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A. characterization of some weighted norm inequalities
for the fractional maximal function

by

RICHARD L. WHEEDEN (New Brunswick, N.J.)

Abstract. A new characterization is given for the pairs of weight functions »,w for
which the fractional maximal function is a bounded operator from L{{X) to L, (X) when
1<p<qg<ooand X is a homogeneous space with a group structure. The case when X
is n-dimensional Euclidean gpace is included.

1. Introduction. The purpose of this paper is to derive a characteriza-
tion of the pairs of weight functions v, w for which the fractional maximal
function is a bounded operator from L2(X) to LL (X} when 1 <p < g < oo
and X is a homogeneous space. The most precise results occur if X also
has & group structure. In the basic case when X is n-dimensional Euclidean
space R™, the main result to be proved gives a simple necessary and suf-
ficient condition in order that a pair of nonnegative measurable functions
v{z),w(z) (hereafter called weight functions) satisfy the norm inequality

wy ([ Mseru@e) " <ol [ irErea)”
: | : l<p<g<oo,

where
. _
M = sUp T———- dy, O<a<mn,
af@) = S0 rmra 1}[ fW)dy

B denotes a ball in R™, and ¢ is a constant independent of f.

A necessary and sufficient condition for v and w to satisfy (1.1), including
even the case when q = p, was given by E. Sawyer in [S1], but the condition
considered below is simpler than the one in [31] in the sense that it does
not involve the operator M, itself. The exact characterization is given in
the following thecrem.
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258 R. L. Wheeden

THeEOREM 1. Let 1 < p < g < oo ond 0 < o < n. Then (1.1} holds if
and only if v, w satisfy

L/q L
ulz) ~1/-1 gy} "
(12 ( f (|B|1/”+|$—.’EB|)(” a)qd ) ( f ’U(CL‘) d.l?) <C

B

for all balls B C R™, where zg is the center of B, I/p+1/9 =1, and Cis
a positive constant which is independent of B.

Condition (1.2) is the same as that given by M. Gabidzashvili and
V. Kokilashvili in {GK] in order to characterize the weights for which there
is a weak-type inequality of the form

@) e az) "
{z€R™:| Lo fz)| >4}

(1.3)  supt
>0

( f Ef(a:)\q w( ~1/{g—1) d:c) ~/q’,

Rn
1< p<g< oo, where 1/g+1/¢" =1 and I, f is the fractional integral of f
defined by

Iaf(-’ﬂ). = [ F*M* dy.

ol —yre

Note that I, is self-adjoint, as distinguished from M,, and that (1.3) is the
weak-type inequality corresponding to the dual version of the inequality

ay  (J 1Iaf(m)|qw(x)dm)1/q£c( [ |f(a:)|pv(m)dm)1/p.
B" R"

As pointed out in [SW1], a corollary of the main results of [GK] and [S3]
is that {1.4) holds for 1 < p < g < oo if and only if both (1.2) and

1/q U(m)_I/(P"l) 1/pl
(1.5) (B‘I w(z) dm‘) (R[ (B 1 o~ ag 0= d.'r;) <C

hold. By Theorem 1 with w,v, ¢ and p replaced respectively by v=+/(r—1)
w1 p and ¢, it follows that (1.5) characterizes the inequality “dual”
to (1.1), namely, the inequality

(1.6) (f iMaf(w)lp’U(m)“l/(p"l)dw)m”
B™

: 1/q'
<o [ @) wlz) o ban)
Rn
Combining results, we immediately obtain

l<p<g<oo.
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THEOREM 2. For 1 < p < ¢ < oo, (1.4) holds if and only if both (1.1)
and (1.6) hold.

