%%%) < 4k|Tm B, | + [Tn 2] < 8kbw(8,) + |Tm 2|
Wiln }

< pTin 2| + ew(z)

anel

(&) -+ w(l ) H (:“ZS o ~) < 4k

4k
I, + |Imz] < (wa—k + 1) [Tm 2} .
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So ¢ satisfies (o) and (3). However, it does not satisfy (7), as the following
estimate shows:

1Imé,,

w(t)
= k|Tm. 6,| + 2ew(6,) > k|Im 8, | + ew(by,) + C.

10. THEOREM. The operator

o4 a0

0t AR oe

is surjective for weight functions w with
(a) V- =o(w), (b) w=0(V).

It is not surjective for weights w with

(¢} & =o(w) and w = 04", (d) & =ow) and w = O(¥").

11. Remark TFor d = 1, i.e., on the space of all analytic functions,
P(D) is also surjective, since the hypothesis of Hormander (8], 6.5, is casily
verified.

(i) = 4k|Tm 8, —l—w(ﬁn)H( ) > 4k|Tm 0, | > kIm 0y 4 kbw(d,,)

(3) P(D) = : Era (RY) — Epup(RY)

12. COROLLARY. The operator P(D) : I4(R3) — I(R3) from (3) is
surjective for d € [1,2[ U [6, 00] and not surjective for d € (2, 6.

The proof of Theorem 10 will be carried out in four steps.
13. Case /- = o{w). We verify condition (S) of Proposition 7. Let
A=1/6and K =1/A. Let a > 0 be arbitrary. Let § € V with large |6] and

aw{f) < [Imb| < Aw(f) be given. We let § = (z,y, 2) and D = Aw(f), and
for |¢| < D we set

Imy Tm =z
—_—— =Rez 4+ {—r——
1+ |Im (y, 2}t’ “(¢)=Rez + C1 + [Im (y, z)|’

t =1+ |Im(y,z)}.

For large |6|, we have (S4) becanse of

y(¢) =Rey+¢

tw(f) = D(:}l—llm {y,z)| + i—) < D(R|[Im 0} 1 aw(4))

Case 1: |Rey| < 84w(#). Then for |{| < D and large |9,
(4) 1200 = y(O < 181+ Aw(®) + ([Rey|+ Aw(8))*
< A%w(0)? + Aw(f) + 814%w(0)? < 83A%w(6)?.
We define the following 4-valued holomorphic functions:

(5) 2(0) = V20— FQ = (=(0),v(0), 2(())-
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Note that (4) implies [2(¢)| < aw(8) for large |#}. We have
|F(¢) — 0] < 2aw(8) + 4Aw(8) < w(8).
This is (S1). For € € |-D, D{, (82) follows from {Im f(£)| < |z(¢)| £ aw(8).

(83) is obvious.
Case 2: |Rey| = 84w(d). Then for || < D and large |6/,

(6) y(§)* - =(0)] = (me Aw(ﬁ))2 |Re 2| — Aw(f)
> 49A%0(6Y? - |0] — Aw(B) > 4TA%w(0)".

In particular, we can define the (mngle—valued) holomorphic functions

#(0) = YO~ 0P, (O = (), u(¢), 2(0), Tor ¢} < D,
where we clioose the branch with z(it) = . We have seen in (6) that |2({)! =

/6A4w(f). Also, for large |8],

|2(¢)] > ¥/ (Rey)? — 2[Rey|Aw(8) — A2w(9)? — |0] — Aw(f)

(.2 1 1 Rey]
> HRey(1-2~ = - I Yty
= \/(Re ) (J' 8 64 64) =V

For |v| < D
- 2T(1—+—ﬁ“*“$?m) )
[2'(7)] < (”2(13 li?/ﬂ 7 S(ji?;;)wz) o

This shows |z(¢) ~ 2| < |¢ —n?{} < 24w(8) for || < D. Thus (51) holds. For
£€]~D, D[, we have |[Imz(€)| £ |#(&)]| £ /]6] + Aw(d) + ([0] + Aw(#))? =
o{w(0)), which shows (52}. Again, (S’%) is clear.

14. Case w = O{Y). We will establish the validity of condition (5) of 7.
Choose ), (g with

w(2t) < Ciw(l), w(t) £Ch o torallt = 2.

Lot A = min(L/B0, (72Ce)"1), set K = 1/A. Let e > 0 be given. Let K> 0
he large enongh and let 6 € V with |0] = R and aw(R) < [Im 8| < Aw(R) be
giver. We let @ = (x,y, z). At least one coordinate lms modulus greater than
R/+/3. This is not x, since otherwise [(y, 2)| > K. We show fivst that it is
not y either, because then Re(y? - z) > R® /4 and thus Rea? < ~-R?/4. But
now |z| > \/R/z while [Imaz| < Aw(h’,) O(VE), thus Imz| < [Rez|/3.
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Then
~R*/4 > Rez® = ((Rex)” — (Imz)*)* ~ 4(Re z)*(Im z)*

64 . & ‘
2= s} .
>81(Rew) 9( ex} >0
This is a contradiction, so [y| < B/v/8. Thus, for large R,
(M Rez > R/2.

