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Some integral and maximal operators related to starlike sets
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RICHARD L WHEEDEN (New Brunswick, N.J.)

Abstract. We prove two-weight norm estimates for fractional integrals and frac-
tional maximal functions associated with starlike sets in Euclidean space. This is seen
to include general positive homogeneous fractional integrals and fractional integrals on
product spaces. We consider both wealk type and strong type results, and we show that
the conditions imposed on the weight functions are fairly sharp.

0. Introduction. This paper is concerned with studying weighted norm
inequalities for certain generalizations of the Riesz fractional integral oper-
ators and associated maximal operators. One such operator is the following:
on B™, n > 1, define

Ia,ﬁf(m) = fx ka,ﬁ(w) y
where

1
(0.1) ka,5(x) = e i-a P’

for & = (21,..., %) Here, -0 <a < n—1 and 0 < B < 1. We may think of
these operators as interpolating between an n-dimensional Riesz fractional
integral operator and a 1-dimensional Riesz fractional integral operator in
the last coordinate.

We shall derive results for our operators from corresponding results for
more standard operators. For example, we derive weak and strong type
estimates for [, s from corresponding results for the ordinary fractional
integral I,.pg. The necessary requirement for this derivation is that we have
precise control over the operator norms of the standard operators in terms
of the constants appearing in the conditions on the weights.
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The operators I, g are a special case of the more general operators

IQ,,u.f(m) = fx* kﬁ,u(m) s
where
2z
kﬂ»#(a:) = Txl,g—.)p )
for 0 < p < n, and for 2 a nonnegative function which is homogeneous of
degree 0. With some modifications, the technique we develop for I, 5 and
its associated operators may be applied to I, and its agsociated operators.
Product space fractional integral operators are included in this more general
case.

The kernel kp,, has assoclated with it a starlike set which plays a
significant role in our analysis of Ip ,.: let p(8) = 2(6)"/~#) and let
S =8 ={r8:0e8 0<r <o)} = {z:koux) > 1}. Then
S is starlike with respect to the origin. Further, |S| < oo if and only
if o € L*(8"1), or equivalently iff 2 ¢ L™ ~#)(§"*~1), By homogene-
ity, we see that if |S] < oo, then kg, satisfies the distributional estimate
{z : ko p(z) > s} < Cs™™/ ("8 and therefore by [St], p. 121, Comment
1.4, we may apply the proof of the unweighted Sobolev fractional integral
theorem to see that I, satisfies the same unweighted L?-L? mapping prop-
erties as the Riesz fractional integral of order w: that is, if 1 < p, ¢ < 0o and
1/g=1/p — u/n, then

(0.2) “Iﬂ,uﬂiq < Cllfly.
and at p =1,

nf(n—p)
©3) o f(a) > o)) < (ALY

For I g we have u = o + 8, 2(z) = (|2|/|2z.])"7, and if we let v =
(n =1 —a)/(1 - 3), then o(8) = |07V "Y, 50 that §, = {rf : § ¢
§"7, 0 < 7 < |8, 9} depends only on . In this case |S] < oo if and
only if ¥ 41 > n, which in turn is equivalent to § > a/(n — 1).

The starlike set § = S, for p(8) = £2(8)1/("~1) also appears in a useful
representation for I, and this in turn will lead us to several related op-
erators. When F is a set of positive measure in R™, then whenever z € R™,
and ¢ > 0, let z+ E denote the set {x+y : y € F} and let £F denote the set
{ty : y € E}. We use this definition rather than the standard convention in
weighted norm theery (in which £ denotes the set E dilated by a factor of

t around the center of F) for reasons which will become clear immediately.
Let

Apuf(@) =t [ fla—y)dy= [ flo—ty)dy.

B E
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Then we claim that
T dt
(0.4) Iguf(@) = (n— ) [ t"Ag,f(z) <
0

To see this, use polar coordinates and a linear change of variables in the ¢
integral, together with several changes in the order of integration, to get

% dt ol oo at
f# Asif(e) = [ [ ft”‘f(m~tr6)?r dr df
0 gr=1 0 0
=} 9('9) dt
] n—pi-1 ol
= [ [tfz—10) [ rrtar — df
gn—-1 0 0
1 je el
= [ [ ra =y t0(p)dedo
n— ju
Sn.-l 0
1
= P ‘u’IQ“u.f(CU) .

In the case of the ordinary fractional integral I, f(z) = f * |z|"™#, we see
this formula holds with ¢ = 1 and § = the unit ball in R"™.

We now consider several maximal operators associated with Iq ,f. For
E a set of positive measure, define the centered fractional mazimal operator
of order p for F to be

5 o f(x) = sup [tEF/ dy| = |B|*™ " sup t#|Ag . f ()] -
M) = sap LB [ 10 dy| = 1B supe i 0

For us, it will be more useful to deal with an unnormalized version of this
operator. For B a set of possibly infinite measure, define

A - = p—T d =8 t!—'-A T
Mg, f(2) i’i%’t m_{Ef(y) y’ sup |Am.+f ()l

When | E| < oo, this differs from M7 f(z) by a factor of |E|p/m1, Fir%ally,
whenever F' is a nonempty set, we define the uncentered (by Fy fractional
maaimal operator for the set E to be

Mg pufle)= suwp 77 f Fy) dyl-
t>0, zER" s iR
zEz~—tF

The operators that we are interested in are M, and Ms.q, Whe}ve. S
is a starlike set and Q; is the cube of edgelength 1 centered at the origin.
Unweighted estimates for Mg, for S starlike with finite measure have bgen
considered by Calixto P. Calderén in [Cal, M. Christ in [Ch], and M. Qhrlst
and J. L. Rubio de Francia in [ChR]. Weighted estimates for Mg, in the
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context of A, weights have been obtained in [W1] and [W2]. The normalized
version of Mg ,, for the case ;s = 0 is a special case of a maximal operator
considered by Cérdoba in [Cor]. When both E, F are either the unit ball
or the unit cube, Mg r, and Mg, are comparable and play a role in the
study of the ordinary fractional integral.

The operators Mg, and Mg, , are not generally comparable, and as
we shall see, exhibit distinctly different behavior. The connections hetween
Mg, and I, are fairly clear: Let f > 0, and suppose S and {2 are such
that § = 8, for g(f) = R(0)Y/("#), Then Mg, f(z) is the supremum
of the integrand in (0.4). On the other hand, if r < ¢, then Ag.f(z) <
(t/r)"Ag+f(x) since S is starlike, and therefore

2p
dt
rhdgef(z) C [ t4As.f(x) S Clauf(x),

for all r > 0, giving Mg . f(z) < Clg , f(z).

We would like to thank Prof. Carlos Kenig for his encouragement and
for pointing out to us that the operators I, s might be of general interest.

1. The theorems in the simplest case. Since all the operators under
consideration are positive cperators, let us henceforth always assume that
f = 0. We use the fairly standard notation in which [{f|;., denotes the
LP-norm of f on R™ with respect to the measure w(z)dz. We will use
£l 27 09 (1) G0 demote the Lorentz space L®**)-norm of f with respect to
the measure w () dz. We recall that L(P°)(w) is a Banach space for p > 1,
and that || f|pew,e () 18 comparable to sup,.o{tw{z : [f{z)| > t}/P}. We
begin by considering our model operators, namely the fractional integral
I3 and the related maximal operators Mg, and Mg g, ., where § = 5,
for g(f) = 8|11 With these operators we associate a group of linear
transformations {6, }.>0, defined by 6oz = (az1, ..., a2,_1,6" 7z,). We also
associate with these operators rectangles R, = §,@;. Finally, whenever E
is a set of positive measure, define B(E) = {z +tE : 2 € R*, ¢ > 0} to be
the collection of all translates and dilates of E. :

We begin with the result having the most straightforward proof.

THEOREM 1 (Weighted norm estimates for Mg, ,, for p(0) =8, |~/ (r+1)),

Fory >0, let § = 8, for o(f) =16, =1, Suppose that 1 < p < ¢ < oo,
0 < p<n, and let v,w be weights.

