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ON LEAST SQUARES ESTIMATION OF FOURIER

COEFFICIENTS AND OF THE REGRESSION FUNCTION

Abstract. The problem of nonparametric function fitting with the ob-
servation model yi = f(xi) + ηi, i = 1, . . . , n, is considered, where ηi are
independent random variables with zero mean value and finite variance, and
xi ∈ [a, b] ⊂ R1, i = 1, . . . , n, form a random sample from a distribution
with density % ∈ L1[a, b] and are independent of the errors ηi, i = 1, . . . , n.

The asymptotic properties of the estimator f̂N(n)(x) =
∑N(n)
k=1 ĉkek(x) for

f ∈ L2[a, b] and ĉN(n) = (ĉ1, . . . , ĉN(n))
T obtained by the least squares

method as well as the limits in probability of the estimators ĉk, k = 1, . . . , N ,
for fixed N , are studied in the case when the functions ek, k = 1, 2, . . . ,
forming a complete orthonormal system in L2[a, b] are analytic.

1. Introduction. Let yi, i = 1, . . . , n, be observations at points xi ∈
[a, b] ⊂ R1, according to the model yi = f(xi)+ηi, where f : [a, b]→ R1 is an
unknown square integrable function (f ∈ L2[a, b]) and ηi, i = 1, . . . , n, are
independent identically distributed random variables with zero mean value
and finite variance σ2

η > 0. Let furthermore the points xi, i = 1, . . . , n, form

a random sample from a distribution with density % (% ≥ 0,
∫ b
a
%(x) dx = 1),

independent of the observation errors ηi, i = 1, . . . , n. If the functions ek,
k = 1, 2, . . . , constitute a complete orthonormal system in L2[a, b], then f
has the representation

f =
∞∑
k=1

ckek, where ck =
1

b− a

b∫
a

f(x)ek(x) dx, k = 1, 2, . . .

We assume that ek, k = 1, 2, . . . , are analytic in (a, b) and continuous in [a, b].
Examples of orthonormal systems satisfying these requirements are [6] the
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trigonometric functions in L2[0, 2π] and Legendre polynomials in L2[−1, 1].
As an estimator of the vector of coefficients cN = (c1, . . . , cN )T , for fixed

N , we take the vector ĉN obtained by the least squares method:

ĉN = arg min
aN∈RN

n∑
i=1

(yi − 〈aN , eN (xi)〉)2 ,

where ĉN = (ĉ1, . . . , ĉN )T , eN (x) = (e1(x), . . . , eN (x))T .
To such estimators of the Fourier coefficients ck, k = 1, . . . , N , there

corresponds an estimator of the regression function f of the form

f̂N (x) =

N∑
k=1

ĉkek(x) ,

called a projection type estimator [4].
The vector ĉN can be obtained as a solution of the normal equations

(1) Gnĉ
N = gn ,

where

Gn =
1

n

n∑
i=1

eN (xi)e
N (xi)

T , gn =
1

n

n∑
i=1

yie
N (xi) .

The asymptotic properties of the least squares estimators of the regres-
sion function obtained in the same way as described above but for the fixed
point design case were examined in [5]. The problem of choosing the regres-
sion order for least squares estimators in the case of equidistant observation
points was investigated in [4].

In order to investigate the asymptotic properties of the estimators ĉk,
k = 1, . . . , N , we introduce the probability space (Ω,F, P ), where

Ω =
∞×
i=1

[a, b], F =
∞×
i=1

Fi, P =
∞×
i=1

Pi ,

where each Fi, i = 1, 2, . . . , is the σ-field of Borel subsets of [a, b], and P is
a probability measure with the property

P
(
A1 × . . .×An ×

∞×
i=n+1

[a, b]
)

= (P1 × . . .× Pn)(A1 × . . .×An)

for Ai ∈ Fi, i = 1, . . . , n, with Pi, for i = 1, 2, . . . , being the probability
measure defined on Fi and having density % with respect to the Lebesgue
measure µ. The construction and properties of such a probability measure
P are described in [2]. The elements of Ω are denoted by ω = (x1, x2, . . .),
xi ∈ [a, b] , i = 1, 2, . . .

