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But this implies (24) since

1 3
i ——E = 0.
niingﬂﬂk_lwk ¥
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Montel and reflexive preduals of spaces of
holomorphic functions on Fréchet spaces

by

CHRISTOPHER BOYD (Dublin)

Abstract. Tor U open in a locally convex space F it is shown in [31] that there is a
complote locally convex space G(U) such that G(U)} = (H(U), 7). Here, we assume U is
balanced open in a Fréchei space and give necessary and sufficient conditions for G(U) to
he Montel and reflexive. These results give an insight into the relationship between the
and 7, topologies on H(L).

1. Introduction. Let U be an open subset of a locally convex space E.
We denote by H(U) the space of holomorphic functions from U to C. We
shall say thal a seminorm » on H(U) is 7g-continuous if for each countable
nereasing open cover {{/, }y of U there is a positive integer ng and €' > 0
such that p(f) < C||f|uv,, for every f € H(U). In [31}, G(U) is defined
to be the space of lincar forms on H(U) which are mg-continuous when re-
stricted to the locally bounded sets. We give G(U) the topology of uniform
convergence on locally bounded subsets of H(U'). Mujica and Nachbin prove
that G(U) = (H(U),7s) and then proceed to show that the topological
properties of G/({J) are useful in characterizing the topological properties of
H(U). This result is a topological generalization of a result of Mazet [27]
who had previously shown that G(U)" = H(U). In [14], the author further
investigated the space G(U) and obtained necessary and sufficient conditions
for the inductive dual of G(U) to be equal to its strong dual and thus for
(H(L), 1) to be equal to G(U),. One of the conditions for this to happen is
that CX(U) be distinguished. We investigate necessary and sufficient concli-
tions for G(U) to be Montel and reflexive. Among the conditions for G(U)
to be Montel is that the 7o and 7, topologies coincide on () while among
the conditions for reflexivity is thas the 7y and 7, topologies are compatible
on H(U7). This imaplies that for U7 balanced open in Tsirelson’s space we have
(H(U), 70) == (H(U),7.,) while 75 # 7. In the final section we give further
examples of Fréchet spaces with 7y 5 7, but with both of these topologies
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being compatible. We finish by studying H(K) for K balanced compact in
a Fréchet space with the density condition.

In [14] the author shows that for each locally convex space I and each in-
teger n there is a complete locally convex space, Q("E), such that Q("E){ =
(P("E), 7,) and for each compact subset K of E there is a complete locally
convex space, G(K), such that G(K){ = (H(K), 7). The space (P(™E), 7)
is the space of n-homogeneous polynomials on E with the topology induced
by 75. If U (resp. K) is balanced open (resp. compact) then {Q(™"F)}, is an
S-absolute decompaosition for G(U) (resp. G(K)) (sce Propositions 4 and 5
of [14]).

We refer the reader to [19] for background material on infinite-dimen-
sional holomorphy and to [24], [25] and [34] for background material on
locally convex spaces.

2. Montel preduals of locally convex spaces. In this section we give
necessary and sufficient conditions on H(U) for G(U) to be Montel. We first
state a technical lemma which is part of Lemma 6 of [7] and which we will
find useful in subsequent sections.

LEMMA 1. Let E be a (complete) infrabarrelled locally conver space. Then
E is topologically isomorphic to a (closed) subspace of (E{),.

The following theorem characterizes the Fréchet spaces for which G(U/)
is Montel. Part of the following theorem is proved in [21] and [4].

THEOREM 2. Let E be a Fréchet space. Then the following are equivalent:

(a) 70 = 7w on P("E) for every integer n.

{b) 10 = 7, on H(K) for one (and hence every) balanced compact subset
K of E.

(¢} 79 = 7, on H(U) for one (and hence every) balanced open subsel U
of E.

(d) (H(K),7w) is Montel for one (and hence every) balanced compact
subset K of K.

{e) (H({U),7) is semi-Montel for one (and hence every) balunced open
subset U of E.

(£) (H(U),75) is Montel for one (and hence every) balanced open subset
Uof E.

(g) (P("E),7.) is Montel for every integer n.