(A) Suppose that Mg, , satisfies the weak type estimate

(1.1) - w{z: Mg fle) > s} < (——B”J;Hp’”)q.

icm
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Then there is a constant C such that whenever o > 1 and R € B(R,), v, w
satisfy
1 F
lRlu'/nm.l( f ’UJ) /q( fﬂ—pl/p)l/P S CBa(van-l_l}(l—#/n): P > 13
R
(1.2) :

1/q
|R|,uJ/'u-1( f 'LU) @88 supv(w)_l < CBa('Y—ﬂ“I'l)(l_H/‘”) , p=1.
R re R

Here, C i3 a constont independent of v,w, and a.
(B) Conversely, suppose that there is a monotone function Cfa) such
that if ¢ > 1 and R € B(R,), then

|R!;L/'ft—1( f w) 1/0( f Uwr)’/;ﬂ) L < Cla)aly QA =p/n) gy 5
R R '
(1.3)

‘Rw/n—l( j‘ w) la

bl
If C(a) also satisfies

esssupv(z) € Qa)aVm AR p =
zeR

Je@w =5, ¢>1,
1

(14) da

T ot ~log*Cla) L=5, p=g=1,
L

a
then Mg, satisfles the weak type estimate (1.1), with B < cb for some
congtant ¢ independent of v,w and f.

(C) Suppose that 1 < p < g < 00, and v, w satisfy the following strength-
ening of (1.3): for somer >1,

) el 1\ (pemns (1= pfn)

| Rjm/m 1/p( f w) (Tﬁi j‘ u TP /P) < O(a)al
R R

Jor all R € B{R,) and a > 1, where C{a) satisfies (1.4). Then Mg, satisfies

the strong type ineguality

(1.5) M5, fligow S Bllfllp -

Remark. In special cases, it is possible to give sufficient conditions for
weak or strong type inequalities for Mg, which only inveolve integrating w
and v=P/? over cubes. While results of this kind are not very sharp, and
consequently not of much interest, we would like to point out one situation
where there is a relatively simple statement of this type. It involves the case
when w = v, p = 0, and p = ¢. We will show at the end of §3 that if y+1 > n
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and 1 < p < oo, then

provided either

n
wE Api—n/(y+1)) and P(l - ,Y__,,E) > 1

or
n
w € Ap(1-n/(y+y) and p’(l - 'rTl_) >1,
where for 1 < p < oo, A, denotes the class of weights w which satisfy

(@f=) (@ =) <

for all cubes @ (see [M]).

In Theorem 1, the sufficient conditions (1.3), (1.4) for weak type norm
inegualities are slightly stronger than the necessary conditions (1.2). We
may see from the following that this separation between the necessary and
sufficient conditions is very slight.

COROLLARY 1. For 0 <7 <, let ' = Sy for o' () = |8, 72/ O+ The
necessary condition corresponding to (1.2) for Mg, (that is, replacing v by
7 in (1.2), such replacement occurring also in the definition of the dilations

b, and the rectangles Ry) is o sufficient condition for Mg, to satisfy the
weak type estimate (1.1).

For any « > 0, the collections B(R,) for a > 1 range over all rectangles
of the form Ix J, with I a cube in R®™!, and J an interval in R whose length
is at most the side length of I, so (1.2) and (1.3) are actually conditions over
arbitrary rectangles of this kind, with constants that depend only upon the
eccentricity and .

Let M, , = Mg, .. Theorem 1 will be proved by showing that

(1.8) Mg, f(z) > cM,,f(z), a21,
and that

(1.7) Mg, f(z) SC Y My, flz).

: k=0

These two comparisons are proven by showing that the rectangles R, for
a > 1 are contained in a large dilation of S and that {R,}4»1 covers a small
dilation of S. (This is similar to an argument used by Calixto P. Calderén
in [Ca].} The operators M, in turn are compared to Mg, ,, by a scaling
argument using the transformations &,. This together with some well-known

icm
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results for M¢, . give the first two parts of the theorem. A strong type re-
sult of C. Perez [P] for My, ,, likewise gives the strong type result (C) of
the theorem.

The scaling argument comparing M, , to Mg, . is the following: when
A is an invertible linear transformation on R™, let us also identify A with
the operator

(1.8) Af(z) = |det A|f(Az),

and observe that

(1.9) A A Af = |det A7 Aap, f

(1.10) A My Af = |det AT Mum uf -

Therefore, if we identify &, with an operator as in (1.8), then we see that
(1.11) M, f(z) = ™ 176, Mg, wbaf(z).

A similar comparison and rescaling argument will be used to derive weak
and strong type estimates for 1o g.

Rescaling the operators also leads naturally to rescaling the weights.
A simple change of variables shows that (1.2) is equivalent to

Qe f m)w( J <5au)“1’"’”)1/p' <CBa™"", p>1,
Q Q

(1.2) /g~ i —nt1
@t f )™ esmsup(ea) £ OB p=1,
Q
2

for cubes (). We note for future reference that |R,| = q”"‘_l“’f, S0 the?,t
the right-hand side of (1.2') may be written as CB/|R,|. Similarly, (1.3) is
equivalent to

1/4 RS .
pm=( [ sa) ([ Gy )T S C@aTT e 1
Q Q@

ol
(1.3 | Ve e .
|Q|‘.’”/”"1(I5a'iu) esssup(8,v) " < Cla)a , p=1.

o
Q@

Writing conditions in terms of these pperations on weightfs 1'1as the effect of
simplifying the proofs of our theorems, as well as simplifying some of the
terms occurring in our next two theorems, which we may now state.

THEOREM 2 (Weak type estimates for Iag). Let1l <p <g<oo, —f<
a<n—-1,0<B8<1 Lety= (n—1—oa)/(1—pB), and let 5, be as given
prior to Theorem 1. Identify 6o with an operator as in (1.8).
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If I, g satisfies the weak type inequalily

(1.12) w{z : |Iopf(z)] > s} < (B“.J;Hp,u) ’

then w and v satisfy

1/ ~p'/p 179
L1z ([ bw) q( | lw(f“”("”)) da:) < CBa"™"™H,
Q Q°

Col(n=a=BiF

for every cube @ and every a > 1, where zg is the center of ¢}, and C is a
constant independent of @ and a. Conversely, if 1 < p < ¢ < 00 and there
is a monotone function C'(a) such that v, w sotisfy

1/ -2’ /p 1/
( j- 6aw) q f (6aﬁ(x)) ’ dr < C(a)a'fy-n-i-l’
|m — $Q|(n"ﬂ—ﬁ)P
Q QF

for every cube @ and every a > 1, and if C(a) satisfies the integral condition
(1.4), then (1.12) holds, with the constant B less than a fized multiple of the
integral in (1.4).

We could have phrased our conditions on the weights in terms of inte-
grals over rectangles R € B(R,), using the change of variables & = 6.,
except that this would lead to some awkward-looking terms. The separation
between the necessary and sufficient conditions is again quite slight, in a
sense similar to Corollary 1: see Corollary 2 following Theorem 3.

Our next result is also more naturally stated in terms of averages over
cubes.

THEOREM 3 (Strong type estimates for I, g). Let o, 3,7 be as in Theo-
rem 2, and suppose 1 < p < g < co.

(A) If 1,5 satisfies the strong type inequality
(1.14) 0 Hasfllgw < Bl fllpe

then for every cube Q and every a > 1, w,v satisfy the condition

(1.15) |Q11“(‘”+5)/”( f SQ'(w)qﬁaw(x)dm)U !

, , 1/9
< ([ sal@l Gl /7 dz)"" < cparrt

where sq(a) = (|QY™ + |z — 2)**F~", and zg is the centér of Q. Hence
w,v also satisfy the weaker condition

QU= ( [ Saw)lf‘q( f (%v)""”’)l/p’ < eBa'M1,
-/ Q
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In each case, ¢ s a constant independent of a. Conversely, if there exists an
r > 1 such that for every cube Q and for oll @ > 1, the weights v, w satisfy

1/{gr}
(1.16) 1Q|(a+ﬁ)/n+1/q—1fp(|—é2_l I (&m)")
Q

1 , 1/(rp")
< o) < o@err,
i )
where C(a) satisfies (1.4), then I g sotisfies the strong type inequality (1.14),
with B bounded by a fized multiple of the integral in (1.4).
(BY If p < q, and

1] i—(a+B)/n ( f sgle)ib,w(x) da:) e

' ’ 1/13’ _
X ( [ sq(@)? (Bav(z)) "7 dm) < Ola)a?™ ™+,
where C(a) is o monotone function satisfying (1.4), then (1.14) holds.
COROLLARY 2. Let o, 8,7 be as in Theorems 2 and 3, and suppose that

@, satisfy the same requirements, respectively, as o, fi. Suppose_ also that
G+08 = a+p and that §= (n~1—8)/(1— B) satisfies 0 <7 < 7 (or
equivalently, B < 8). Then

(i) The condition corresponding to (1.13) for the operator t{aﬂ, is suf-
ficient for I, 5 to satisfy the weak iype estimate (1.12). That is, zf (1;1??)
holds with o, 8, replaced by &, 8,7 (in particular, v 13 replac_ed with 7 in
the definition of 5, as well), then I g satisfies the weak type fas.tzmate (1.12)..
In other words, for weak type estimates the necessary condition for Iz s
o sufficient condition for Iop.