If the distribution of the observation errors ηi, i = 1, 2, . . . (defined on
a certain probability space (Ψ,Θ, ν)), is known, a similar probability space
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can be constructed, with elements of the form η = (η1, η2, . . .). From the
two above described probability spaces we can of course construct in the
usual way the corresponding product space with elements (ω, η) [2].

In the following section we examine the uniqueness of the estimators
ĉk(ω, η), k = 1, . . . , N , for fixed N , and determine their limits in proba-
bility, depending on the density %. In the third section we prove that the
estimator f̂N(n) of the regression function corresponding to the Fourier coef-
ficient estimators ĉk, k = 1, . . . , N(n), is consistent in the sense of the mean
square prediction error

DN(n) =
1

n
EωEη

n∑
i=1

(f(xi)− f̂N(n)(xi))
2

(i.e. limn→∞DN(n) = 0), on the condition that the density % is bounded
and the sequence N(n) is properly chosen.

2. Uniqueness and consistency of Fourier coefficient estimators.
First we check whether the Fourier coefficient estimators ĉk, k = 1, . . . , N ,
are uniquely determined. In order to do this we need the following two
lemmas.

Lemma 2.1. Let v1, . . . , vn ∈ Rn. The matrix Gn =
∑n
i=1 viv

T
i is singu-

lar (detGn = 0) if and only if v1, . . . , vn are linearly dependent.

P r o o f. Suppose that Gn is singular and v1, . . . , vn are linearly indepen-
dent. Then there exists a vector x 6= 0 for which Gnx = 0 so that

n∑
i=1

vi(v
T
i x) =

n∑
i=1

〈vi, x〉vi = 0 .

Since v1, . . . , vn are linearly independent, 〈vi, x〉 = 0 for i = 1, . . . , n. But
span{v1, . . . , vn} = Rn and consequently x must be zero, contrary to our
assumption.

Conversely, if v1, . . . ,vn are linearly dependent, then dim span{v1, . . . ,vn}
< n and we can choose x 6= 0 such that 〈vi, x〉 = 0 for i = 1, . . . , n. Conse-
quently, Gnx =

∑n
i=1〈vi, x〉vi = 0, which means that Gn is singular.

By the way, observe that a matrix of the form Gm =
∑m
i=1 viv

T
i , where

m < n, is always singular since dim span{v1, . . . , vm} ≤ m and there exist
nonzero vectors orthogonal to span{v1, . . . , vm}.

Lemma 2.2. If % ∈ L1[a, b] is a density (i.e. % ≥ 0,
∫ b
a
%(x) dx = 1), then

for n ≥ N the matrices

Gn(ω) =
1

n

n∑
i=1

eN (xi)e
N (xi)

T , ω = (x1, x2, . . .) ,
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of the normal equations (1) are positive-definite with probability one (in the
probability space (Ω,F, P )).

P r o o f. From the definition of Gn it follows that

Gn+1(ω) =
n

n+ 1
Gn(ω) +

1

n+ 1
eN (xn+1)eN (xn+1)T .

So for x ∈ RN we have the inequality

〈Gn+1(ω)x, x〉

=
n

n+ 1
〈Gn(ω)x, x〉+

1

n+ 1
〈eN (xn+1)eN (xn+1)Tx, x〉

=
n

n+ 1
〈Gn(ω)x, x〉+

1

n+ 1
〈eN (xn+1), x〉2 ≥ n

n+ 1
〈Gn(ω)x, x〉 .

Hence Ωn+1 = {ω : detGn+1(ω) = 0} ⊂ {ω : detGn(ω) = 0} = Ωn since
the matrices Gn(ω) are nonnegative-definite for n = 1, 2, . . . Thus in order
to prove that P (Ωn) = 0 for n ≥ N it suffices to prove P (ΩN ) = 0. (For
n < N we have P (Ωn) = 1, which is a simple consequence of our remark
after the proof of Lemma 2.1.) By Lemma 2.1,

detGN (ω) = 0 ⇔ eN (x1), . . . , eN (xN ) are linearly dependent,

where ω = (x1, x2, . . .), and consequently,

(2) ΩN =
N⋃
j=1

{ω : eN (xj) ∈ span{eN (x1), . . . , eN (xj−1), eN (xj+1), . . . , eN (xN )}} .