(h) Q("E) is Montel for every integer n.
: b(*i) G(U) is Montel for one (and hence every) balanced open subset U
7} B

() G(K) is Montel for one (and hence every) balanced compact subset
Kof B
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Proof The equivalence of (a) to (g) follows from Lemma 3.5 of [21],
whereas the equivalence of (h), (i) and {j) follows from the remarks pre-
ceding Lemma 3.4 of [21]. If G(U) is Montel, then G(U) is distinguished
and therefore G(U), = G(U), = (H(U), 75) by Theorem 9 of [14]. Since the
strong dual of a Montel space is Montel it follows that (i) implies {f}. By
Lemma 1, G(I) 18 a closed subspace of (H(U), 74);,. Therefore if (f) holds,
(H(17), 74);, and hence G{I7) will be Montel. m

From Theovem 2 we see that G(U7) is Montel if and only if the 79 and 7,
topologies coincide on H{U). The problem of the coincidence of 75 and 7w
on H(L7) has been considerad by various authors. Ansemil and Taskinen [5]
gave the first example of a Fréchet Montel space for which 79 # 7, on any
balanced open subset, For classes of Fréchet spaces where 79 = 7, on H(U)
for every open subsel see [9], [30] and [36]. For classes of Fréchet spaces
where 79 = 7, on H(U) for every balanced open subset see [8], [12], [28], [4],
20], 221, [13], [29], [16].

3. Reflexive preduals of the spaces of holomorphic functions.
By construction, when U is a balanced open subset of a Fréchet space E,
G is a subspace of (H(U),7s)],. The following theorem gives necessary
and sufficient conditions for G(U) to be equal to (H(U), 7)1, One of these
conditions is that G/(U) is reflexive, and therefore Theorem 3 may De seen
as a reflexive version of Theorem 2.

THEOREM 3. Let E be o Fréchet space. Then the following are equivalent:

(8) (P("E), 7y)" = (P("E),7w)" for every integer n.

(b) (H(U),70) = (H(),7) for one (and hence every) balanced open
subset U of E.

(&) (H(K), o) = (H{K),7.) for one (and hence every) balanced com-
pact subset K of B.

(d) (P("E), 7.,) s reflexive for every integer n.

(0) (H(JK),7w) i reflexive for one (and hence every) balonced compact
subset K of K.

(6) (M{U)y7y) 18 semi-reflezive for one (and hence every) balanced open
subsct U of .

(g) (M(U),7s) is reflewive for one (and hence every) balanced open subset
Uef B

(h) QUM E) is reflewive for every integer n.

(1) G(K) s reflesive for one (and hence every) balanced compact subset
K of K.

(4) G(U) s reflevive for one (and hence every) bolanced open subset U
of I,
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(k) (H(U),7,) C G(U) for one (and hence every) balanced open subsel
U of B.

(1) G(U) = (H(U),74)y, for one (and hence cvery) balonced open subset
Uof E.

Proof The equivalence of (d) to (g) follows from. the fact that
{{P("E),7,,)}n is a Schander decomposition for (H(U), 7w)s (H{U), 75) and
(H(K),7.,), and Theorem 3.2 of [26]. The equivalence of (h) to (j) also fol-
Jows from Propositions 4 and 5 of [14] and Theorem 3.2 of a[%‘].

(h)=>(d). Follows from the fact that each QE) = @y £ I8 8 dis-
tinguished Fréchet -space, and the fact that the strong dual of a reflexive
Fréchet space is reflexive.

(6)=(i). As (H(K), 7.,) is reflexive, (H(K), Tw)p, 18 reflexive and therefore
G(K) is reflexive by Lemma 1.

(i)=(c). By [29], G(K) = (H(K), 7o)y, Therefore, if G(K') is reflexive, it
i distinguished and

(H(K), ), = GUE) = (G, = (HE), )
(c}=>(b). For U a balanced open subset of £ we have
(H(U),m) = lim (H(K),70)
KcCU
and
(H(U),mw) = lim (H{X), 7)),
KCU
where both limits are taken over all compact balanced subsets of U. By the
argument of Proposition 7 of [14] we can show that both these projective
limits are reduced. Thus, by IV.4.4 of [34] we have the algebraic equivalences

(H(U),m0) = lim (H(K), )
Kcu
and
(H(U),m) = lim (H{K), 7).
. KEcU
Hence if (H(K), 7o) = (H(K),7,)" for every K we have (b).