(i) When p < q, the condition corresponding to' (1.15) ' for the operator
I35 18 sufficient for Io g to satisfy the strong type inequality (1.14). In a..d-
d’i%z'on, if p £ q and the condition corresponding to (1.16) for Iz 5 holds with

C(a) bounded, then I, g satisfies the strong type inequality (1.14).

The necessity statements in Theorems 2 and 3 can be str.engthened. For
Theorern 3, we will show in §2 that the following condition is necessary for

(1.14):

(1.15") (lgi)iw(“”"m/”( f sﬂ(w)q’w(w) dz)lfq

/ : 1/.'!3‘
% ( [ Fal@)?v(=)?? dm). <C
for all R € B(R,), for all a > 1, where for a rectangle R of the form I x J
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with I a cube in R*"! and J an interval in R, with conter x5, we define
) = (1M 4 fy ) =1 ] 4 [y~ )0,

To see that (1.15") implies (1.15), first note that the change of variables
y = 8,z transforms (1.15) into

|Q‘1~(a+ﬁ>/*1( [ se(87 ) w(y) dy) v

¢ ’ 1/p'
x ([ salsr'y)" u(y)? Pay) <c
If R = 6,Q, then R € B(R,) and |Q| = |R|/|Ra|. Therefore (1.13) will
follow from (1.15") if we show that
(1.17) sq(bs 'v) < Frly)

if @ 21 and R = §,Q, with ¢ independent of a and Q. This inequality will
be proved in §2.

Similarly, the necessity statement in Theorem 2 can be strengthened. In
fact, we will show in §2 that the following condition is necessary for ( 1.12):

(fwf”ﬂfawWwwww@fwso
R

for all R € B(R,), for all a > 1. To see that (1.13') implies (1.18), it suffices
to observe that the change of variables y = 6,2 transforms (1.13) into

1/q y lu(y)_p{/p 1/?’
w(y) dy ( - ,dy) <CB, R=460,
( Rf ) RJ: 63y — zg|ln—a—Bp
and then to note that it follows from (1.17) that

(1.13)

621y — zo| e < i (y)

fa>landy & R = 6,0, with ¢ independent of ¢ and Q. We note
again in passing that any rectangle R of the form I x J with I a cube in
R™™%, J an interval in R, and |7/Y/®=1) > || belongs to B(R,) for some
a = 1. Consequently, (1.13') and (1.15) hold for all such rectangles, and
the ratio |R|/|R,| in (1.15") may be written as \R’eg‘“l_ﬂ/(""i']‘), where
er = |J||I]71/ (1) jg the eccentricity of R,

Qur result for the uncentered maximal operator has a slightly different
proof from the previous theorems. For £, F measurable sets, let B(E, F) =

{(z +tE,z +tF) : 2 € R™, t > 0} be the collection of all pairs of joint
translates and dilates of E and F.

THEOREM 4 (Weak type estimates for Mgq, u). Let S,v,,p,q be as in
Theorem 1, and let v and w be weights. '

icm
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(A) Suppose that Mg g, . satisfies the weak type estimate

(1-18) w{x: I'PfS,thuf(x) > .5'} < (%) .

Let B} = 6,Q1 for §i2 = (az1,...,0%n.1,2y). Then for every a > 1 and
every pair of rectangles (R, R*) € B{R,, R*), v, w satisfy

|R\“/””1( j‘ w)l/q( f ,U—P'/P) 4 < Oa_(’?'—'n%-l)(luufn), p>1,
R

n*

iR\“/ﬂ"l( f w)l/q
R

We may take C to be less than a fized multiple of B independent of v,w,
and a. | _

(B) Conversely, suppose that there is a monotone function C(a} such
that if a > 1, and (R, R*) € B(R,, R}), then

‘R|.u/nm1( f w)”q( f v__p,/p)up' < Cla)ai—rtH0—E/m g
g R

20
20 'R‘H/n—l( f w)‘l/q
e

If C{a) also satisfies (1.4), then Mgq, . satisfies the.weak type estimate
(1.18), with B bounded by some fized muliiple of the integral sz.’(l.tl). In
particular, if §' = Sy where 0 <" <, then the necessary condition (1.19)
for Mg/ o, . 45 a sufficient condition for Msq, . to satisfy the weak type
estimate (1.18).

We could also phrase (1.19) in an equivalent formulation involving, cubes
ag we did in (1.2). This may easily be seen to be the same as (1.27), but
with 6,w replaced with §fw, and f.v left as is.

(1.19)

esssupy - < Colyntll=p/n) g7,
R

esssupv™ ! € C(a)ar OB/ p
R

2. Results for general S or 2. We now consider results f01r our op-
erators which invelve starlike sets S more general than those cons1de1ted in
§1. We will first considler the operators Mg, and MS,QI:M for S an arbltrary
starlike set, and I, for appropriate (2. We only derive necessary confl1—
tions when § is open, and in this case our results shc:w strong parallels with
the results of §1, giving sufficient conditions which differ from the necessary
conditions by a convergence factor. '

All the conditions on § are stated in terms of the houndary function
.0 of . When we say a set is starlike, we will always mean that the .set
is starlike with respect to the origin. We see that except for at most a
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set of measure 0 on the boundary, starlike sets S are always of the form
§=8,={r8:0e8" !, 0<r< ()} and that S, is open iff ¢ is lower
semicontinuous and ¢ > ¢ > (.

DErINITION. Given a starlike set S centered at the origin, we will say
that a collection of open rectangles {R;} with arbitrary orientation is a
starlike cover of S if: (i} For each j, R; contains the origin on its major
axis, (ii) § € J; Ry, and (iif) 30 |R;| < C|S| for some C' > 0. If in addition
we can choose {R;} so that for some ¢ < 1, ¢cR; C 5 for all j, then we will
say that {R;} is a proper starlike cover of S. Finally, if each of the rectangles
R; is centered at the origin, then we say that {R;} is a centered starlike
cover.

We will prove the following lemma in §3.

LemmMa 1. (A) Every starlike set S has a storlike cover {R;}, and we
may in fact choose {R;} to be a centered starlike cover.

(B) If 5 is starlike and open, then it admits a proper starlike cover {R;},
and we may in fact choose {R;} so that cR; C 8 for each j, with ¢ < 1
depending only on n, and |S| =~ 3 |R,|, with constants of comparability
depending only on n. Finally, if § is also symmetric with respect to the
origin, then we may in addition choose the proper starlike cover so that it
is also o centered starlike cover.

With every rectangle R containing the origin we may associate a linear
transformation 6z of positive determinant such that R = §pQpg, where Qn
is a cube of unit edgelength containing the origin. This only specifies 8z,
Qg up to a rotaticn, and any choice will work, but for the sake of defi-
niteness let us specify that 6§z is diagonal with respect to the orthonormal
basis of unit vectors parallel to the edges of R, and that the diagonal entry
corresponding to an edge of R is the length of R in that direction. Then

det§p = |R|. In what follows, Theorems 5-7 are analogous to Theorems
1-3, respectively.

TaEorREM 5 (Weighted norm estimates for Mg ,). Let 1 < p < ¢ < oo,
0= < n, and lef v,w be weights.

(A) Let S be an open starlike set, and suppose that Mg, satisfies the
weak type estimate

(2.1) wiz: Mg, f(z) > s} < (%)q.