We also note, as shown. in [SW1], that (1.2) is equivalent to the simpler
condition

(1.7) ‘Blﬂm_l( f w(w)dm)l/q< f U{x)—l/(lv—l)dm)l’lp’ <C
B B

in case the weight ¢ defined by o = v~/ (=1} satisfies the following reverse
doubling condition:

(1.8)  There exist ,& > 1 such that o{#B) > So(B) for all balls B,

where 8.2 denotes the ball which is concentric with B and whose radius is
¢ times that of B, and ¢(B) = [, o(z)dz. Condition (1.8) is implied by
the doubling condition ¢(28) < co(B) for all B. It is also true that (1.5) is
equivalent to (1.7) if w satisfies the reverse doubling condition. A sufficient
condition for (1.1) when p < ¢ which is closely related to (1.7) is given in
[P] and can also be derived by using the methods in [SW1]. In order to
give an additional idea of the relations between the conditions, we mention
in passing the well-known fact that (1.7) is necessary and sufficient for the
weak-type inequality

1
supt( f w(z) d:c) / < c( f |f(z)Pu(z) dﬂ.’:) v
20N eRY Mo ()t} R™
for any pair of weights and any 1 < p £ ¢ < c0.

Except for dealing with difficulties which are related to the fact that M,
is not self-adjoint, the techniques needed to derive Theorem 1 are closely
related to ones in [S1], [82] and either [GK] or [SW1]. As we shall see, the
behavior of the fractional integral plays a role in the proof of Theorem 1,
which is one reason why the results in [GK] and [SW1] are useful. Included
in [SW1] is a method which allows an extension of the basic theorem in
[GK] to situations where the Besicovitch covering lemma does not hold.
Such an approach is particularly useful for deriving a version of Theorem 1
in the setling of a homogeneous space with a group structure. In order to
state this more general result, we need several definitions. We consider a
quasi-metric space (X, d) and a doubling measure x on the Borel subsets of
X te, d: X x X — [0,00) is assumed to satisfy

(i) d(z,y) = 0 if and only f z =y,
(i) d(zx,y) = d(y,x) for all 2,y € X,
(iii) there is a positive constant K such that d(z,y) < Kld(z, 2} +d(z,¥)]
for all z,y,z € X,

and there is a positive constant ¢ such that
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(iv) w(B(z,2r)) < Cu(B(z,r)) for all z € X, r > 0, where B(z,7)
= {y € X : d(z,y) < r} is the ball of radius r with center .

We shall also assume that every annulus Bz, R)\ B(z,r), 2 € X, 0 <
r < R < oo, is nonempty, and that X has a group structure with respect
to the operation “+” such that for all @,9,2 € X and all balls B ¢ X, the
following two invariance properties hold:

(v) d(z + 2,y + z) = d(z,y),

(vi) p(~B + z) = p(B), where —B={z: —z € B}.
We do not assume that X is a commutative group. Instead of assuming right
invariance in (v) and (vi), we could assume left invariance without affecting
the validity of Theorem 3 below. It follows easily from (v) and (ii) that
d(0,—z) == d(0,z) for all x € X, and it follows from (vi) (by taking z = 0)
that u(—B) = u(B).

For 0 < v < 1, the fractional maximal fanction M, J of fis defined by

(L9) M, f(z) = sw —e [ 10} duly).

st WE

Here we have abused the notation M., in relation to the definition of the clas-
sical fractional maximal function given earlier; by letting v = a/m in {1.9),
we get the classical definition in case X = R™, d(z,y) = [z — yl and
du{z) = dz.

Given a ball B, x5 again denotes the center of B, and we use the notation
B,y for the ball with center 2 and radius d(z,y), ie.,

The following theorem is the main result of the paper.
THEOREM 3. Let (X, d, p) satisfy conditions (1)~(vi) above. Let } < p <
g< oo, 0<y<1, end Myf be defined by (1.9). Then the norm inequality

wo)  ( f @)’ <o [ i)
X X

holds for all f, with ¢ independent of f, if and only if

w(z) _ La
1) ( S GET d"‘(‘”))

X
. 1/p
><( j t)(ﬂ:)"”“"‘l)du(m)) g <C
B
for all balls B X, with ' independent of B.

