W. POPIŃSKI (Warszawa)

ON LEAST SQUARES ESTIMATION OF FOURIER COEFFICIENTS AND OF THE REGRESSION FUNCTION

Abstract. The problem of nonparametric function fitting with the observation model $y_{i}=f\left(x_{i}\right)+\eta_{i}, i=1, \ldots, n$, is considered, where η_{i} are independent random variables with zero mean value and finite variance, and $x_{i} \in[a, b] \subset \mathbb{R}^{1}, i=1, \ldots, n$, form a random sample from a distribution with density $\varrho \in L^{1}[a, b]$ and are independent of the errors $\eta_{i}, i=1, \ldots, n$. The asymptotic properties of the estimator $\widehat{f}_{N(n)}(x)=\sum_{k=1}^{N(n)} \widehat{c}_{k} e_{k}(x)$ for $f \in L^{2}[a, b]$ and $\widehat{c}^{N(n)}=\left(\widehat{c}_{1}, \ldots, \widehat{c}_{N(n)}\right)^{T}$ obtained by the least squares method as well as the limits in probability of the estimators $\widehat{c}_{k}, k=1, \ldots, N$, for fixed N, are studied in the case when the functions $e_{k}, k=1,2, \ldots$, forming a complete orthonormal system in $L^{2}[a, b]$ are analytic.

1. Introduction. Let $y_{i}, i=1, \ldots, n$, be observations at points $x_{i} \in$ $[a, b] \subset \mathbb{R}^{1}$, according to the model $y_{i}=f\left(x_{i}\right)+\eta_{i}$, where $f:[a, b] \rightarrow \mathbb{R}^{1}$ is an unknown square integrable function $\left(f \in L^{2}[a, b]\right)$ and $\eta_{i}, i=1, \ldots, n$, are independent identically distributed random variables with zero mean value and finite variance $\sigma_{\eta}^{2}>0$. Let furthermore the points $x_{i}, i=1, \ldots, n$, form a random sample from a distribution with density $\varrho\left(\varrho \geq 0, \int_{a}^{b} \varrho(x) d x=1\right)$, independent of the observation errors $\eta_{i}, i=1, \ldots, n$. If the functions e_{k}, $k=1,2, \ldots$, constitute a complete orthonormal system in $L^{2}[a, b]$, then f has the representation

$$
f=\sum_{k=1}^{\infty} c_{k} e_{k}, \quad \text { where } c_{k}=\frac{1}{b-a} \int_{a}^{b} f(x) e_{k}(x) d x, k=1,2, \ldots
$$

We assume that $e_{k}, k=1,2, \ldots$, are analytic in (a, b) and continuous in $[a, b]$. Examples of orthonormal systems satisfying these requirements are [6] the

[^0]trigonometric functions in $L^{2}[0,2 \pi]$ and Legendre polynomials in $L^{2}[-1,1]$.
As an estimator of the vector of coefficients $c^{N}=\left(c_{1}, \ldots, c_{N}\right)^{T}$, for fixed N, we take the vector \widehat{c}^{N} obtained by the least squares method:
$$
\widehat{c}^{N}=\arg \min _{a^{N} \in \mathbb{R}^{N}} \sum_{i=1}^{n}\left(y_{i}-\left\langle a^{N}, e^{N}\left(x_{i}\right)\right\rangle\right)^{2}
$$
where $\widehat{c}^{N}=\left(\widehat{c}_{1}, \ldots, \widehat{c}_{N}\right)^{T}, e^{N}(x)=\left(e_{1}(x), \ldots, e_{N}(x)\right)^{T}$.
To such estimators of the Fourier coefficients $c_{k}, k=1, \ldots, N$, there corresponds an estimator of the regression function f of the form
$$
\widehat{f}_{N}(x)=\sum_{k=1}^{N} \widehat{c}_{k} e_{k}(x)
$$
called a projection type estimator [4].
The vector \widehat{c}^{N} can be obtained as a solution of the normal equations
\[

$$
\begin{equation*}
G_{n} \widehat{c}^{N}=g_{n} \tag{1}
\end{equation*}
$$

\]

where

$$
G_{n}=\frac{1}{n} \sum_{i=1}^{n} e^{N}\left(x_{i}\right) e^{N}\left(x_{i}\right)^{T}, \quad g_{n}=\frac{1}{n} \sum_{i=1}^{n} y_{i} e^{N}\left(x_{i}\right)
$$

The asymptotic properties of the least squares estimators of the regression function obtained in the same way as described above but for the fixed point design case were examined in [5]. The problem of choosing the regression order for least squares estimators in the case of equidistant observation points was investigated in [4].

