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On. first integrals for polynomial
differential equations on the line

hy

HENRYEK ZOLADEK (Warscawa)

Abstract. We show that any equation dy/de = P(z,y) with P a polynomial has a
glabal {on ]RQ} smooth first integral nonconstant on any open demain, We also present an
example of an equation without an analytic primitive first integral.

1. Introduction. The first integrals for equations

(1) Y fw), () R,

were studied by T. Wazewski [8], Z. Szmydtéwna [7] and by J. Szarski {6].
It was shown that even when f is infinitely differentiable there can be no
differentiable first integral F'(z,y) different from a constant.

Recently K. Krayzewski (University of Warsaw) asked about the situa-
tion with polynomial right hand side of (1). The answer is contained in this
paper.

Let me give a little explanation of the origin of nondifferentiability of
first integrals. If y = (2, yq) is the solution of (1) with the initial condition
é(0,40) = yo on the line Ly = {z = 0} then solving the latter equation with
respect to yy we get the first integral :

F(x,y) = yo(z,y) .
F s defined in the domain Uy = {(z,%(2)): ¥ a solution of (1), 0 in the
domain of 7}, We want to extend it to the whole 22 in a smooth way.
The obstacles to siuch extension lie in the escaping of the solutions of (1) to
infinity in finite time ().

If a trajectory o from the boundary OUy of Up tends to infinity {+o0
or —~oc) and does not intersect the line Lo then we can extend F' to a
neighbourhood of vy by choosing a section Ty transversal to g, extending
Flauntr, to Ty and then extending F from Tp \ Up along the trajectories
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Fig. 1

of (1) to some domain U;. (See Figure | where the interior of the disc
represents R?). The problem appears when OUy contains another trajectory
" goi.ng from infinity (the same which vy tends to) separating L7y from some
domain U3 and such that the trajectories going through T4 Ny near 1y Ny
run also near ;. In this case U, near infinity forms the so called hyperbolic
sector at infinity; we denote it by 5. Let Ty be a section transversal to

1. Then there is the correspondence map Ag : To N Uy - Ty N Uy such
that '

Fp)=F(45(p)), peTnly.

The correspondence map may have very bad properties but if the equa-
tion (1) has analytic right hand side then Ag is analytic outside T M .
So, F is analytic in Uy U Uy but often cannot be continued analytically
to vo U

We sec that F' can be continued analytically to R*\ [ J, the sum over
all separatrices-boundaries -y; of hyperbolic sectors at infinity. Our task is to
modify F' in such a way that it becomes sinooth on U l

We note that Kaplan also studied frst integrals for analytic and ratio-
nal systems. In particular, he proved in [3] that any analyl'tic or rational
nonautono.mous system in C™ has a complete system of frst integrals which
are gnalytm outside a set of Lebesgue measure zero. (This, however, does
not imply the results of the present work because he does not exclude the
possibility of the set of nonanalyticity of the integral being dense in R?). Tn

[4] he found some conditions ensuring regularity of the correspondence map
Ag of a hyperbolic sector. “
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2. The result. We begin with some definitions.

We recall that a first inlegral for the equation (1) is a function F :
2« RP! = R' U {co} which is constant on the integral curves {(z, ¢(z))}
of (1). ‘

In what follows we asswme that (1) Is analytic and we ouly consider first
integrals which are continuous and piecewise smooth. The latter means that
[B* = UJN" 75, N ¢ NU {oo}, where each Uy is open with piecewise smooth
houndary OU; = | Jyd, vik, my & 00, with v, integral curves of (1), U7, =
I7; LB, and F rostricted to each Uy is smooth. The values fi; = F(vy;;)
are called the eritical values of F.

Of course, the first integral F' is not unique. The functions @ o F, where
@ RP s RPY, are also ficst integrals. We say that a first integral G ig
induced from I U G = $o F for a piecewise smooth map $. We say that
F is primitive iff any integral A from which F is induced (F' = ¥ o H) is
also induced from F, i.e. W is a plecewise smooth homeomorphism and H
is equivalent to F. (Primitive integrals are maximal elements in the partial
ordering defined by the induction relation).

TarorEM L. (a) Every equotion
(2) % = P(z,y)
with P a polynomial has a smooth first integrol which is not constant on any
open domain.

(b) There are polynomial equations for which no primitive first integral
is of class C*.

Remark 1. A desirable property of the first integral is 8F/8y # 0 and

OF oF
e =0

e Ty =0,

F oof class ¢'' (see [6)-[8]). The example from the next section (showing
part (b) of Theorem 1) also shows that there are polynomial equations
which do not have integrals with this property.

Remark 2. Part (a) of Theorem 1 is not true when we replace the
polynomial right hand side by a smooth right hand side. The reason is that
there are smooth equations for which any primitive first integral has the set
of critical values dense in RP?, That was also the main idea in the papers
[6]-[8].

| Tﬂle author thinks that there should exist analogous examples with an-
alytic right hand side. Probably the technique from [8] combined with some
approximation theorems would give the result. We shall not attempt this
here.
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3. Example of a nonsmooth primitive integral
Proof of Theorem 1(b). The equation is guartic:
dy yi(zy + 20 — 1)
dz = AA-1)
A irrational. This equation has a first integral of Darboux type,
H = yley + A =1 ey + AP
From this and from Figure 1 it is seen that the correspondence map 4 :
To MUy — T N UG is of the form
s — MM o(1)).
Any primitive first integral has a nondifferentiable singularity ou vy ¢ {ay-+
A= 0} oron 7y € {wy+ A —1=0}. This proves part (b) of Theorem 1.
Remark 3. There are examples of equations (2) of degree 8 whose phase

portraits contain a hyperbelic sector at infinity with flat correspondence
map, s — ¢~ 1/5,