Then for every rectangle R contained in S and containing 0 on an azis, and
for all cubes Q, the weights v, w satisfy
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e 1/q SN OB
@ f brw) ([ vy )T < e P h
(22) ) e CB
|Q!“/n_1( I 5R"~U) esssup(6pr) ' S —, p=1.
o Q |R|

Here, C is a constant independent of v,w, and R (cf. (1.27)).
(B) Conversely, suppose that S is a starlike set, {R;} is a starlike cover,
and let C; be constants such that for ell cubes @,

- 1/q i /9 G
@ o) (J o) o
| iQ|‘u/n_1( f SR.w) M esssup(bp,v) "t < G5 p=1.
i Q T R
Q
If also
> Ci=b<oo, g>1,
J
(2.4)

ZOj(l—l-logJ“i) =b<oo, p=g=1,
j “

then Mg, satisfies the weak type estimale (2.1), with B < cb for some
constant ¢ independent of v, w.

(C) If 1 < p < g < oo and v,w satisfy the following strengthening of
(2.3): for somer > 1,

1/(rp")
Vaf 1 - Cj
@ J an) (i [ (om0 ) S
Q Q

for all § and all cubes @, with {C;} satisfying (2.4), then Mg, satisfies the
atrong type estimate

. “*MS,Mqu,w < BHfHP.v
with B < ¢b and ¢ independent of w,v, and f.

We also have a corollary analogous to Corollary 1, which tells us that
the necessary conditions for weak type inequalities in Theorem 5 are close to
the sufficient conditions, provided the starlike set S does not branch out too
fast. A similar kind of statement can be made for strong type inequalities,
and we will discuss this briefly at the end of §3.

COROLLARY 3. Let ¢ > 1, let § be open, and for t > 1, let §l= Sy
for ¢'(8) = g(B). If S admits a proper starlike cover {R;} such that
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#{R; : diam Ry < 2%} is finite for each k, k=0,1,..., and if

oo
(2.5) 3 ksl R, 2P < diam By £ 28} < oo,

k=0
then the necessary condition corresponding fo (2.2) for the operator Mg,
is a sufficient condition for the operator Mg, to satisfy (2.3) and (2.4), and
hence to satisfy the weak type estimate (2.1).

For the case u = 0, p = ¢, and w = v = 1, observe that (2.3) holds for
C'; = |Ry;|, so that the first line of condition (2.4) is just a requirement that S
have finite measure. The second part of (2.4) shows that we require slightly
more when p = ¢ = 1. The extra requirement for this case can be stated
in a way which contains the results for Mgg obtained by C. P. Calderén
in [Ca], and which we present as another corcllary to Theorem 5. We first
introduce a small amount of notation: For r > 1, define a function ¢,(t) =
t(1+logt (1/(r™))), and define an outer measure m, on §*~! by

m.(F) = UggEZ«MIBﬂ) )

where the sets B; are, up to rotation, “rectangles” of the form B =
{6 € 8™ [0 —wi| < ey 1 < k < n) for some w € 8L Then m,
is essentially the entropy set function of R. Felferman [F], scaled by r. Ob-
serve that m, (E) is increasing in B and decreasing in 7, and that if |B| is
held constant, m,(E) is minimized when ¥ is a rectangle, and consequently
m(E) 2 |B|(1 +log*(1/(+"| E)))).

CoroLLARY 4 (Unweighted wealk type (1,1) estimates for Mgg). Let §

be a starlike set with corresponding boundary function . Then Mg o satisfies
the weak type estimate :

(2.6) Hz: Msof(z) > s} < C”j“l

provided that § admits a starlike cover {R;} satisfying
1
(2.7) Z ERJI (1 + 10g+m) < 0O,
i 7

Also, (2.7} is equivalent to the distributional estimate
o0

(2.8) f " im{e > r}dr < .
1

In particular, (2.6) holds if ¢™ has finite entropy (i.e., if the integral in

(2.8) rgmains finite with m, replaced by my), and an ezample when this
occurs s the following: up to composition with e rotation, ¢ is of the form
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o(8) = R(|{#1,...,0)]) for some k, 1 < k < n, where h is nonincreasing ond
15 such that
(2.9) f o™(1 + logtlogt ) < 00,
Sn—l

or o 15 a finite sum of terms of this form.

‘We would like to thank C. Gutiérrez for pointing out that a similar
result was presented by C. P. Calderén in his lectures, namely that (2.6)
holds when o™ has finite entropy. The example in (2.9) is also largely due
to C. P, Calderdn, and appears (with a weaker conclusion) in [Ca]. Also, it
is shown in [ChR] using delicate orthogonality arguments that (2.6) holds
provided that ¢ € L™{log L){S"~!). The corollary gives a similarly weak
requirement for o, which (2.9) shows is not implied by the result of [ChR].
Similarly, the result of [ChR] is not contained in the corollary since it is
possible to construct functions ¢ € L"™(log L)(S™™') for which (2.8) does
not hold. This may be done when n = 2, for example, by constructing g so
that O, = {g > 2-‘j} is a union of intervals in 8! of total measure 2720575,
s > 2, for each j, such that O, consists of Nj intervals of equal length, spaced
evenly within each subinterval of O 1. Then p € L?(log L)(8*), since

T r(logr)|{o > r}jdr = Zngjl{Q > 2 < oo
1 i=1

On the other hand, by choosing N; sufliciently laxge for each j, we can
arrange matters so that mqi{O;} decreases as slowly as we like, so that
(2.8) may fail.

THEOREM 6 (Weak type estimates for Ig,). Let 1l < p < g < oo,
0 < < n, and let 2 > 0 be homogeneous of degree 0. Let S = S, for
o(8) = Q) n—w.

If 2 > 0 is even and lower semicontinuous, so that S is open and sym-
metric with respect to the origin, and if In,, satisfies the weak type inequality

B o\
(2.10) wiz : T, f (@) > s} < (ﬁsllz_) 7

then w and v sotlisfy
—p /e ;
_ 1/q (6ru(z)) P/ ' OB
(2.11) (Qf 5rw) (QJ: To— g7 ) ST

for every cube @ and for every rectangle R contained in § wh'.-ich'- 15 centered
ot the origin, where ¢ is the center of @, and C is a constant independent
of @ und R. -
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Conversely, if 1 < p < ¢ < 00, then for any 2 (not necessarily even or
lower semicontinuous), if there is a starlike cover {R;} of § by rectangles
centered at the origin, and constants C; such that v,w satisfy

1/g (8p,v(x))~?'/P >1/p‘ .
(Joe)"(J s <

for every cube Q and every j, and if {C;} satisfies the summability condition
(2.4), then the weak type estimate (2.10) holds, with the constant B less than
a fized multiple of the sum in (2.4).

THEOREM 7 (Strong type estimates for I ). Let 0 < p < n, 2> 0
be homogeneous of degree 0, § = S, for g(8) = 2(O)V "1 and suppose
l<p<g<oa.

(A) If I, satisfies the strong type inequality
(2.12) Hepfllgw < Bllfilp,v

and if S is open and symmetric with respect to the origin, then for every
rectangle R centered at the origin that is contained in S, and for every cube
@, we have

(2.13) |Q|1“”/"( f SQ(m)grSRw(m)dw)l/q

o

|

P ( f SQ(m)p'(SRu(:c))*Pﬁ/?’dm)Upl < ]c

SR

where sg(x) = (JQI*™ + [z — 2g|)*™™, and zg is the center of (.
w, v also satisfy the weaker condition

!Qi'u/n_l( f 5Rw)1/€l( f (6Rv)_p,/p)l/p’ < %
Q &

In each case, ¢ is a constant independent of R. Conversely, for any 0, if
for some v > 1, there is a starlike cover {R;} of § by rectangles which are
centered at the origin, and constants C; satisfying (2.4) such that Jor every
cube Q and all j, the weights v,w satisfy

1/ (gr)
(2‘14) }Q|n/n+1/q—1/p(Té_| f(fsﬂ,»'w)r) !
@

e€nce

1 L AMEPY o
x| = br,v)""P /19) < =i
(l@tc{( ) =Rl
then Ig,, satisfies the strong type inequality (2.12).
(B) For any {2, if p < q, end there is o starlike cover {R;} of S by
rectangles which are centered at the origin, and constants C; satisfying {2.4)
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for which
1/q
QI ( [ so(@)er,w(s)da)
G

< J saloy torypte) 7 ds) " < i

for every cube Q, then (2.12) holds.
‘We also have an analogue of Corollary 2.