(b)=>(a). As 7, is finer than 7p, we have (P("B),n) G (P("E),7,) for
every integer n. We know that {{P("E), m)|, }n is an S-absolute decomposi-
tion of (H(U), o)1, while {{(P{"E), 7.,)},}n is an S-absolute decormposition
of (H(U), 7, thus if (P(*E), )’ is strictly contained in {(P("E), ) for
some n, we cannot have (H(U), 7o)’ equal to (H{U), 7,)', and so {a) holds.

(a)=(d). S;mce (P("E),n) € QCE) C (P("E),7.), (a) implies Q("E)
= (P("E), 7)), whence ((P(*E), 7w )) = Q("E) = P{"E).

(3)=>(1). If G(U) is reflexive it is distinguished and so G(U),==(H{T), 5).
Taking strong duals we get G(U) = (G(U),)}, = (H(U), 7).
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W=(g). W GU) = (), 75)}, then H(U) = GU) = (H(T),7s)y)
and so (H(U),7s) is semireflexive. Since it is infrabarrelled it is reflexive.

(by=s(k}. Follows from the fact that (H(U), o) is always contained in
G,

(k)=(f). Tt follows from Grothendieck’s Completeness Theorem, Theo-
rem 3,111 of [24], that G(U) is the completion of (H(U),70)y,- Therefore
(k) implies that ¢/(7) is also the completion of (H(U), 7)), It now follows
that ((H(7),7w)y,) = G(U) = H(U), which is (f). =

If £ is a Banach space, then Proposition 5.4 of [33] implies that all the
above conditions are equivalent to the condition that any entire holomorphic.
function on B with values in any Banach space F' is weakly compact, i.e. for
each f: 1 — F and each ¢ € I there is a neighbourhood Ve of z such that
F{Ve) is weakly compact in F. Theorem 2 tells us that G(U) is Montel if
and only if the 7y and 7, topologies coincide on H(U), while Theorem 3 tells
us that G(U) is reflexive if and only if the two topologies are compatible.
We give an cxample showing Theorem 3 is not included in Theorem 2.
Tn 1973 Tsirelson [38] constructed an infinite-dimensional reflexive Banach
gpace with an unconditional basis that does not contain a cepy of ¢p or £y,
1 < p < oo, as a subspace. We will denote this space by T and refer to it
as Tsirclson’s space (*). In [1] Alencar, Aron and Dineen proved that if U
is a balanced open subset of T*, then (H(U),7s) is reflexive. Corollary 2.8
of [6] shows that (M(I7), 75) is reflexive for U/ balanced open in any quotient
of T* (%), As infinite-dimensional Banach spaces cannot be Montel, T is
an exatuple of a Fréchet space with the property that G(U) is reflexive but
not Montel for any balanced open subset U, thus 7o and 7., topologies are
compatible on H(UT), without being equal.

If U (resp. K) is a balanced open (resp. compact) subset of a Fréchet
space K it follows from Corollary 3 of [2] and Proposition 5§ of [3] together
with Proposition 1.6.2 of [35] that 75 (vesp. T.) is the infrabarrelled topol-
ogy associated with o on H(U) (resp. H{K)). It will therefore follow that
iy b, (M), 7o) and (H(K), 7o) cannot be infrabarrelled. It is, how-
ever, still possible that they may have the weaker property of being Mackey
apaces. From Theorem 3, we soe that the spaces (H (T, 70), (H(K), T9) and
(P("I™), 1) are not Mackey for U halanced open in 7%, K balanced com-
pact in 7 and n any positive integer.