For a homogeneous space X which has no group structure, the following
result holds.
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TuroreM 4. Let (X, d, p) satisfy only conditions (1)—(iv) above. Let 1 <
p<qg<oo,0<y <], and M, f be defined by (1.9). Ifo~ V=1 dy satisfies
the doubling condition, then the norm inequality (1.10) holds if and only if

(1.12) M(B)’Y“l( | wdu)l/q( el dﬂ)”p' <C
B B

for oil balls B C X, with C independent of B.

Condition (1.12) is of course analogous to (1.7). With the additional
agsumption that wdp is a doubling measure, Theorem 4 follows from its
analogue (see Theorem 3(1) of [SW1]) for the fractional integral I, f defined
by

) fly)
L] (z) = J T ),
by using the fact that M., f(z) < I, f(z).

In Section 2, the necessity of (1.11) for the norm inequality if proved. The
proof does not require conditions (v) or (vi) and so also shows the necessity of
(1.12) under the hypothesis of Theorem 4. The sufficiency results are proved
in Section 3. As mentioned earlier, many of the ideas used in the proof are
variants of those in [SW1] and [S1]. There are, however, some differences,
and since the method may be useful for still more general situations*(e.g.,
more general maximal functions), we have tried to give most of the details
for the parts of the proof which are different.

9. Necessity. In this section, for 0 < < 1 and a ball B with center
zp, we use the notation

1
&y o) =GB r B T

We also let o = v~ 1/~ g0 that (1.11) takes the simple form
i/q 1/p'
(2.2) ( f shw dp) ( f T dp,) <.
X B

Assuming that 1 < p £ ¢ < oo and (1.10) holds, we fix a ball B and choose
[ = oxp in (1.10), obtaining

23) (J atstoxpywan)”" <ol [ o)
X B

We will show that

(2.4) splz) f odp < c“;Mn,(UxB)(m) . zc X,
B
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with ¢ independent of « and B. To prove (2.4), first note that if y € B and
z € X then

dly,2) < K[d(y,zp) + d(zs,z)] by (i)
< K[r(B) + d(zs, 2)],
where r(B) denotes the radius of B. Thus, B is contained in the ball B,
with center  and radius K{r(B) + d(zp, z)], and consequently,

(2.5) thaxme)aﬁl—; f Xy = g [ o

Next, note that B, is contained in the ball B* with the same ceunter g as
B and radius K(2K + 1) max{r(B}, d{z,zp)} since if z € B, then
d(z,zp) < K{d(z,z) + d(z,z5)} < K{K[r(B) + d(zp, )] + d(z,z5)}
< K(2K + 1) max{r(B),d(z,zg)} .

In particular,

w(Bs) < p(B)
< cxg max{u(B), 4(Brgzx)} since p is doubling
< esg(a) -7

Combining this with (2.5) proves (2.4).
By (2.3) and (2.4),

(fs%wdp)l/qfadusc(fad#)”p;
‘ B B

and (2.2) follows from this in case [ o du # 0, 0o by division. If [; o du =0,
(2.2) is immediate. If [ ¢ dpu = +oc, then by applying the argument above
to the function v(z) + &, € > 0 (for which the corresponding function ¢ is
bounded), and passing to the limit, we see that

f sbwdp =0.
X

Hence, w = 0 a.e. (du) and (2.2) follows.

3. Sufficiency. In this section, we prove the sufficiency parts of both
‘Theorems 3 and 4, beginning with Theorem 3. The proof for Theorem 4 is
considerably simpler and given at the end of the section.

In order to define a dyadic version of M., we use the notion of grids of
dyadic cubes from [SW1], Lemma (3.21). Assuming that (X, d, u) satisfies
(i)-(iv) and that annuli are not empty, we then know there exists A > 1 (in
fact, A = 8K® will do) so that for any (large negative) integer 7n, there are
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points {z} and Borel sets {Ef} in X for k =m,m+1,... and j =1,2,...
such that
(a) B(z§, ") C EF C Bz, A1),
(31 (b) X= UJE;‘ and the E;“ are pairwise disjoint in J for each k&,
(c) if k < I then either E¥ NE} =0 or EF C E!.