COROLLARY 5. For p,q and u as in Theoremns 6 ond 7, let 2 > O be
lower semicontinuous. Suppose that the associated starlike set S admits a
proper starlike cover for which (2.5) holds for some t > 1, and let {2 = 2%,
Then

(i) The condition corresponding to (2.11} for I , is sufficient for lo .
to satisfy the weak type estimate (2.10). That is, the necessary condition
for Iy L b0 satisfy a weak type estimate is ¢ sufficient condition for I, to
satisfy the same weak type estimale.

(ii) When p < g, the condition corresponding to (2.13) for I , is suffi-
cient for I, to satisfy the strong type estimate (2.12). That is, when p < g,
the necessary condition for Iﬁ,p to satisfy a strong type estimate is sufficient
for I, to satisfy the same strong type estimate. In addition, if the con-
dition corresponding to (2.14) for Iy | holds with {C;} unifermly bounded,
then (2.12) holds for I ..

3. Basic techniques. Proofs. The proofs of Theorems 1-4 rely upon
the same comparison argument. Let k(z) = ka,s(z) = |z|*" " za|? !, and
write 2 € R™ as ¢ = (2, z,,), where &’ = (21, . .. , Tn—1). Then for |z’| > |@,],
k(z) = |z/|= "z, |f1, and if |2/] < lz,|, then k(z) ~ \z,|*TF ™. Hence,
if cg > 0 and we define

§~ = {z: |oa| < min{l, cole’|"7}},

then $~ is comparable to § = {z : k(z) > 1}, in the sense that there are
constants 7, 7/ > 0 such that 78~ € § & 757, Consequently, the operato.rs
obtained by replacing § with S~ in our formulas are also comparable. Fix
ey 80 that Q1 € S™, which also ensures that if @ > 1, then the rectang}e
R, = 6,@Q; is contained in 5™ since 6,(8~) € 8~ fora = 1.- We can also
see that 5™ G Upeq(kfige) for & a geometric constant depending only on n
and ¢p.
This gives us the comparisons:

(31) XRQ("-‘:/'T) < Xs(x) ;
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(32) Xol2) €3 xp, (a/(7K).
k=0

Then (3.1) and (3.2) imply (1.6) and (1.7), which tell us how to compare
operators involving integrals over 5 to operators involving the rectangles
{Ra}uZI-

We now use the scaling argument (1.9) and (1.10) together with the
following observation: for any sublinear operator T, any invertible linear
transformation 4, and any p, g > 0, the weak type inequality

(3.9) wle (A7 T4 (=) > s} < (BIJ.ZI|;J,@)‘1
for all f € L?(v) and s > 0 is equivalent to the inequality
(3.4) (Aw){a : [Tf(z)] > s} < (Buf!p.m)q

for all f € LP(Av) and s > 0, with precisely the same constant B. Similarly,
the norm inequality

(3.5) AT TA g < B'[1£llp0
is equivalent to the norm inequality
(3.6 17 llg, 4w < B[l fllp,10 -

Thus for example, we see from (1.11) that any weak type inequality for
Mg, (vecall that M, , = M. R.,) 18 equivalent in this sense to a weak type
inequality for Mg, ,, with an appropriate weak type constant.

The simplest case is that for Mg ,. Then by (1.6) and (1.11) we have

(3.8) M, flz) > CMa,uf(w) = Ca_(T_n+1)5;1MQ1,A5af(m)a
for a > 1, and by (1.7),

(3.9) Mg, f(z) < C'iMzk,yf(“’) =
k=0

We can control 1, 5 by a similar process using (0.4). If @ > 1, then by (3.1)
and (1.9),

(o4}
c Z z*’“("ﬁnﬂ)&z%MQh“égk flz).
k=0

T dt
f a+ﬁARn|7tf ) t
0

(3.10) Iopf(z

> da” (7D f t“*ﬁéglAgl,taaf‘(m)i—t

> cna—('r—n+1)5;11a+gf5af(33) '

icm

Some integral and mazimel operaiors 241

with la+ps the ordinary Riesz fractional integral of order o + 8. The last

inequality follows by the comparability of @1 and the unit ball. Similarly, if
1= 7'k, then

0
o di
(311) Lapf(e) SCDY [#*PAp, 0if(a) = ”
k=0 0
T —br—ntl) [ e dt
_ OIZ E(y—n+1) ft +ﬁ52—kAQ1!t62kf(.T)?
k=0 0
<Gy omlrentlg, LI sbon f(a).
k=0

We thus reduce the study of I, g and Mg, to the study of I,4+p and
Mg, ., respectively, under the effects of a family of linear transformations.
We do not see how to use the family of linear transformations to relate
Ms,q,,» to & standard operator. Still, we may use the first part of our
comparisons. Observe that if E and E' are comparable sets and if F and F’
are comparable sets, then Mg r, and Mg/ s, are comparable operators.
Thus, from (3.1) and (3.2) we can write:

(3.12} Mg, nflz) 2 cMg, g, uf(2), a>1,
(3.13) Ms g, uf(z) S C Y Mr, g ul{z).
k=0

Proof of Theorem 1. The first two parts of the theorem will follow
from (3.8), (3.9) and the following standard result, which may be proven
using techniques developed by Muckenhoupt [M].

THEOREM M. If 1 <p<g<o0,0<£p<n, andv,w are weights, then
Mg, . satisfies the weak type inequality

wlo  Ma,ufe) > 5} < (22flee)’

if and only if v,w satisfy the AL,
constant By such that

@prt( J )" ( f ) <,
Q Q
Qe ( o) Messsupole) T < B, =1,

condition: i.e., if and only if there is a

for every cube Q. The constants By and By are comparable, with consiants
of comparability independent of v, w.
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To prove part {A) of Theorem 1, first note that by (3.8), if (1.1) holds

then
B )’

'w{m : 5;1MQ1,_uéaf($) > S} < ( 8

or by the equivalence between (3.3) and (3.4),
Bgy—n+l P q
Sow{z MQI,Hf(m) > s} < (C a || fllp,600 ) '

s
Thus, by Theorem M, we obtain (1.2’}, which is equivalent to (1.2).
For ¢ > 1, L9°(w) is a Banach space, so by (3.9),

o0
1M fl|zeoqwy < C D 2706y Moy, ubin fll oo () -

k=0
By Theorem M, if (1.3") holds, then by the equivalence between (3.3) and
(3.4),

162~ Mg, o | aemuy S €2*0 O] Fll ooy -

Combining these estimates with (1.4) gives (B) of Theorem 1 for the case
g > 1. The case g = 1 is handled similarly, but instead of using norm in-
equalities, we apply Lemma 2.3 of E. Stein and N. Weiss [StWe] on summing
weak type (1, 1) estimates, which vequires the slightly stronger convergence
condition on C(a).

The strong type result (C) follows in a similar fashion from the following
result for Mg, ..

‘THEOREM P (Perez, [P]). Let 1 < p < ¢ < 00, 0 < p < n, and suppose
for some r > 1 that v,w satisfy the following strengthening of the AL

condition:
Yaf 1 L\ M
Q p/n—=1/p w (____ TP /p) < B ,

for all cubes Q. Then Mg, , satisfies the strong type inequality

“MQl,prq,w < BO”f“w
with By < OBy, for some constant C independent of v, w.

It is easy to see that (C) follows from Theorer P in the same way that
(B) follows from Theorem M. a

This same method of proof may be used to obtain weak or strong type
estimates for I, g from the corresponding estimates for I, a+p- The necessary
requiremnent in this procedure is that we have precise control over the oper-
ator norm of I, 44 in terms of constants appearing in the conditions on the

weights. The proofs of Theorems 2 and 3 follow from the following results
in this manner.

Some integral and mazimal operators 243

THeEOREM GK (Gabidzashvili-Kokilashvili, [GK]). Let 1 < p < g < 00,
0 < p<n. Then I, satisfies the weak type inequality

wiz: I, f(z)] > s} < (gﬁ?ﬂ{i@)

if and only if w and v satisfy
l/q .U{m)—P'/P 1/:”’
( J w) ( J 7~ g =4
Q Q°

for every cube (), where g is the center of . Furthermore, the constants
Cy and C1 are comparable.