Moreover,

P ({ω : eN (xj) ∈ span{eN (x1), . . . , eN (xj−1), eN (xj+1), . . . , eN (xN )}})
= P ({ω : eN (xN ) ∈ span{eN (x1), . . . , eN (xN−1)}}) for j = 1, . . . , N ,

by the properties of the product measure P1 × . . .× PN . Further,

P ({ω : eN (xN ) ∈ span{eN (x1), . . . , eN (xN−1)}})

=
b∫

a

. . .
b∫

a

PN (AN ) dP1 . . . dPN−1 ,

where AN = (eN )−1(span{eN (x1), . . . , eN (xN−1)}) ⊂ [a, b], for fixed
x1, x2, . . . , xN−1, is the counter-image of the closed linear subspace
span{eN (x1), . . . , eN (xN−1)} by the continuous mapping [a, b] 3 xN 7→
eN (xN ) ∈ RN (the continuity follows from the continuity of ek, k = 1, 2, . . .).
Assume now that PN (AN ) > 0 for fixed x1, . . . , xN−1. This means that the
Lebesgue measure µ(AN ) is positive. For xN ∈ AN we have

eN (xN ) ∈ span{eN (x1), . . . , eN (xN−1)} ,



Estimation of Fourier coefficients 95

and dim span{eN (x1), . . . , eN (xN−1)} ≤ N − 1. On the other hand,

span{eN (xN ) : xN ∈ AN} = RN

since for any v = (v1, . . . , vN )T ∈ RN orthogonal to the left-hand side

〈eN (x), v〉 =

N∑
k=1

vkek(x) = 0 for x ∈ AN ,

and the condition µ(AN ) > 0 and the analyticity of ek, k = 1, 2, . . . , imply
immediately that v1 = . . . = vN = 0.

Thus we obtain a contradiction. Consequently, PN (AN ) = 0 for all
x1, . . . , xN−1. This implies that

P ({ω : eN (xN ) ∈ span{eN (x1), . . . , eN (xN−1)}}) = 0

and, by (2), P (ΩN ) = 0.

Lemma 2.2 assures that the estimators ĉ1, . . . , ĉN obtained from the nor-
mal equations (1) are uniquely determined with probability one in the prob-
ability space (Ω,F, P ), provided n ≥ N .

Observe now that the elements of the matrix Gn(ω) in (1) have the form

gnij(ω) =
1

n

n∑
k=1

ei(xk)ej(xk), ω = (x1, x2, . . .), i, j = 1, . . . , N ,

and we easily obtain

(3) Eωgnij(ω) =
1

n

n∑
k=1

Eωei(xk)ej(xk) =
b∫

a

ei(x)ej(x)%(x) dx = gij .

The expected value exists because ek, k = 1, 2, . . . , are continuous in [a, b].
Further, since x1, x2, . . . are chosen independently,

Eω(gnij(ω)− gij)2 =
1

n2

n∑
k=1

Eω(ei(xk)ej(xk)− gij)2

=
1

n

b∫
a

(ei(x)ej(x)− gij)2%(x) dx

and we see that the elements of Gn(ω) converge in L2 to gij as n→∞.
Similarly, for the elements of the right-hand side vector of the normal

equations, gn(ω, η), we obtain

Egni(ω, η) =
1

n

n∑
k=1

Eykei(xk) =
1

n

n∑
k=1

EωEη(f(xk) + ηk)ei(xk)(4)

=
1

n

n∑
k=1

Eωf(xk)ei(xk) =
b∫

a

f(x)ei(x)%(x) dx = gi
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for i = 1, . . . , N , because the observation errors ηk, k = 1, 2, . . . , have zero
mean values; moreover,

E(gni(ω, η)− gi)2 =
1

n2

n∑
k=1

Eω(f(xk)ei(xk)− gi)2 +
1

n2

n∑
k=1

EωEηη
2
ke

2
i (xk)

=
1

n

b∫
a

(f(x)ei(x)− gi)2%(x) dx+
1

n
σ2
η

b∫
a

e2i (x)%(x) dx.

This implies that the elements of gn(ω, η) converge in L2 to gi as n → ∞,
provided

b∫
a

f2(x)%(x) dx <∞ .

In that case we can determine the limits in probability of the estimators
ĉ1, . . . , ĉN by applying the following lemma.