In order to investigate the asymptotic properties of the estimators \widehat{c}_{k}, $k=1, \ldots, N$, we introduce the probability space (Ω, F, P), where

$$
\Omega=\chi_{i=1}^{\infty}[a, b], \quad F={\underset{X}{X}}_{\infty}^{\infty} F_{i}, \quad P=\chi_{i=1}^{\infty} P_{i}
$$

where each $F_{i}, i=1,2, \ldots$, is the σ-field of Borel subsets of $[a, b]$, and P is a probability measure with the property
for $A_{i} \in F_{i}, i=1, \ldots, n$, with P_{i}, for $i=1,2, \ldots$, being the probability measure defined on F_{i} and having density ϱ with respect to the Lebesgue measure μ. The construction and properties of such a probability measure P are described in [2]. The elements of Ω are denoted by $\omega=\left(x_{1}, x_{2}, \ldots\right)$, $x_{i} \in[a, b], i=1,2, \ldots$

If the distribution of the observation errors $\eta_{i}, i=1,2, \ldots$ (defined on a certain probability space (Ψ, Θ, ν)), is known, a similar probability space
can be constructed, with elements of the form $\eta=\left(\eta_{1}, \eta_{2}, \ldots\right)$. From the two above described probability spaces we can of course construct in the usual way the corresponding product space with elements (ω, η) [2].

In the following section we examine the uniqueness of the estimators $\widehat{c}_{k}(\omega, \eta), k=1, \ldots, N$, for fixed N, and determine their limits in probability, depending on the density ϱ. In the third section we prove that the estimator $\widehat{f}_{N(n)}$ of the regression function corresponding to the Fourier coefficient estimators $\widehat{c}_{k}, k=1, \ldots, N(n)$, is consistent in the sense of the mean square prediction error

$$
D_{N(n)}=\frac{1}{n} E_{\omega} E_{\eta} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\widehat{f}_{N(n)}\left(x_{i}\right)\right)^{2}
$$

(i.e. $\lim _{n \rightarrow \infty} D_{N(n)}=0$), on the condition that the density ϱ is bounded and the sequence $N(n)$ is properly chosen.

2. Uniqueness and consistency of Fourier coefficient estimators.

First we check whether the Fourier coefficient estimators $\widehat{c}_{k}, k=1, \ldots, N$, are uniquely determined. In order to do this we need the following two lemmas.

LEMMA 2.1. Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$. The matrix $G_{n}=\sum_{i=1}^{n} v_{i} v_{i}^{T}$ is singular $\left(\operatorname{det} G_{n}=0\right)$ if and only if v_{1}, \ldots, v_{n} are linearly dependent.

Proof. Suppose that G_{n} is singular and v_{1}, \ldots, v_{n} are linearly independent. Then there exists a vector $x \neq 0$ for which $G_{n} x=0$ so that

$$
\sum_{i=1}^{n} v_{i}\left(v_{i}^{T} x\right)=\sum_{i=1}^{n}\left\langle v_{i}, x\right\rangle v_{i}=0
$$

Since v_{1}, \ldots, v_{n} are linearly independent, $\left\langle v_{i}, x\right\rangle=0$ for $i=1, \ldots, n$. But $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=\mathbb{R}^{n}$ and consequently x must be zero, contrary to our assumption.

Conversely, if v_{1}, \ldots, v_{n} are linearly dependent, then $\operatorname{dim} \operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ $<n$ and we can choose $x \neq 0$ such that $\left\langle v_{i}, x\right\rangle=0$ for $i=1, \ldots, n$. Consequently, $G_{n} x=\sum_{i=1}^{n}\left\langle v_{i}, x\right\rangle v_{i}=0$, which means that G_{n} is singular.