0<A<l,

4. The Poincaré compactification. Integral curves of the rational

equation dy/dx = P(z,y)/N(z,y) are phase curves of the polynomial system
(3) 2= N(z,y), y=Pl,y).
Equation (3) defines a field of directions in R?, This field of directions ex-
tends analytically to RP? = R URP!, where RP? = {[z,y, 2]} with K2 as
{lz,y,1]} and RP' = {z = 0} is the line at infinity. Near z = 0 we have
the projective coordinates » = 1/y, u = a/y and 7 = 1/x, T = y/x and the
system (3) changes to

= =2 P(ufz,1/z), = 2N(u/z Vz) — uP(u/z,1/2)]
(we get a similar system in the other coordinates). Multiplying it by a suit-
able power of z (or Z} we get again a polynomial vector feld.

‘The projective plane RP* has the sphere S* as the double covering with
the natural antipodal map 7 : 8% — RP2. The field of directions from & ¥
transforms to 5%, It is just the Poincard compactification. S congists of two
half-planes with the same phase portraits and hence it is convenient to draw
the Poincaré compactification in the form of a disc with the circle bowndary
a8 the line at infinity.

For the vector field

(4) E=1, y=Plry), degP=n,
we get

o~

() i=-2Plsu), =2 —uB(zu), ﬁ(z,mzz“f’(ﬁal).
4
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In # 0 then the singular points at infinity are given by z = 0, uff'((], uy=10
(ane & == 0= 0 (w0 = o0) if P(0,0) = 0),

Of course, for n = 0, 1 equation (2) is integrable with an analytic first
integral. Therefore we shall always assune that n > 2,

Notice that the point

Avg=a=(
is always singular, independently of Pz, y). I represents two singular points
Ay and 4. i the Poincaré plane (see Figure 1).

Only the paint 4 is inportant {for the analysis of the first integral. This is
Beemtse the asymplotic bebaviour of (4) near any singular point z =0, 1w =
g A O (neluding wg = 00) Is such that &/ — wg as 2], ly| — o0, 2/y — ug.
Then dy /e i bounded and the definition of the fivst integral described in
the intreduction works without obstacles (no escaping to infinity in finite

bime).

8. The resolution of singularity. For the first time the theorem about
resolution of a singular point of a vector field appeared in the paper of
Bendixsor [2], but the final proof was given in the 80s by Van den Essen
(5o [B]).

TrrorEM 2 (Resolution of singularity). Let 0 € R? be an isolated sin-
gular point of an enalylic vector field V defined in o neighbourhood of 0.
Then there exists © manifold M with distinguished divisors E; ~ RP,
o oy o veelor field V oon M and a map IT: M — R* such that

() MU E)y = {0}, Ilyue, 4 an analytic diffeomorphism, and
M\ Fy) = REN {0}
(i) if By Ly # O then they inlersect bransversally ondy at one point;
NP N - - - t; o .

(il) 7.V = f (Vo ll), where [ =[] ¢, ¢; are linear functions such
that {drj == O} = By and d; are inlegers; .

(iv) either Fy ds transversal to the phase curves of V' or Ey is an invarient
e for Vowith singelar poinds on Iy 0V By or/and at a finite number of
other points;

(v) all singular points ave elementory (e, with of least one nonzero
edgenandue ).

Applying the resolution (also ealled the o-process) of the singularity A
allows us Lo control the hehaviour of the integral curves of (4) near infinity.
i particular, we gel the following. _

COROLLARY 1. The plane B2 can be divided into a finite number of
domains “ij Foum Ly, N, with bounduries SUy = Uik ‘conswtmg of tra-
jecbomies i, ko= 1,..,my < oo, forming the separatrices-boundories. of
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hyperbolic sectors at Ay or A_. In particular, there are only a finile num-
ber of hyperbolic sectors.

Remark 4. For the hyperbolic singular point & = 2(1 + ...), ¥ =
y(—A+...) the correspondence map between transversals to the separatrices
is of the form 5 — s* + Y a;s*i(lns)t (Dulac series). For the clementary
nonhyperbolic singular point & = z(z® +...), § = y(A+ ...} the correspou-
dence map is flat s — e~/ where h = ks /A4 ... is a Dulac series (see [1,
Chapter 6.4]). The correspondence map Ag of a hyperbolic sector at infinity
is a composition of maps which are either of one of the above two forms or
are their inverses.

6. Proof of Theorem 1(a). Using Corollary 1 we can define some first
integral Fy. We divide the set {v,,} of separatrices into equivalence classes
by means of the equivalence relation generated by equivalence of separa-
trices of hyperbolic sectors at infinity. Fy is a function with the following
properties:

s it is nonconstant analytic in each U; and constant on the trajectories
of (1),

s it is continuous on R2,

e it has nonzerc gradient on one of «y;; from each equivalence class.

The differentiability properties may fail on other trajectories separaling
two domains U;. Let fi, = Fo(y;u) be the critical values of Fj).

Let & : RP! — RP! be a smooth map which:

(i} keeps f;r fixed;
(ii) is a diffeomorphism of RP'\ {f;r};
(iii) near fjz is of the form

F= B+ PMF — fi1),

where W™ =W o .. oW (M times), ¥(z) = exp[—exp(l/a)] and M is the
number of singular points in [ B; of the resolution of the singularity of the
system (4) at A.

Of course, ¥{z) < exp(~pa~"). This property shows that the fivst iute-
gral

F =g o ﬂ)

is flat on the separatrices ;5. Hence, F is smooth on R2.
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