THEOREM SW (Sawyer-Wheeden, [SaWh]).

(A) If1l < p<g<oo0<pu<n, and I, satisfies the sirong type
inequality

(3-14) ”Ifwf”q,w < C'ollpr,v
then w, v satisfy the condition
(3.15)

Qr=r( f soulw)dn) ([ squla) vl dm)””' <G

for every cube Q, where s, (2) = (QIY™ + |z — zg)* ™™, and zg is the
center of Q. Hence w,v also satisfy the weaker AL = condition

@) () 5o
Q Q

In each of these conditions, we have Cp < const - Cy. Conversely, if for

some r > 1 the weights w,v satisfy the following strengthening of the AL
condition: '

1/(ar) 1/(rp')
p/ntlfg=1/p (ml_ 'w“") (_}_ v-rp’/p) <G,
< al @] _

for every cube Q, then I, satisfies the strong type inequality (3.14), with
Cy < const - ().

(B) If p < g, then (3.14) holds if and only if (3.15) holds, and Co, C1
are comparable.

As noted in [SaWh], part (B) follows by combining the results in [GK]
and [Sa]. Applying these theorems gives: _

Proofs of Theorems 2 and 3. Theorem 2 follows from the the-

orem of Gabidzashvili-Kokilashvili, (3.10) and (3.11) in precisely the same
manner that Theorem 1 was proven from Theorem M. For Theorem 3, the
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necessary condition in part (A) follows from the corresponding necessary
condition for Tyg in Theorem SW, using (3.10). Likewise, the sufficient
conditions in parts (A) and (B) follow from the corresponding suflicient
conditions for In+g in Theorem SW using (3.11), in the same way the suf-
ficient conditions were proved for Mg , in Theorem 1.

Proofs of Corollaries 1 and 2. Recall that the family of rect-
angles [ J{B(R,) : a > 1} in Theorems 1-3 is actually independent of v > 0,
and that it is only the parametrization of these rectangles which varies with
. The proof of the corollaries consists of keeping track of the parametriza-
tions. Let 8,2 == (azy,...,08,-1,a  T2,) be the dilation 8, with v replaced
by 7. Observe that §,z = ré,xz for r,b given by

DALY 1o LI L AR

Thus a rectangle of the form R = §,Q for some cube Q may also he written in
the form R = 6,Q™ for @~ = r@Q, so the necessary condition corresponding
to (1.2) for Mg, and p > 1 may be rewritten in terms of the original
parametrization in the form

1R|H/n——1( f ,w) 1/q( f v»—P'/?) 17 < Ch=epr—n+1)(1—p/n)
R R

for all R € B(Ry), b> 1, wheree = (v ~ F)(n — 1)/ (F+ 1) > 0. The corre-
sponding formula for p = 1 may be written similarly. Thus the summability
requirement (1.4) for Mg, , is satisfed with C{a) = a™%, yielding the weak
type estimate (1.1).

Corollary 2 may be proven similarly. For example, the condition corre-
sponding to {1.13) for I 5 is

— = Y g —p'/p %4
(113) ( f 5a,w) q f (5(1'0 (m)) e < OBa?—-'I‘I-{*l .
Q g 18— ma|n-E=fir -

Then for r,b as given above, (§,w)(z) = r*(éyw)(rz), and similarly for
6qu. Rewriting (1.13) in terms of &5, using &+ 8 = a + 4 and making the

substitution y = rz, we get

! ! ~p' ]./p" - o

([ o) ( ey [ G dy) < oy
Q ooy — rEQlt e .

for all cubes @ and all b > 1. Since rxq is the center of 7@, upon relabeling
cubes and writing r in terms of b, we get

g (5bv(y))fp’/p 1/p'
by ( , dy) < Cbspy-ntL
(E;;f ) Q‘[ ly — zg|(n—a—5ip = :
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for all cubes @ and all b > 1, where ¢ = (v —~F)(n - o~ B}/ (F+ 1) =
(v —7)(1 — B8) > 0, so by Theorem 2 we see that v,w satisfy a sufficient
condition for (1.12) to hold. The remaining part of Corollary 2 may be

proven similarly using the observation that sg(x/r) = r"~* Ps.g(z).

Proof of Theorem 4. To prove the necessity statement (A),
first note that if {1.18) holds, then by {3.12), we see (1.18) holds with
Mg, o..pnf(x) replacing Mg g, . f(x) for @ > 1, with weak type constant in-
dependent of @. Suppose then that (1.18) holds, and let (R, R™) € B(Ra., R}).
Suppose first that p > 1, and let f = vF /Py g+ 1f € denotes the center of
R, R*, then for some £ > 0 we have

R=¢(-+tR,, R*=E+tR5.

If r € R*, we can easily find y € @, so that z = x -y lies within R, so that
R is contained in the rectangle z—2¢R,. Then since Mg g, .f = MRr,,Q.,uf;
and z € 2 — 1@y C z — 2tQ, R C z — 2tR,, we have

Mgy f(o) 2 @02 ([ oly) ™7 dy g (o).
R
Substituting this into (1.18), using £ = |R|/|R,| and

o= ([ vy an)™,
R

we get (1.19), assuming fR’v"P'/?’ dy # 0,co. If this integral is 0, there is
nothing to prove, and the case for which it is infinite can be treated by a
standard limiting argument. For p = 1, let A = essinf{v{z) : # € R}, so
that if & > 0, then E = {2 € R : v{z) € A&} has positive measure. Letting
£ = X g W0 g0 M g, f(5) 2 (2657 Bl (). Also, [[fll1.0 < (A+2)EL.
Substituting this into (1.18), cancelling |E|, and letting & — 0, we get (1.19).

To prove (B) of Theorem 4, we will show that for each o > 1, (1.20)
implies the weak type estimate

s

(3.16) w{z : Mg, .. f(z) > s} < (M) :

with D a constant independent of a. From this, the weak type estimate for
Mg, g, . follows by much. the same argument used for the centered operator,
which for ¢ > 1 is that

&
”-MS,Ql_..H-f”L'?'“(m) < GZ HA’IZ’“,Ql,uf“LQ-w(w)
k=0

< 'S O lp < Ol
k=0 '
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where the first inequality uses (3.13) and the fact that 9™ (w) is a Banach
space for g > 1, the second inequality uses (3.16}, and the final inequality
uses (1.4). Similarly, the case ¢ = 1 uses the theorem of N. Weiss and
E. Stein on adding weak type bounds. In order to prove that (1.20) implies
(3.16) when p > 1, let f > 0, f € LP(v), and let s > 0. Let E = {z :
Mg, 0..uf(x) > s}. For each 2 € E we can find £ € R* and ¢ > 0 such that
z &£ —1@Q; and

7" [ fy)dy > s,

A(z)

where R(z) = £ — tR,. Writing R*(2) = £ + R}, since i = |R|/|R,], by
Holder’s inequality and (1.20) we get

B\
o< (f) Lo

S(CL“’_"'+1|R|)F/”“1( ffpv)l/p( j‘v—:v’/p)l/p,

R{xz) R(x)
< C'(a,) (RE{) fp'u)l/p (R;{;)W) -1/q ’

yielding

Sq( f w) < C’(a}q( f fp,u)q/:ﬂ'

E*(z) R(a)
We may now apply the Besicovitch covering lemma to E and the cover
{R*(z) : # € E} to choose a countable subcollection {R}} which covers
E and which has bounded overlap, and in fact we may assume that the
collection overlaps at most N times for N a constant independent of a.
(The proof of the standard Besicovitch lemma for cubes remains unchanged
upon & proportional rescaling of each of the edgelengths, so that one may
replace cubes by translates and dilates of some fixed rectangle without any
change in the covering argument or the overlap constant.) If we let R; be
the corresponding rectangle so that (R;, RY) € B(Rq, R}, then since ¢ > p,
we have

stulx s Mp, g, uf(2) > s} < s’fz f w < Cla)? Z ( f ff”u) e
Ry

i R g
<c@ (T f 7)™ < vo@rly,.
iR

giving the desired result. The argument for p= 1 is similar.
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‘We now consider the stronger necessary conditions mentioned after The-
orems 2 and 3. We begin by verifying (1.17). From the definitions of sg and
3p, i = 8,Q, and assuming as we may that zg = 0, it is enough to show
that