We let D = Dy, = {Ef 13 > 1, k > m} and refer to the sets E;” as
dyadic cubes and denote them by Q. If @ = E¥, we let s(Q) = A* and refer
to s(Q) as the sidelength of . Define

M, f(z)= sup
B:x€B
r(B)zA™

1
W!if]d#

and also the dyadic versions

MY flz)= su
W’mf( ) QeDEeQ#Q)l i

1
M = S —ee———— | |fldp, z€X.
7. f(z) Qe'D:mlejQ+z w(Q+ 2)1-7 Q-{z

In the following lemma, which is analogous to Lemma (4.7) of [SW1]
(and in the spirit of results in [FS] and [S1]), we also need to assume that
X satisfies (v) and (vi), We use the standard notation

ir
g, = ( [ 1F@Po(@)az)
X

flfl “,

1< p < oo, ete.
LeMMA (3.2). Let X satisfy all of (i)-(vi), 1 < g <00 and w(z) = 0.

Then
My Flics,,, < esup 5%, 2 il

wdp

with ¢ independent of m and f.
Proof For N € Z, N > m, let By = B(0,AY) where 0 denotes the
identity clement of X. We claim that

1
3.3 st e [ | fldp
( ) B:a:gﬁ (B)l v Bf
p\mf;’.l'(ﬁ)(AN
f Md{nzf Vdu(z) ifz e By.
BN+3) 5
N3

The conclusion of thc, lemma follows easily from (3.3) by applymg Min-
kowski’s integral inequality and then letting N — 0.
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To prove (3.3), fix x € By and choose a ball B with © € B and A™ <
r(B) < A¥ for which the left-hand side of (3.3) is less than 2 [, |f|du
x u(B)T~L. Pick k with m+1 < k £ N such that A1 < p(B) < A Let 2
be all those z € B3 for which there exists @ € D with s(Q) = Mt and
B C Q+ z. For such z and @, we have Q@ = Ef*’l for some 4 and

Q42 C BESTL AT 42 by (31)(a)
= B(¥ 4 2,05 by (v).
Thus B C B(zF* 4 2, A¥+2), and since r(B) > A¥~1, it follows by doubling
that w(B(zFT! 42, A*2)) < cu(B), and therefore u(Q+2) < cu(B). Hence,

1

— | |f]d S—-—-ET | fldpe
W(By Bf ST (AR "foz

<My, flz) siwezeBCQ+zandQeD.

This shows that the expression on the left in (3.3) is at most eAd ffl};n,z flz)if
z € 2. Consequently, (3.3) follows by integration with respect to du(z) over
12 if we show that p(£2) > eu(Byys), ¢ > 0.

The proof that u(f2) > cu(By+3) s essentially identical to the proof of
the corresponding estimate in [SW1}, Lemuma (4.7). For completeness, we re-

peat the argument. We first show that for any j and any z € —B(m'}“” AR+
z, it is true that B € EFF + 2. Since Bz ™, A6+  EFFY by (3.1)(a),
it is enough to show that if y € B then y — 2z € B(m";”*’l, ALY Note that

z—z€ B(m?“"l,)\"‘), so that

d(y — z, w;-“H) < Kld(y — z,2 — 2) + d(z — 2, mj"’l)]
< Kld(y,z)+ A7 by (v)
< K[K{d(y,z5) + d(zs,2)} + A¥]
S KK+ X1+ 0% since 2,y € B and »(B) < A
= K(2K + 1))F < AFHL
as desired, since K (2K + 1} < A (= 8K%).
Now let
T={j: EF 0 Bla, V) A4 0}
We claim that —B(zi T, A¥) 42 C Byys ifj € I Let w & Blatt, Ak). We
must show that d(—w + z,0) < AN*3, Since 7 € I, there exists v & B 0
Bz, AV+2). By (3.1)(a), Bf " € B(afT, MF2), so that u € B(xb T, M2
too. Therefore, d(u,m?“) < A2 dlu, x) < AN+ and d(w,m?'*"") < AR
Also, d(z,0) < A since © € By. Hence, by repeated (3 times) application of
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the triangle inequality (iii) and since k < N, we obtain d{w, 0) < 4K3ANT+2,
Thus,