Set D = Aw(R) and B = {¢ € C | [{] < D, Im{ > 0}. We distinguish two
cases:

Case [Rey| > |Rez|®. Then from (7) we get
(Rey)? = Rey® + (Imy)? = Rez ~ Rez* + (Imy)?
=Rez~ (Rez)? + 6(Rez)*(Imz)* — (Im )% 4+ (Tmy)*
> R/2 — |Rey|*? — A'w(R)*.
This implies, for large K,
8) [Rey| = VE/2.

If z, z were real, then y would be either real or purely imaginary. The latter
is impossible because of (8), the first alternative contradicts aw(R) < |[Im@|.
So we have Im(z,2) # 0 and for { € B we define

1 Im 2
T “O =Rty

i ()|
‘We have, applying (8) in the last step but one,
(@) 1(2(0) = =(Q)") — (= — 2]
< [2(¢) — 2l + |2(¢) — 2l|=(Q)® + 2(¢Pe + 2(()a® + 2|
< 24w(R) + 8Aw(R) (IRe x| + Aw(R))>
< Aw{R)(2 + 64 max([Re z|3, A3w(R)*))
< Aw(R)(2 + 64 max(|Rey|, A*C3VR))
= Aw(R)(2 + 64|Rey|) < 65 Aw(R)|Rey|.
Hence, for large R,
(10)  [2(0) = 2(Q)*] 2 |z — 2*| - 65Aw(R)[Rey| = [y|* — 654w(R)|Rey|
2 |Rey|(|[Rey| — 654w(R)) 2 [Rey|?/2.
In particular, z({) — z(¢)* # 0 for ¢ € B. We define

y(Q) = v=2(0) ~2(0)*  f(Q) = (2(¢), 9(C),2(O),

z({) =Rez + ¢ t = |Im{z,2)|.
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where that branch of the root is chosen for which y(it) = y. The mean value
theorem, (9), and (10) imply
i
y(Q) —ul =
1y(¢) — vl JiRey
F1C) = 8] 5 |2(€) — &) + () =yl + [2(0) ~ 2| £ 50Aw(R) < w(R).
This is (81}, while (83) and (S4) are obvious. For all £ & |-D, D, the
radicand z{€) ~ x(£)* is real. On the other hand, it is close to y?, thus
posilive. This implies f(£) € R?, and finally (82).

65Aw(R)Rey| < 46Aw(R),

Clase |Rey] < [Rex|?. We claim that for large R,
{11y Rexz| > VR/2.
Assume [Rex| < ¢R/2; then [Rey| < VR/8 and, by (7), we get the
following contradiction:
R/2 < Rez = Rey® + Rez?
= (Rey)? — (Tmy)? + (Rez)* — 6(Rex)*(Imz)? + (Imz)*
< R/64 + R¥3 /16 -+ A'w(R)*
If y,z were real, then z* ¢ R and thus x is either real or of the form
||V, since by (11) it cannot be purely imaginary. But in the latter case
| = |Rez| > VR/2 2 w(R)(2C2)™" > Aw(R), thus this possibility

as woll as the one that z should be real contradict the assumption that
aw(R) < [Im 8] < Aw(R). Thus we have Im(y, z) # 0 and we define

Tmy Tm =z

y(¢) = Rey *‘Cﬁma #(¢) =Rez+Cm

Then

(12)  1z(8) = p(Q)?) — (2= v*)] < 12() — 2| + y — w(Olly + y(C)]
< 2Aw(R) + 4Aw(R)(|Rey| + Aw(R))
< Aw(R)(2 + 8 max(|Rey|, Aw(R)))
< Aw(R)(2 + 8 max{|Rea|*, ACy VR))
< 9Aw(R)|Rezl®.

, t=[Im(y, 2)|.

Appiying (11), this gives, for large R,

(13)  13(0) ~ p(O)* 2 |2 - 9% = SAw(R)Re sl = fal* — 9Aw(R)[Re af?
> |Rez|*(|Rex|/2 - 9Aw(R))
> |Rex|*(|Rea|/2 - 002 AVR)
> [Rez]*(|Rez|/2 — 18C2A[Rex|) 2 |Rez|*/4.
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Therefore, for ¢ € B, we can define

2(¢) = V=(¢) -y(0?,  fO = (=090, 2(0)),

where we choose that branch of " for which z(it) = z. The mean value
theorem implies, using (13} and (12),

48/4 5
(14) 20) ~ o] € P A Real’ < TAu(R),

1F(¢) — 8] < 44w(R) + TAW(R) < w(f).
Thus (S1) is shown. Let now ¢ € ]—D, D[ be given. Then, by (11) and (14),
(15)  |Rew()| = [Rex| - |2(¢) — ¢l = VR/2 - TAw(R) = VR/4.
On the other hand, using (14) and [Im z| < |Imé| < Aw(R),

(16) Tmz(8)] < [Imz| + [2(€) — 2| < 8Aw(R) < 8C2AVR.
But 2(£}* is real, so also z(£) must be real, because otherwise it would be
either purely imaginary, which contradicts (15), or |Rex(€)]| = [Imz(£)],

which contradicts (15) and (16). This proves (82), while (83) and (54) are

clear.