By the way, observe that a matrix of the form $G_{m}=\sum_{i=1}^{m} v_{i} v_{i}^{T}$, where $m<n$, is always singular since $\operatorname{dim} \operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\} \leq m$ and there exist nonzero vectors orthogonal to span $\left\{v_{1}, \ldots, v_{m}\right\}$.

Lemma 2.2. If $\varrho \in L^{1}[a, b]$ is a density (i.e. $\varrho \geq 0, \int_{a}^{b} \varrho(x) d x=1$), then for $n \geq N$ the matrices

$$
G_{n}(\omega)=\frac{1}{n} \sum_{i=1}^{n} e^{N}\left(x_{i}\right) e^{N}\left(x_{i}\right)^{T}, \quad \omega=\left(x_{1}, x_{2}, \ldots\right)
$$

of the normal equations (1) are positive-definite with probability one (in the probability space (Ω, F, P)).

Proof. From the definition of G_{n} it follows that

$$
G_{n+1}(\omega)=\frac{n}{n+1} G_{n}(\omega)+\frac{1}{n+1} e^{N}\left(x_{n+1}\right) e^{N}\left(x_{n+1}\right)^{T}
$$

So for $x \in \mathbb{R}^{N}$ we have the inequality

$$
\begin{aligned}
& \left\langle G_{n+1}(\omega) x, x\right\rangle \\
& \quad=\frac{n}{n+1}\left\langle G_{n}(\omega) x, x\right\rangle+\frac{1}{n+1}\left\langle e^{N}\left(x_{n+1}\right) e^{N}\left(x_{n+1}\right)^{T} x, x\right\rangle \\
& \quad=\frac{n}{n+1}\left\langle G_{n}(\omega) x, x\right\rangle+\frac{1}{n+1}\left\langle e^{N}\left(x_{n+1}\right), x\right\rangle^{2} \geq \frac{n}{n+1}\left\langle G_{n}(\omega) x, x\right\rangle
\end{aligned}
$$

Hence $\Omega_{n+1}=\left\{\omega: \operatorname{det} G_{n+1}(\omega)=0\right\} \subset\left\{\omega: \operatorname{det} G_{n}(\omega)=0\right\}=\Omega_{n}$ since the matrices $G_{n}(\omega)$ are nonnegative-definite for $n=1,2, \ldots$ Thus in order to prove that $P\left(\Omega_{n}\right)=0$ for $n \geq N$ it suffices to prove $P\left(\Omega_{N}\right)=0$. (For $n<N$ we have $P\left(\Omega_{n}\right)=1$, which is a simple consequence of our remark after the proof of Lemma 2.1.) By Lemma 2.1,

$$
\operatorname{det} G_{N}(\omega)=0 \Leftrightarrow e^{N}\left(x_{1}\right), \ldots, e^{N}\left(x_{N}\right) \text { are linearly dependent, }
$$

where $\omega=\left(x_{1}, x_{2}, \ldots\right)$, and consequently,

$$
\begin{align*}
& \quad \Omega_{N}= \tag{2}\\
& \bigcup_{j=1}^{N}\left\{\omega: e^{N}\left(x_{j}\right) \in \operatorname{span}\left\{e^{N}\left(x_{1}\right), \ldots, e^{N}\left(x_{j-1}\right), e^{N}\left(x_{j+1}\right), \ldots, e^{N}\left(x_{N}\right)\right\}\right\}
\end{align*}
$$

Moreover,
$P\left(\left\{\omega: e^{N}\left(x_{j}\right) \in \operatorname{span}\left\{e^{N}\left(x_{1}\right), \ldots, e^{N}\left(x_{j-1}\right), e^{N}\left(x_{j+1}\right), \ldots, e^{N}\left(x_{N}\right)\right\}\right\}\right)$

$$
=P\left(\left\{\omega: e^{N}\left(x_{N}\right) \in \operatorname{span}\left\{e^{N}\left(x_{1}\right), \ldots, e^{N}\left(x_{N-1}\right)\right\}\right\}\right) \quad \text { for } j=1, \ldots, N
$$

by the properties of the product measure $P_{1} \times \ldots \times P_{N}$. Further,