d{—w 4+ z,0) < Kld{-w + 2, z) + d(z, 0)]
< Kld(~w, 0) + A"]
= K[d(w,0) + A"
< KARSAN+2 43N] < AN 48

by (v) and since z € By

since K [4K° + 1] < A. This verifies the claim above.
It follows from the estimates in the previous two paragraphs and from
the definition of {2 that 2 contains ——B(xf'i'l,)\k) + 1z if 7 € I'. Since the

sets E;"‘"'"l are pairwise disjoint in 7, it follows from (3.1)(a) that the sets
-—B(m;’“, ABY o+ o are also pairwise disjoint in 7. Hence,

u($2) 2 D" (=Bt + 2)

Jei
= > (BT, ) by (vi)
Jjer _
= c:Z /.L(E;.+l) by (3.1}(a) and doubling
jer

> eu{ Bz, AN TE))
> cp(Bla, AVH)
= cu(B0 A 4 2) by (%)
w= ep(B(0, A3y = cu(Byys) by (vi)

since B(0, A¥*+3) = —B(0, \NV+3). This completes the proof of Lemma (3.2).

by definition of I" and (3.1)(b)
by doubling

Lemma (3.2) reduces the proof of {1.10) to the proof of the corresponding
inequality for M,;l!jn.,z f with a constant which is independent of m and =z.
By observing at each step that the constants are independent of z, we will

take z = 0 for simplicity. Replacing f by fe, we then want to show that
(3.4) M (Fo)lpe < ellfllnr

W ey

with ¢ independent of m and f, provided that 1 < p < g < o0 and (1.11)
holds. Following the ideas in [S1], let

Xpy={reX: Mff?;n(fa)(:c) > 283,

80 that

v o]

(3.5) [ M8 (o) wdp = Y ot

N k=m—00

I wdgt.

X \Xp41
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We may assume without loss of generality that f = 0. Let {Q;v }; be the
maximal (with respect to inclusion) dyadic cubes in D with

1 k
e flT d'l.b > 2%,
W@ Q{,

Then the Qj,f are pairwise disjoint in j by their maximality and (3.1)(c), and
X, =J; Q%. Hence (3.5) is at most a constant times

(3.6) Z( G ffcrd,u)q [ wdp= Zka(m—ffadM)

QINX k1 QF
where
Ak e d
(37) ik = f O’dp:, bjk = W f W aLh .
Q¥ ! Q?\Xie-u

LEMMA (3.8). Let {Q:}ier be a collection of dyadic cubes in the sense of
(3.1), and let {a;}iar and {bi}ier be sequences of positive numbers which
satisfy for given 1 < p < g < 00 the condilions

f odu < ca; and E b < cafo/p,
Qi BQiCQiy

with ¢ independent of 7 and iy. Then
1 a1/ 1/p
;| — <e P .
[;bl(az-{! fadu) } _c(Yff adu)

The lemma is proved in the usual Euclidean case when p = ¢ in [SW2]
and when ¢; = b; and p < ¢ in [SW1]. The proof for the general case is
similar and is omitted. Later in the section, for the proof of Thecrem 4,
we will need a slightly different version which is valid for cubes with less
structure than (3.1) but for a;, b; with more structure.