Lemma 2.3. Let (Ω,F, P ) be a probability space. Let An(ω), n = 1, 2, . . . ,
be a sequence of random matrices of fixed dimension k, nonsingular with
probability one, and let yn(ω) be a sequence of random vectors of dimension
k. If

1) limn→∞An(ω)
p
= A (in probability), where A is a nonsingular matrix ,

2) limn→∞ yn(ω)
p
= y,

then the sequence of random vectors xn(ω) defined with probability one by
the equations

An(ω)xn(ω) = yn(ω), n = 1, 2, . . . ,

converges in probability to the vector x which is the unique solution of the
equation Ax = y.

P r o o f. Apply the fact that the elements of the inverse matrix A−1 are
continuous functions of the elements of the matrix A.

In order to use Lemma 2.3 in the case of the normal equations (1) it
is enough to show that the matrix G with elements gij defined in (3) is
positive-definite. Clearly, for any v = (v1, . . . , vN )T ∈ RN ,

〈Gv, v〉 =

N∑
i=1

N∑
j=1

gijvivj =

N∑
i=1

N∑
j=1

vivj

b∫
a

ei(x)ej(x)%(x) dx

=
b∫

a

( N∑
i=1

viei(x)
)2
%(x) dx ≥ 0 .

Suppose that 〈Gv, v〉 = 0. Since % is positive on some set with positive

Lebesgue measure,
∑N
i=1 viei(x) = 0 for x ∈ ∆, µ(∆) > 0, and then v1 =

. . . = vN = 0 as already remarked in the proof of Lemma 2.2.
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We can now formulate the result concerning the convergence in proba-
bility of the estimators ĉ1, . . . , ĉN for fixed N .

Theorem 2.1. If the density % ∈ L1[a, b] satisfies
∫ b
a
f2(x)%(x) dx

<∞, then the estimators ĉ1, . . . , ĉN , N being fixed , are for n ≥ N uniquely
determined with probability one and

(5) lim
n→∞

ĉN
p
= G−1g ,

where ĉN = (ĉ1, . . . , ĉN )T , G is the matrix with elements

gij =
b∫

a

ei(x)ej(x)%(x) dx

and g ∈ RN is the vector with components

gi =
b∫

a

f(x)ei(x)%(x) dx ,

i, j = 1, . . . , N .

P r o o f. The assertion follows from earlier considerations and from Lem-
mas 2.2 and 2.3.

The vector G−1g can be characterized more precisely. Namely, consider
the functional defined for z ∈ RN by the formula

J(z) =
b∫

a

(
f(x)−

N∑
i=1

ziei(x)
)2
%(x) dx, z = (z1, . . . , zN )T .

In order to find the points of extrema of J(z) we set its partial derivatives
with respect to zi, i = 1, . . . , N , to be zero and we obtain the system of
linear equations Gz = g, with G positive-definite. So the components of
ĉN converge in probability to the components of the vector G−1g which
minimizes the value of J(z).

In the case of constant density (% = 1/(b− a)) we obtain, by (5),

lim
n→∞

ĉN
p
= cN , cN = (c1, . . . , cN )T ,

and so ĉ1, . . . , ĉN are then consistent estimators of the Fourier coefficients
of f ∈ L2[a, b].

3. Mean square prediction error and choice of the order of
regression. Now we deal with the asymptotic properties of the projection
type estimator of the regression function f :

f̂N (x) =

N∑
k=1

ĉkek(x) ,
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where the vector of Fourier coefficient estimators ĉN = (ĉ1, . . . , ĉN )T is
obtained from the normal equations (1),

ĉN (ω, η) = G−1n (ω)gn(ω, η) = G−1n (ω)

(
1

n

n∑
i=1

(f(xi) + ηi)e
N (xi)

)
.

From the above equality and the decomposition

f(x) =

N∑
k=1

ckek(x) + rN (x) = 〈eN (x), cN 〉+ rN (x),

where rN =

∞∑
k=N+1

ckek ,

we obtain

ĉN (ω, η) = cN +G−1n (ω)

(
1

n

n∑
i=1

rN (xi)e
N (xi)

)
+G−1n (ω)

(
1

n

n∑
i=1

ηie
N (xi)

)
.