In the theory of infinite-dimensional Banach spaces, the fact that IT™
does not contain a copy of ¢g of &, s useful in finding counterexamples. In
order to prove that G(U) is reflexive the fact that E does not contain a

(1) This is Tairetaon’s original space. Some anthors refer to Tsirelson’s space as the
spaca T which is the dual of T". :

{2y By [18], there are quotionts of T which are not isomorphic to T
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copy of £, is in fact necessary. This is because a result of Aron, (quoted in
[33], says: For any integer p the space (P(™y), 7)) contains a copy of €,
for any integer n with n > p. Consequently, for any halanced open subset
U of £y, 1 < p < o0, we have G(U) & (H(U), 7)},. In [14] we proved that
GU), = (H{U),75) for U a balanced open subset of a Banach space with
unconditional basis. Therefore we have examples where G(U)], = (H(U}, 15)
and (H(U), 75);, # GU).

By definition G(U) is the space of all linear forms on H({7) which when
restricted to locally bounded sets are Tp-continuous. Therefore I G(U/) iy
reflexive, as happens with Tsirelson’s space, we see, {rom (1), that every
rs-continuous linear form on H(U) is p-continuous on locally bounded sets,

It is interesting to note the relationship between conditions (b), (j) and
(k) of Theorem 3. We see, from (b) and (j}, that for any Fréchet space lor
which G(U) is not reflexive (this includes all nonreflexive Fréchet spaces and
the ¢, spaces), there is a 7,-continuous linear form on H(U}) which is not
re-continuous. Since G(U) is the completion of (H({7), 70}y, we see by (b)
and (k) that if there is a 7 -continuous linear form on H(U) which i not
Ty~comtinuous, then there is also a 7, -continuous linear form which is not
the limit in (H(U),7.); of a net in (H(U), 7', Le., if (H(U), )i Is not
equal to (H(U),7.);, it is not even dense in (H(U), 7)1,

4. Further examples of Montel and reflexive preduals. In the
previous two sections we gave necessary and sufficient conditions for G(U)
to be Montel and reflexive. In this section we show how o construct new
Fréchet spaces with the property that G(U) is Montel or reflexive out of
spaces where we know that this property holds.

A necessary and sufficient condition, by Theoremn 2, in order to have
G(U) Montel for U balanced open in a Fréchet space  is that Q("F) =
R B is Montel for every integer n. However, all the sitnations where
we know that G (U) is Montel are deduced from the (possibly stronger) fact
that @, . E is Montel for every integer n. This observation motivates the
following definition.

DeriNITION 4. Let M ’(Ec«:sp. R, DC) be the collection of Fréchet spaces
E with the property that &), . & is Montel {resp. reflexive, has the density
condition) for every integer n,

The collection M is precisely the collection of all Fréchet spaces ¥ such
that E' has property (BB) n-times as defined in [16]. It contains

(a) all Fréchet Schwartz spaces,
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() all Moutel (Fo)-spaces as defined by Peris [32].

It follows from Corollary 2.8 of [6] that every quotient of T™ is in R and
therefore we have M G R. Since, by Proposition 2.4.4 of [32], the tensor
product of two (Fo)-spaces is an (Fo)-space and the pair has the (BB)
property it follows by Corollary 7 of {10] that every (Fo)-space with the
density condition is in DC. In [37) it is shown that there is a Fréchet Montel
space F' such that F&,F is not distinguished, and therefore not in DC.

Tu [16] it is shown that if I is in M, then EN g in M. The corresponding
result also holds for R and D with similar proofs. In particular, (T*)" is an
example of a non-Montel Fréchet space with the property that G(U) is
reflexive for every halanced open subset 7, .

The following proposition is perhaps the most wseful method of obtaining
new spaces in M, R and DC.

PROPOSITION b. Let B be any of the following:

() a Montel decomposable (F'G)-space, ‘

(b) « Fréchet Schwartz space with the bounded approximation property,

(¢) a Fréchet nuclear space,
and let F be in M (resp. R, DC). Then E&,F and E x F are in M (resp.
R, DPC).