The desired estimate (3.4) follows by applying Lemma (3.8) to (3.6),
provided we show that

(3.9) (¥ bj-p;)lfqﬂc( [ adg)l/p

4.k Qi.'
Qfc; ’

for each %, with c independent of s, £. Up to this point in the proof, we have
essentially followed [S1]. We now estimate the left side of (3.9) by duality.
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Write Q% = Qg and

ik

F(z) = W

€= L e
QrcQo

and note that the sets Q;?’ \ X+ are pairwise disjoint in both § and k. Thus
the left side of (3.9) equals

( f Fiw d,u) M

Qo

= sup Fgdu where L = j5a .

az0:liglle €1 5 w

1
= sup j‘[ ”“73;:;xgk(y) [ sdujoly) duly)
[! Q;, CQD Q?\X;c.{_l
by definition of a;x

== gup f[f%(m,y)g(:c)dp(m)]cr(y)du(y)

“ o

where

~ 1

k(z,y) = Z PICT. XQJF(TU)XQE\X‘ 1(55)

o e s
QfcQo

Since the sets Qk \ X1 are pairwise disjoint in j, k, given z,y there is at
most one term of the sum with X QE\ X _(z) # 0, and y must belong to the

same Q. If QF = EI, then @,y € E] implies that d(z,y) < cAl, so that
By = Blz,d(z,y)) C B(:c,c/\l). Thus,
w(Bgy) € ep(B(z, A)) by doubling
< en(QF)
E!, (3.1)(a) holds and = € QF. 1t follows that

- 1
Le—r—— -
Moy < ooy

by doubling again since Q’f =

Now define
1
(3.10) k(. y) = W

and note that k(z,y) ~ k(y,z) by doubling. We have shown that k < ck
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and that the expression on the left in (3.9) is bounded by a constant times

(3.11) sup (Tglo dp,

9209251 &)

where T is the integral operator

(3.12) To(w)= [ Kz, y)e(y) duy)

X
and I is as before. (The support of g could be restricted above to @p, but
this is not necessary for our purposes.) To estimate the size of Ty, we will
use the following lemma for integral operators. We use the notation |E|wd,
for the wdy measure of a set &, ie.,

| Blwap = fwd,u.
E
Also, if k(z,y) is the kernel of an integral operator (3.12) with k(z,y) 2 0,
and if B is a ball in X, we write
(3.13) w(B) = sup

w,yEB
d{z,y)Zer(B)

k(x,y)

where ¢ is a suitably small positive constant depending only on the constant
K in (iii).

Levwma (3.14). Let (X,d,p) satisfy all of (1)-(vi), let 1 < p < g <0
and let T be an integral operator of type (3.12) with k(z,y) = 0. Assume

also that k(z,y) = k(y, ©) and that there are constants C1, Cy > L ande > 0
so that

(3.15) k(z,y) <Cik(z,y") o dlz,y) < Cad(z,y)
and
¢(B) r(BH]° .
1 / o !
(3.16) 2B < CL"(B) for all balls B', B with B' C 2K'B.

If w,v satisfy
.I/I}I

(fwd,u)l/q( f min{cp(B),k(m[g,m)}”’a(m)du(m)) Le
B X

for all balls B, where xg is the center of B, then

(3.18) supil{e € X [Tf()] > thuyd, < el

v

(3.17)

This is shown (but not stated as a theorem) in [SW1]: see (4.14) and
(4.15). In fact, the version proved there does not require k(z,y) = k(y, ¢).
In the case of the classical fractional integral on R™, the result was first
given in [GK].
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In our case, the kernel & defined by (3.10) satisfies (3.15) since y is
doubling. Let us assume for the moment that (3.16) is also valid, noting
that

: 1 1
3.19 p(B) = - R~
(3.19) B s sB G (BN WB
in our case by doubling. Now write (3.11) as

o0

(3.20) sup f {x € Qo:Tg(z) > t}saudi,
gz=0:llgllz sl 5

with L = LY

b’ dy
respectively by ¢/, ', o, and w'~7. Since p < g implies that ¢’ < p/, it
follows that the integral in (3.20) is at most

, and apply Lemma (3.14} with p,q,w and v replaced

o0

J min{Qoloaus (et glle)” }

0
(=}
< [ min{|Qoloau, ¢/t”} dt = ¢l Qal,1F, »
o}

which is the desired estimate (3.9), provided that the analogue of (3.17) is
valid. This analogue is

(o (o e )<

by (3.10) and (3.19), and is valid since it is the same as hypothesis (1.11)
of Theorem 3. This completes the proof of Theorem 3 except for verify-
ing (3.16).