1 <0 1
(@I + (62 yi)r=ef = 7 (alQIM" + )t {am Q™ 4 lyn )8
with C independent of ¢ > 1 and Q. Replacing y by 8,z and QY™ by h,
we must show that
(3.17) (ah+ |5az)™ " *(a™Th + a,"”f{:t:n[)l‘ﬁ < C(h+ |a:1)”“‘”__"3

for all @ > 1, h > 0. If we write = = (z', 2, ), then {6,z| ~ a|z'| + a7 |zn|.
Recall that n—1—a = (1 - ), and consider separately the cases ™" &, ] <
ah+alz'|, and a7 |z,| > akh+ alz’|. In the first case, the left side of (3.17)
is comparable to

(ah+ala')" (@ Th+a™Vea)) P = (b + 12/ (R + |zal) 7
< (h+ )" ()P
= (h+ |z P,
In the second case, the left side of (3.17) is comparable to
(@ lza )" (07 h + a7 |zn[) 7
= g 1170 4 [

< a0 (ot [ol )R )7
< (ht [z 7,

the last inequality holding because & > 1. This proves (3.17) in both cases,
and so also proves (1.17). '
‘We next show that (1.15") is necessary for (1.14) if 1 < p £ ¢ < oc. Fix

R € B(R,), and pick f = Eg/pv_p’/fj in (1.14), noting that

' — 1/p
H.f“p,v = ( f ER(y)P ’U(y) v ip dy) :
and
(3.18) Topf(@)= [ S Po(y) ™ Phoplz—y)dy.
We claim that

o\ 1=(a+B)/n
ﬂ)l ’ B‘R(m)ER(y) < er,ﬁ(m - y) :

(3.19) (IRaI

To prove (3.19), we write R as the product of an (n — 1)-dimensional cube
with edgelength ah and a one-dimensional interval of length a~7h, so that
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we have |R|/|R,| = ™. Then
Sr()™ = (ah+ |y —2r)" " (@7Th + yn — 2ral) 77,
and (3.19) is equivalent to
(3.20) 1z — Y"1 0w — yn|P T < RO SR () T R () Y
For o, > 0, we have (cf. [SaWh])
@yl <o o+ o —zrl) e + |y~ zal),
[T = ] TN+ [0 — 2 )7+ (Yo — 2Rwl)-

Choosing & = ah and 7 = &™"h, (3.20) then follows by taking the product
of the appropriate powers of the last two inequalities and using the relation
n—1—a=v1-73).

We see from (3.18) and (3.19) that

1—(atf)/n
a2y () ([ Srlwy vl dy)en(s) < Lo af(),

and therefore (1.14) implies that

(J_l%)l‘(“w)/”( f ER(y)pIU(y)Wpl/pdy)( f 'S’R(a:)qw(:c)da:)”q

= O( f gR(y)plv(y)mp’/p dy)]/:l"

From this we obtain (1.15") by dividing by the expression on the right side,
provided this expression is neither 0 nor co. In case the right side is 0 for
one choice of R, it is 0 for all R, and (1.15') is obvious. The case when the
right side is co can be treated by a limit argument which we shall omit.

Finally, the fact that (1.13') is necessary for (1.12) can be obtained by
slightly modifying the argument above. In fact, for R and f as above, and
for A equal to the integral appearing in parentheses in (3.21), we have

R L—{a+8)/n
(l_’é:ll) Adp(z) < Inpflz).

Since for ¢ > 1 and = € R, we have

_ L {eebBY /e
3R(2)7" < olah)" T @RI = e o c(f’“) | :

)
it follows that A < cl, g7 (2) for € R, and we obtain (1.13"} by applying
(1.12) to f and X.
Proof of Lemma 1. To prove (A), write § = {ré: 08" 0<
r< 9(6)}, and let O; = {# € 81 : p(9) > 271}, j € Z. For each 7, cover
O_,' by discs -.Djk; = {6 g 81, '9 - QJ;GI << Ejk} so0 that Z,‘, |ng1 %"OJ",
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and to each disc Djy; assign a rectangle R;, with major axis in the direction
@ik, so that ;. is the smallest rectangle containing the cone {rf : § ¢
Dy, =27 < r < 27} Note that Ry, is unique up to rotation about its
major axis, and any choice will do. Then for each 7, |Rx| = 27| Dy}, with
comparability constants depending enly on n, giving '

SN Rl 2 327(0, = [ {01 0(6) > £ dt ~ -11;“,_9”,1 = ca|S] .
A /

M 0

To complete the proof of {A), note that
Scliro:0€0;, 0<r <2}l )R-

3 7

To prove (B), since S is open, it follows that ¢ > ¢ > 0, and ¢ is lower
gsemicontinuous. For convenlence, let us suppose that ¢ = 1. Form the sets
O; as in the proof of (A), except this time we consider only § > 0, noting
that O; is open for 7 > 0, and Op = 8*~1. With Oy, we associate the
rectangle Ry = (1//n)Q1, and with O; for j > 0, we associate a possibly
infinite collection of rectangles R;y as follows.

First, write O; as the union of discs D(w,r) = {6 € 8"~ : |§ — w| < r}
with w € O, and r = 277 dist{w, 80;). By a standard selection process we
can choose from this collection disjoint discs Djp = D{(f;x, ;1) such that
O; C U, D{B5p,57;,). Let Gy, be the smallest cylinder with axis parallel to
8,1, containing the cone {rf: 8 € Dji, 0<r < 27=11 and choose R}, to be
one of the largest rectangles contained in Cj, with maximum radial length
from the origin < 2771, Then R7;, contains the origin on the intersection of
one face with the major axis, and Rj; is contained in § since we assume
that & contains the unit ball and we constructed the discs I3 so that they
can be enlarged by a factor of 27 and still be contained in O;.

To understand this point, it is helpful to visualize S as containing the
union of the unit ball centered at the origin and a cone of length 2% with
vertex at the origin; then the intersection of the cone with 8™1 is a disc with
a diameter that is roughly 27 times the diameter of the base of the cone.
Wa can extend R slightly in the direction of —8,; to obtain a rectangle
(again denoted by R;}\) which properly contains the origin and is contained
in &, and if S is sypmmetric with respect to the origin, we may actually
extend R, so that it is centered at the origin.

Observe that [R5 | & 2/|Dygl, and that |0y & 37, |Djil. Also, there
is a positive constant ¢y < 1 depending only on n such that D{(Bx, corjn)
is contained in the projection of the base of R onto the unit sphere, so
if ¢ = B/eg, then SN {20 < |z} < 2} C U, C# e Thus the collection
{Rjn}sn for Ry = CRj;, is our desired proper starlike cover.
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1t should be pointed out that although this proof demonstrates the exis-
tence of starlike covers, it does not give an optimal starlike cover. For exam-
ple, S may admit a starlike cover {R;} such that #{R; : diam R; < 2%} < oo
for each k, yet this may fail for the cover obtained in our proof.

Proofs of Theorems 5-7. From Lemma 1, we see that if 5 is
starlike with respect to the origin and {R;} is a starlike cover as guaranteed
by Lemma 1, then

(3.22) Xs(2) €D xp, (@),
j =0

with the integrals of the two sides being comparable. Further, Lemma 1
shows that if S is open, we can choose the cover to additionally satisfy

(3.23) xg(z) = xp,(2/c),

where ¢ is the constant such that cR; C 5 for all 7.

In the parts of Theorems 5-7 that deal with necessary conditions, we
require that S be symmetric with respect to the origin in addition to being
open, so that § admits a proper starlike cover by rectangles centered at
the origin. The reason we make this requirement is that if R is a rectangle
centered at the origin and if §g, Q2 are respectively the corresponding linear
transformation and cube of unit edgelength such that B = §rQg, then Qg
is also centered at the origin and hence is comparable to @1 and the unit
ball, with comparability constants that do not depend on R.