15. Case ¢ = o(w) and w = O(y/*). We verify the hypotheses of
Proposition 9. By /-, &/ : C\ ]—00,0] - C we denote those branches that
map positive reals to positive reals. There are Cq,Cy > 0 with

w(2t) € Crw(t) and w(t) € Cpvt forallt > 0.

Let § > 0 be given. We may assume § < 272C72C; ', Define ¢ =
2-8¢71C5 2. By our hypothesis, there is R > 1 with

(17 45wt > rje forallr > R.
Fix any y > R. We claim the existence of z € |0, y*| with
(18) Vy? — 2 =26w \/y2—~z, Y, 2).
For z = 0, the left hand side is /¢, while the right hand side is equal to
V26w (/7 y,0) < V26w(2y) < V26Chwly) £ V26C1C0 /G < T

For z = y* the left hand side of (18) vanishes, while the right hand side does
not. Thus our claim follows by a continuity argument. We define

0=(Viyy? —zu1).
Then # € V and, by (18), |[Imf| = w(8).

From (18) we get 32 — z = 4§%w(8)* and 3? > 46%(0)* > 46%w(z)*. This
implies, by (17,

(19) 2 < ey,
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< 1/2, we get
(20) VP =2z VP —e = P2 2 /2.
By (18), this implies

VU € f\// ~ 5 = 26w(0) < 26w(\/7,y, %)
< 26C7 umx( (J), (2)) € 26C7Cy wax(/¥, Vz) < %max(\/‘g‘, NEE
< z/4, and hence, applying (19),

This implies ¥ =
(21) w(8) < CPw(z) £ CICHZE < CCaey .

Let now & = (£,¢,n) € V with |E ~ ¢| < w(f) be given. We have, by
(21) and the choice of €,

7 = )= (= 2 < [y~ alln =yl + ¢ = 21 < w(O)(2y +(8)) + w(0)
< G2y ey (2y + C3CavEy + 1)
<yl + 27+ 1) < P/
This implies, using (20),
i~z (v - =) -yl 2 v 4
We apply the mean value theorem to get
E T YT < s JWA R =27
This gives the next two estimates, 1f we apply (18) and (20) several times:
I /7% = €] < 2752 < 27212 — 2 < 2726w (8)
Re “772 T Ci > ,4/y2 — 2—-5/2\/@; > \/'}17(2”1/2 - 2-—5/2)
. )
2 2782 2 27 — 2 = Sw(8)
For some n € N, we have £ = i"*1/2§/n% — ¢ Thus

L&) = lllm”H/ollRe Yt =¢ |I-'{c'r"'“*’l/3||Im YmE =L

L /8
e o st w(d).
We finally get

W

[Im &| N (8/8)w (@)
lmd] = buw(f)
16. Case ¢ = o(w) and w = O(¢"). We verify the hypotheses of
Proposition 9. There are Oy, Cy with
w(2t) < Cyw(t) and w(t) £ Oyt for all t.

L
5 -
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Let § > 0 be given. We may assume § < (2C;)~". For sufficiently large R,

we have §%w(R)* < R/2, thus we can define
0:=(2,y,2) = (ibw(R), VR - §*w(R)*, R).
Note that w(R) < w(f) < Cyw(R) for large R. For (£,71,() € Uy (#) we
have
(22) (¢ =7") = G-y U= =2 +In-ylin+yl
< w(0)(1 + 2VR +w(9)) < 3VRw(®)

Since /- = o(w®), this means, for large R,

(23) Is —n~| > |z -y - 3VRw(f)
> §w(R)* — 3C1VRw(R) > §4w(R)* /2.

In particular, on U,y (#) there is a function f with flén, ) = (‘/E—:_ﬁg

and f(6) = = The set W = {(£,1,0) € Vu(8) | & = F(Em.O} is a
component of U,g(8) N V. For (§,7,¢) € W, we have, applying (22), (23),
and the mean value theorem,

T (&,m, O 2 [lm f(€,7,0) = 6w(R) ~ [£(8) — F{§n, ¢}

23/‘1
2 bw(R) = Iz @ )3\@)() —w )m—ﬁm()\
if B is large enough.
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