Set aN = (1/n)
∑n
i=1 rN (xi)e

N (xi). In view of the equalities

Gn =
1

n

n∑
i=1

eN (xi)e
N (xi)

T , Eη(ηiηj) = σ2
ηδij , i, j = 1, . . . , n ,

f(x)− f̂N (x) = 〈cN − ĉN , eN (x)〉+ rN (x)

it is easy to show that

Eη(f(x)− f̂N (x))2

= Eηr
2
N (x) + 2rN (x)Eη〈cN − ĉN , eN (x)〉+ Eη〈cN − ĉN , eN (x)〉2

= r2N (x)− 2rN (x)〈G−1n aN , eN (x)〉

+ 〈G−1n aN , eN (x)〉2 +
1

n
σ2
η〈eN (x), G−1n eN (x)〉 ,

and further,

1

n

n∑
i=1

Eη(f(xi)− f̂N (xi))
2

=
1

n

n∑
i=1

r2N (xi)− 2〈G−1n aN , aN 〉+ 〈G−1n aN , aN 〉+ σ2
η

N

n
.

Finally, we obtain the formula

(6)
1

n

n∑
i=1

Eη(f(xi)− f̂N (xi))
2 =

1

n

n∑
i=1

r2N (xi)− 〈G−1n aN , aN 〉+ σ2
η

N

n
.



Estimation of Fourier coefficients 99

Since Gn is a.s. positive-definite for n ≥ N ,

(7) 0 ≤ 1

n

n∑
i=1

Eη(f(xi)− f̂N (xi))
2 ≤ 1

n

n∑
i=1

r2N (xi) + σ2
η

N

n
.

In the case of constant density % = 1/(b− a), this inequality yields

E
1

n

n∑
i=1

(f(xi)− f̂N (xi))
2 ≤ 1

n

n∑
i=1

Eωr
2
N (xi) + σ2

η

N

n

=
1

b− a

b∫
a

r2N (x) dx+ σ2
η

N

n
,

and since

1

b− a

b∫
a

r2N (x) dx =
1

b− a

∞∑
k=N+1

c2k

we can rewrite the last inequality in the form

DN = E
1

n

n∑
i=1

(f(xi)− f̂N (xi))
2 ≤ pN

b− a
+ σ2

η

N

n
,

where pN =

∞∑
k=N+1

c2k .

Since the series
∑∞
k=1 c

2
k is convergent (f ∈ L2[a, b]) we conclude from the

above inequality that in the case % = 1/(b− a) we have limn→∞DN(n) = 0

provided limn→∞N(n) =∞ and limn→∞N(n)/n = 0. The estimator f̂N(n)

is then consistent in the sense of the mean square prediction error DN(n).
A similar result holds for the case of bounded density % as one can see from
inequality (7).

If we define the prediction error by

dN(n) =
1

n

n∑
i=1

(f(xi)− f̂N(n)(xi))
2 ,

then the condition limn→∞DN(n) = limn→∞EdN(n) = 0 implies of course

limn→∞ dN(n)
p
= 0. Consequently, the previously proved facts concerning

the convergence of the mean square prediction error DN(n) allow us to for-
mulate the following theorem.

Theorem 3.1. If the density % ∈ L1[a, b] is bounded and the sequence of
natural numbers N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) =∞, lim
n→∞

N(n)

n
= 0 ,
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then the estimator of the regression function

f̂N(n) =

N(n)∑
k=1

ĉkek

is consistent in the sense of the prediction error dN(n) (i.e. limn→∞ dN(n)
p
=

0 in (Ω,F, P )).

P r o o f. The assertion follows from Lemma 2.2 and from earlier consid-
erations of Section 3.

Now we consider the problem of choosing the regression order N . If we
know the values of pN , N = 1, 2, . . . , and of σ2

η, we can choose N according
to the criterion

(8) N∗ = arg min
1≤N≤n

(
pN
b− a

+ σ2
η

N

n

)
.

Then

DN∗ ≤ pN∗

b− a
+ σ2

η

N∗

n
= min

1≤N≤n

(
pN
b− a

+ σ2
η

N

n

)
.

If we only know some estimates p′N ≥ pN we can replace pN by p′N in (8).
If the sequence |ck|, k = 1, 2, . . . , is decreasing, then pN is a convex function
(of N) and so is AN = pN/(b − a) + σ2

ηN/n, which cannot then have local
minima; we thus have N∗ = max{N : c2N ≥ (b− a)σ2

η/n} [4].