In the parts of Theorems 5-7 that deal with sufficient conditions, we do
not require § to be either open or symmetric with respect to the origin. We
obtain sufficient conditions any time we can cover 5 by rectangles containing
the origin (but the smaller the cover, the better the sufficient conditions),
and we do not require the rectangles to be centered at the origin in this case,
because if R is a rectangle containing the origin with associated § g, Qr, then
@r contains the origin, so that Qr C CQ; with C a constant depending
only on n, which allows us to dominate operators involving averages over
®@gr by the corresponding operators involving averages over Qq. A similar
statement holds with ()1 replaced with the unit ball centered at the origin.
The opposite set comparison fails since the origin may be arbitrarily close
to the boundary of @Qg.

With this in mind, Theorers 5~7 follow much as do Theorems 1-3,
because when (3.22) holds, then by (1.10} (recalling that |det 65| = |R|, and
letting Q5 = Qg for R = R;) we have

(324) Msuf(e) SO Mpyuf(a) = O |Ryl85 Mo, uér, £(2)
f=0

. s
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< o Z |Rj!5}_%j1MQ1;M5Rj f(in) .
J=0

Similarly, when (3.22) holds for the starlike set § associated with I ,,, then

(3825)  Toufle) s (n-m Y [ An of(e) S
i 0

7

dt
=m0 2R [ o A, b f(0)
< O |Rsl65, Lbr, f(2).

J

The last inequality in each of (3.24) and (3.25) follows by replacing Qr
with the fixed multiple of @1 or the unit ball that contains Qg for all 7.
Conversely, if R is a rectangle centered at the erigin contained in S, then

(3.26) Mg, f(z) > cMp . f(z) = c|R|67 Moy ubrf (z)
> ¢|RI67' Ma. ubrf(2),

where the last inequality uses the fact that @, and Qg are comparable if
R is centered at the origin, with constants of comparability depending only
on n.. Similarly,

3 dt
(327)  Inuf(@)z - [ Arf(0) S 2 R Lens (@),

0 :
for any rectangle R centered at the origin which is confained in the starlike
set associated with I, and the last inequality follows by replacing Qr
by the multiple of the unit ball contained in @g (using the fact that R is
centered at the origin), and ¢ is independent of R.

Arguing as in Theorem 1, Theorem 5 for Mg, then follows from {3.24)
and (3.26), using the equivalence of (3.3) and (3.4), and of (3.5) and (3.6).
Tn a similar fashion, Theorems 6 and 7 follow via (3.25) and (8.27) from the
corresponding estimates for 1.

Proof of Corollary 4. That (2.6) follows from (2.7) is a direct
result of Theorem 5, observing that (2.3) holds with C; = |Ry|, so that (2.7)
is only a special case of the summability requirement (2.4). The equivalence
of (2.7) and (2.8) may be proven by adapting the part of the argume}lt pf
Lemma 1 showing || = ¥, |R;| to the measures in Corollary 4. That is, in
the language of the proof of Lemma 1, cover Oy by a collection {B;r} for
which.

?Was‘ﬂBﬁD > mai(0) = C;wgf(IBjkl),
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for some C < 1 independent of j, and construct rectangles accordingly.

Finally, the claims for the example may be proven using a modification
of an argument in [Ca]. In the case that the sum which defines ¢ consists
of only one term, the set {g > r} is comparable to a single “rectangle” in
87—l g0 that

m{o>r} < Cl{g > v} (1 +1°g+ﬁm]>—f}"|) '

To show that (2.8) holds, we decompose the integral in (2.8) into an integral
over the set

1
X=<rz1: >r} € e
and an integral over [1, co) —X. To see that the first integral is finite, observe
that 1 is monotone so that for r € X,

+
mv{g > 7-} i\: OM
r(logr)?

and therefore

oo + .
f r*Im{g>r}dr <C f wdr < 00,
5 : r(logr)

For the second integral, we note that if r & [1,00) — X, then m,.{g > r} <
Cl{o > r} {1 + 2logTlogr), giving B

f " Im{o>r}dr< C f ™11+ 2logtlogr)|{o > r}| dr
me)—x 1

<0 f 0" (1+logtlog™p) < co.
Sn—l

Plroofs of C,)oroilaries 3 aund B. Suppose S = §, is open and
let 8" == Sy for ¢'(8) = 0(f)* for some £ > 1. It is easy to see that §' is
Open.‘ Fu’rther,_we see tt_l:;a.t if {R;} is a proper starlike cover of 8, and if
we let R; = (diam R;)*""1;, then {1} is a proper starlike cover for §'. If
we choose R, and 51?,;_ so that @ R, has edgelength | and 65 Qo = R’j
h - . ) - - - o o 3 ity e
1 fan as linear transformations, & R = (diam R;)* 'L(,‘)RJ, giving det 6;;53, =
(diam R;)™(*=1) det 65, .

o Let us prove Co"r(_)llary 3. Since {R]} is a proper cover for &', we see that
& necessary conditions for Mg , to satisfy {2.1) for p > 1 are

Qe sagu) g mor )" <
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for all cubes Q. Letting n = diam R;, a substitution in each integral shows
that this may be rewritten as

o /g o\ LE

Q| 1( | 5ij) ( [ (srv) /p) "< <
?fﬂlQ M'IQ

for all cubes @ (recall cQ denotes the cube {cz : ¢ € Q}), and relabeling

cubes shows that this in turn is equivalent to

(3.28) ‘Q|#L/TL~1( f 5ij)l/q( f (5ij)~p’/p)1/p.
Q q

C(diam Ry )t 8 n—s)
- LR |

Letting C; = (diam R;)? 9= we see that the condition >, Cj < oo
is equivalent to (2.5), and therefore by part B of Theorem 5, if {2.5) holds
then the sequence of necessary conditions (3.28) for the operator Mg . to
satisfy (2.1) are in fact sufficient for M, to satisty (2.1). The argument for
Corollary 5 is similar, once one observes that |z/r — zg| = (1/7)lz — Zrql,
and sglz/r) = r""Fs,.q(z).

Corollary 3 has an analogue for strong type estimates, as mentioned after
the statement of Theorem 5. To describe it, using the notation above, we
agsume that 1 < p < ¢ < oo and that v, w satisfy

/u-1/p 14 1 —rp'/p M ¢
Qe ([ anyw) {57 [ Gmpr) S
0 Q I

for all 7, all cubes @, and some r > 1. We then obtain as above the following
analogue of (3.28):

/e ( éf 6R,.w)”"(l%|« Qf (6ij)"””“’)

c{diam Ry )1~ (n—s)
- 1251
From this, if (2.5) holds, we see from the strong type result of part (C) of
Theorem 5 that

1/(re'}

HA’IS,po“q,w < BH-fHPﬂJ .
Finally, we will verify the remark made after Theorem 1. As before, if
1< p,g <ocand 0 < pu<n, wesay that the ordered pair (w,v) € AL if

v f o) ([ o) s
Q Q
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It follows easily by applying Hélder’s inequality to the integral involving v
that A;‘g,zé is nested in 4, ie, if 0 < § < 1 then A%,f;o‘ C Ak . Similarly,
by applying Hélder’s inequality to the integral involving v in (1.3}, it is not
difficult to check that both (1.3) and (1.4) hold if (w,v) € Age{f;a for some
& satisfying 6 < 1 — {n — u}/(v+ 1). In the special case when w =wv, g =0
and p = g, note that the A% = condition reduces to the 4, condition defined
in [M], i.e., (w,w) € A ilf w € A,. Consequently, if w € Apy for some
§ <l-n/(y+1),andif y+1 > n, pé > 1, then by Theorem 1, My, satisfes
the weak type estimate ||Mgof|lre.oo ) < €| fllpw. Finally, using the fact
from [M] that a weight in 4, is also in Ay, for small &, it follows that if
w e A;u(l—-n/(-y+l)): p(l — 'Yn?) > 1and y+1 > n, then ”ﬁf&(]f”m-.m(w) <
&|| fllrw for all 7 in an open interval containing p. Using the Marcinkiewicz
interpolation theorem, we see that these weak type estimates imply the
corresponding strong type estimate at r = p, thereby proving the first part
of the remark after Theorem 1.

The second part of the remark can be derived by similar reasoning, after

noting that (w,v) € A% is the same as (v™%'/?,w=2'/1) ¢ Al s and wsing

this to show that both (1.3) and (1.4) hold if (v=?/# 1=7/9} ¢ A%ﬁ,b for
some 6 < b —(n— p)/(y+1).
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