Proof. By repeated use of Corollary 6 of [18] in the case (a), Theorem 12
of [17] in the case (b) and Proposition 2.3.2.13 of [23] and Gorpllary 7 of
[10] in the case (¢) we find that E®.F is in M (resp. R, DC) for F € M

(resp. F € R, DC). Using induction, Theorern 15.4.1 of [25] and the fact
that B, F = F&, E, we see that
(®2):(Q7)
@ i Fron
is Monte) (resp. reflexive, has the density condition) for every (n,m) € NxK.
For each positive integer n,

My 1N =L,
SN S )
(@ 5)3(®F)" >
e B T o
R e —
X (6} R F) X (@F).
™ !
oy Ly a0 n

(b) all hilbertizable Fréchet Montel spaces,

Yince the product of Moutel spaces (resp. reflexive spaces, spaces having the
(¢} all e-spaces,

density condition) is Montel (resp, reflexive, has the density condition) it fol-
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lows that @n (B » F) is Montel (resp. reflexive, has the density condition)
for every n, =

If we take F in M in the above proposition, we obtain new examnples
where 7y = 7,,. We have 75 = 7, for I/ balanced open in £ x F, where
satisfies (a}, (b} or (¢) above and F is one of the following:

(i) a Fréchet Schwartz space,
(i} a hilbertizable Fréchet Monte] space,
(iii) an e-space,
(iv) a Montel (Fo)-space as defined by Peris [32].

Until now, the known spaces E with G(U) reflexive for any balanced
open subset U have either had 75 = 7, on H(U), which is the case when B
Is in M, or satisfied 7, = 75 on M(U), which is the case with 7. We give
an example of a Fréchet space F in R with the property that 7y < 7, < 75
on H(U) for each balanced open subset [J of F.

Let E' be a Fréchet nuclear space or a decomposable (F'()-space which
does not admit a continuous norm; CV is an example of such a space. By
Proposition 5, Ex T* is in R and therefore G(I7) i« reflexive for U balanced
open in B x T*. We claim that 7 < 7, < 75 on H(U). Since E x T* is
not Montel, 7y is not equal to 7,,. As B does not admit a continuous norm,
£ xT" does not admit a continuous norm. By Example 2.52 of [19], 7y < 75
on H(U). In particular, from Theorem 2, we see that E X T* is an example
of a Fréchet space with 7, < 7, < 75 on each balanced open subset U of
ExT" but (H(U),70)" = (H({U), 7).

Following Diaz and Mifarro [17] we say that a Schauder decomposition
{Ey}r of the locally convex space F has property (M) if

o0
lim supp( m) =

for every bounded set B in F and p € c.8.(E), where 2; = ;. We show
that the Schauder decomposition {Q("£)},, of G(K) satisfies condition (M)
for K compact balanced in a locally convex space.

LEMMA 6. Let K be a balanced compact subset of a locally convex space

"

E. Then the Schauder decomposition {QUE)}w of GKY has property (M).

Proof. By the definition of the topology on G(K) we may asswne that
every bounded set B in G(K) is a set of Jineax maps ¢+ H{K) = C which
is uniformly bounded on each By for W o I » where By == {f € H™(W):
I fliw < 1}, and each seminorm p on G(K) is defined by

p($) = sup |@(f)]
fedy
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for ¢ & G(K), where V is an open neighbourhood of K. As in Proposi-
tion 3.18 of [19] it follows that

va{z-—m—d TJ:!(O) rm €N, fEBv}

rLesn

is defined and uniformly hounded on some neighbourhood of K. For every

¢ in B we have
A0
(L5

30
p( Z d).”) w HUP
L=ty

1
< =ldllz, -
ool feBy m v

As supyep |19 i, 18 bounded we have
1

(=]
lim sup p( Z qf)n) < m11_r+mOo g

M B g 13 ot
Thus G(K)} satisfies condition (M). =
PrOPOSITION 7. Let K be o balonced compact subset of o Fréchet space
E. Then FE & DC if and only if G(K) satisfies the density condition.
Proof The result follows by applying Proposition 4 of [17] to Lem-
ma f. &

CoroLLARY 8. Lel K be a balanced cormpact subset of a Fréchet space E.
Then E & DC if and only if the bounded subsets of (H(K), 7.} are metrizable.

This result is known for F a quasinormable metrizable locally con-
vex gpace, since by Proposition 6.18 of [19], the inductive limit H(K) =
lim vy (H™=(V}, ] - ||v) is boundedly retractive.

sup ||¢llz =0.
¢€BH I3,

COROLLARY 9. Let K be as above. Then (H(K), r,) admits a continuous
NN

Prool. As G(K) satisfies the density condition it is distinguished. There-

norm. &
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