To verify (3.16), note by (3.19) and doubling that (3.16) is the same as

!

pitw <o 5 ) wB@m, o<,

for (a different) ¢ > 0. This condition is in turn easily seen to be equivalent
to the following sort of reverse doubling condition (ef. (1.8)):
(3.21)  There exist o, 3 > 1 such that p(B(z,ar)) 2 Bu(B(z,r)) for all
ze X, r>0 _
The classical reverse doubling condition is (3.21) with o = 2. Condition
(3.21) follows from the doubling property of ¢ in any homogeneous space
X (ie., (v) and (vi) are not needed), as we now show. Given z € X and
s > 0, pick y with s < d(z,y) < 2s (we assume as always that anmuli are
not: empty}. Then, for any 2,

s < dlz,y) < Kld(z,2) + d(z,9)],
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so that if z € B(y,es) for 0 <& < K™' then (K—' —2)s < d(x, z). Letting

§ = K-' —g, we see that § > 0 and B(y,es)N B(z, §s) = §. Also, for such 2,
diz,z) < K[d(z,y) + d(y, 2)] < K[2s +es] = K(2 +)s,

so that B(y,es) C Blz,8s), 6 = K(2 +¢). Since § < 8, it follows that both

By, es) and B(z,8s) are contained in B(z,6s). Since they are disjoint and

4 is a measure,

(3.22) u(B(z.05)) > p(B(y,es)) + w(B(z, 65))

Next note that B(x,fs) is contained in a fixed enlargement of By, e38) since
if z € B(z,0s) then

d(y, 2) < Kld(y, o) + d(z, 2)] < K[2s + 0s] = 5(_2_619)53_

Thus, by doubling, u(B(y,es)) > nu(B{(=z,8s)) for some 7 depending only
on p and K, 0 < n < 1. By (3.22),
w(B(z,05)) > nu(B(z,0s)) + p(B(z, 6s)) ,
so that u(B(z,05)) > (1-n)"1p(B{x,8s)). This proves (3.21) as can be seen
by letting A = (1 — )™}, replacing §s by r and writing #s = 86~ v = ar,
where ov = 67" hy definition. This completes the proof of Theorem 3.
The proof of the sufficiency part of Theorem 4 is much simpler. We

use the cruder version of “dyadic” balls mentioned in [SW1, i.e., for A =
K +2K? and each k € Z , there is a sequence {B}'}; of balls of radius \*

such that if Ej‘ denotes the ball with radius A*~! and the same center as
Bj{“) then
(a) every ball in X of radius A*~! is contained in at least one BF,
(b} 225 xpn < M for all k with M independent of k,

J
(c) BENB} =0iisj, k€L
‘We call the balls B;“ dyadic balls, and if B is a dyadic ball, say B = B;“, we

write B = E;“ We also write r(B) for the radius of B. A useful property of
dyadic balls is as follows.

(3.24)

(3.23)

If {Ba} is a collection of dyadic balls and {B;} is a subcoliection
of maximal (with respect o inclusion) balls, then the balls {B;}
are palrwise digjoint.

These properties are taken from (3.5) and (3.6) of {SW1]. Now define the
corresponding dyadic maximal function
dy . 1
m¥ flx) = sup ——m— du.
v 1) dyadiic):B p(B) - f 171 du
el B
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We claim that

(3.25) My flz) < emiPf(z), zeX,

with ¢ independent of z. Fix z and B with z € B, and choose k such that
M-l < ¢(By < A¥. Then B = B(zg,r(B)) C Bzp,\¥) C B;?’H for some
j by (3.23)(a). Since p is doubling and B,B;‘"‘HL have comparable radii, it
follows that ,u(Bf*'l) < eu(B), and consequently