The values of pN , N = 1, 2, . . . , can of course be unknown, but we can
define the statistic

sN =
1

n

n∑
i=1

(yi − f̂N (xi))
2

for which

EηsN =
1

n

n∑
i=1

Eη(f(xi)− f̂N (xi) + ηi)
2

=
1

n

n∑
i=1

Eη(f(xi)− f̂N (xi))
2 − 2

n

n∑
i=1

Eη f̂N (xi)ηi + σ2
η

=
1

n

n∑
i=1

Eη(f(xi)− f̂N (xi))
2 − 2

n

n∑
i=1

Eη〈ĉN , eN (xi)〉ηi + σ2
η

=
1

n

n∑
i=1

Eη(f(xi)− f̂N (xi))
2

− 2

n

n∑
i=1

Eη

〈
G−1n

(
1

n

n∑
j=1

yje
N (xj)

)
, eN (xi)

〉
ηi + σ2

η
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=
1

n

n∑
i=1

Eη(f(xi)− f̂N (xi))
2

− 2

n

n∑
i=1

Eη

〈
G−1n

(
1

n

n∑
j=1

ηje
N (xj)

)
, eN (xi)

〉
ηi + σ2

η

=
1

n

n∑
i=1

Eη(f(xi)− f̂N (xi))
2 − 2

n2
σ2
η

n∑
i=1

〈G−1n eN (xi), e
N (xi)〉+ σ2

η

=
1

n

n∑
i=1

Eη(f(xi)− f̂N (xi))
2 − 2σ2

η

N

n
+ σ2

η .

Hence, remembering the definition of DN , we obtain

(9) EsN = EωEηsN = DN − 2σ2
η

N

n
+ σ2

η ,

which can be rewritten in the form

E

(
sN + 2σ2

η

N

n

)
= DN + σ2

η .

So if we choose N (the order of regression) according to the criterion

N∗ = arg min
1≤N≤n

(
sN + 2σ2

η

N

n

)
we can assert that in the mean we obtain those values of N which minimize
DN [4]. This kind of criterion for the choice of N is known in the literature
as the Mallows–Akaike criterion [1], [3].

4. Conclusions. It is worth remarking that we can obtain a better
lower bound for the mean square prediction error than the obvious one
DN ≥ 0. We apply the following lemma proved in [5].

Lemma 4.1. Let h = (h1, . . . , hn)T ∈ Rn. Then

1

n2

n∑
i=1

n∑
j=1

hihje
N (xi)

TG−1n eN (xj) ≤
1

n

n∑
i=1

h2i .

Since aN = (1/n)
∑n
i=1 rN (xi)e

N (xi) and Gn > 0 a.s. for n ≥ N ,
putting hi = rN (xi), i = 1, . . . , n, by Lemma 4.1 we obtain

0 ≤ 〈G−1n aN , aN 〉 ≤ 1

n

n∑
i=1

rN (xi)
2

almost surely for n ≥ N . Now, taking into account (6) we easily obtain the
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lower and upper bounds for DN , valid for n ≥ N :

(10) σ2
η

N

n
≤ DN ≤M%pN + σ2

η

N

n
, where M% = sup

a≤x≤b
%(x) .

From (9) and (10) it follows immediately that in the case when % is bounded
and the conditions limn→∞N(n) = ∞ and limn→∞N(n)/n = 0 are satis-
fied, sN(n) is an asymptotically unbiased estimator of σ2

η.
The lower and upper bounds for DN(n) also allow us to estimate the bias

of sN(n) for n ≥ N(n), namely

−σ2
η

N(n)

n
≤ EsN(n) − σ2

η ≤M%pN(n) − σ2
η

N(n)

n
.

The results presented in the two preceding sections can be easily proved
in the case of regression functions f ∈ L2(A), A ⊂ Rm, m > 1, µ(A) < ∞,
and certain complete orthonormal systems of functions (like the functions

exp(ikx+ ily)/2π, 0 ≤ x, y ≤ 2π, k, l = 0,±1,±2, . . . ,

forming a complete orthonormal system in L2([0, 2π]× [0, 2π])).
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