1 . 1
S fldy < ¢—eyere— dy < emSY ),
wmy J Mls e J 1< o ()6
K
and (3.25) follows, We remark that (3.25) could also be accomplished by
defining m‘}‘f f with respect to suitable enlargements of the sets in the grid
used in the proof of Theorem 3.
The simple estimate (3.25) (in place of Lemma (3.2)) is what allows us

to prove (1.10) without assuming that X satisfies properties (v) and (vi). In
fact, by (3.25), it suffices to prove that

Ime¥ (Fo)lizz,, <clflee,,
f > 0. Now letting

Xp = {z € X :m¥(fo) > 25},
we see as before that if f > 0 then

4
f[miy(fd)lqwd#Eijk(a% ffod,u) ,
X k.j

7 k
Qj

(3.26)

where {Qi" }; are maximal dyadic balls satisfying

1 k
[ fodp> 2,
w(QEP- QJ;

and

q
. ajk
Uyl == [ crd,(.g, bJ;, = {————:mm} f wd.,u.

. 'U(QJ') X

Qf 9;
The main difference between the present situation and the earlier one is
that now the Q’j-“ belong to the family satisfying (3.23) and (3.24). rather
than (3.1). Algo, for simplicity, in the definition of by we now use t'he integral
of w over all of QF rather than over QF \ Xj41. It follows immediately from

J
hypothesis (1.12) that

bip < c( f c:rd,u.)wiD = ca%p.
Qk
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Thus, (3.26) is bounded by a constant times

1 q
S (L [ jean)
ik *
Since odp is a doubling measure, we may apply Lemma (3.15) of [SW1] di-
rectly to see that the last sum is at most ¢/|f[%» , which proves Theorem 4,
LX)

provided that we verify the condition

Z a%‘" < cald? .
Qkcql
This condition is proved exactly as (3.20) in [SW1}, using ¢ > p and the fact

that odu is a doubling measure, and in fact does not require the maximality
of the QF.
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Pseudotopologies with applications to one-parameter groups,
von Neumann algebras, and Lie algebra representations

by

JAN RUSINEK (Warszawa)

Abstract, For any pair B, F of pseudotopological vector spaces, we endow the space
L{E, F) of all continneus linear operators from F into F with a pseudotopology such thai,
if G is a pseudotopological space, then the mapping L(E, F) x L{F,G) 3 {f,g) — gf €
L{E, ) is continuous. We use this pseudotopology to establish a result about differentia-
bility of certain aperator-valued functions related with strongly continuous one-parameter
semigroups in Banach spaces, to characterize von Neumann algebras, and to establish a
result about integration of Lie algebra representations.

0. Introduction. If E is a Banach space and L(E) is the space of all
contimious linear operators in F, then, if L(E) is endowed with the stan-
dard norm topology, then the composition of operators in L{E) is con-
tinuous, When L(E) is equipped with either the strong operator topol-
ogy or weak operator topology, the composition of operators in L(E) fails
to be continuous unless F is finite-dimensional. If F is a Fréchet space
with a topology that cannot be determined by a single norm, then, as
proved by Bastiani [B] and Keller [Ke], there is no reasonable topology
on L(F) under which the composition of operators in L(F) is continuous.
In this paper, for any pair E, F of pseudotopological vector spaces, we en-
dow the space L(E, F) of all continuous linear operators from E into F
with a pseudotopology such that, if G is a pseudotopological space, then
the mapping L(E, F) x L(F,G) > (f,9) — gf € L(E,G} is continu-
ous. We use this pseudotopology to establish a result about differentia-
hility of certain operator-vained functions related to strongly continuous
one-parameter semigroups in Banach spaces, to characterize von Neumann
mm_’lQ.‘)l Mathematics Subject Classificotion: Primary 46A99; Secondary 47D05, 46L.10,

20160, 171318, o N )
Key words and phroses: pseudotopelogy, continuity, compos.utlon of. op-eriators, dif-
ferentiability, one-parameter semigroup, von Neumann algebra, integration, Lie algebra
representation.
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