$$
\begin{aligned}
& P\left(\left\{\omega: e^{N}\left(x_{N}\right) \in \operatorname{span}\left\{e^{N}\left(x_{1}\right), \ldots, e^{N}\left(x_{N-1}\right)\right\}\right\}\right) \\
&=\int_{a}^{b} \ldots \int_{a}^{b} P_{N}\left(A_{N}\right) d P_{1} \ldots d P_{N-1}
\end{aligned}
$$

where $A_{N}=\left(e^{N}\right)^{-1}\left(\operatorname{span}\left\{e^{N}\left(x_{1}\right), \ldots, e^{N}\left(x_{N-1}\right)\right\}\right) \subset[a, b]$, for fixed $x_{1}, x_{2}, \ldots, x_{N-1}$, is the counter-image of the closed linear subspace $\operatorname{span}\left\{e^{N}\left(x_{1}\right), \ldots, e^{N}\left(x_{N-1}\right)\right\}$ by the continuous mapping $[a, b] \ni x_{N} \mapsto$ $e^{N}\left(x_{N}\right) \in \mathbb{R}^{N}$ (the continuity follows from the continuity of $e_{k}, k=1,2, \ldots$). Assume now that $P_{N}\left(A_{N}\right)>0$ for fixed x_{1}, \ldots, x_{N-1}. This means that the Lebesgue measure $\mu\left(A_{N}\right)$ is positive. For $x_{N} \in A_{N}$ we have

$$
e^{N}\left(x_{N}\right) \in \operatorname{span}\left\{e^{N}\left(x_{1}\right), \ldots, e^{N}\left(x_{N-1}\right)\right\}
$$

and dim $\operatorname{span}\left\{e^{N}\left(x_{1}\right), \ldots, e^{N}\left(x_{N-1}\right)\right\} \leq N-1$. On the other hand,

$$
\operatorname{span}\left\{e^{N}\left(x_{N}\right): x_{N} \in A_{N}\right\}=\mathbb{R}^{N}
$$

since for any $v=\left(v_{1}, \ldots, v_{N}\right)^{T} \in \mathbb{R}^{N}$ orthogonal to the left-hand side

$$
\left\langle e^{N}(x), v\right\rangle=\sum_{k=1}^{N} v_{k} e_{k}(x)=0 \quad \text { for } x \in A_{N},
$$

and the condition $\mu\left(A_{N}\right)>0$ and the analyticity of $e_{k}, k=1,2, \ldots$, imply immediately that $v_{1}=\ldots=v_{N}=0$.

Thus we obtain a contradiction. Consequently, $P_{N}\left(A_{N}\right)=0$ for all x_{1}, \ldots, x_{N-1}. This implies that

$$
P\left(\left\{\omega: e^{N}\left(x_{N}\right) \in \operatorname{span}\left\{e^{N}\left(x_{1}\right), \ldots, e^{N}\left(x_{N-1}\right)\right\}\right\}\right)=0
$$

and, by $(2), P\left(\Omega_{N}\right)=0$.
Lemma 2.2 assures that the estimators $\widehat{c}_{1}, \ldots, \widehat{c}_{N}$ obtained from the normal equations (1) are uniquely determined with probability one in the probability space (Ω, F, P), provided $n \geq N$.

Observe now that the elements of the matrix $G_{n}(\omega)$ in (1) have the form

$$
g_{n i j}(\omega)=\frac{1}{n} \sum_{k=1}^{n} e_{i}\left(x_{k}\right) e_{j}\left(x_{k}\right), \quad \omega=\left(x_{1}, x_{2}, \ldots\right), i, j=1, \ldots, N,
$$

and we easily obtain

$$
\begin{equation*}
E_{\omega} g_{n i j}(\omega)=\frac{1}{n} \sum_{k=1}^{n} E_{\omega} e_{i}\left(x_{k}\right) e_{j}\left(x_{k}\right)=\int_{a}^{b} e_{i}(x) e_{j}(x) \varrho(x) d x=g_{i j} . \tag{3}
\end{equation*}
$$

The expected value exists because $e_{k}, k=1,2, \ldots$, are continuous in $[a, b]$. Further, since x_{1}, x_{2}, \ldots are chosen independently,

$$
\begin{aligned}
E_{\omega}\left(g_{n i j}(\omega)-g_{i j}\right)^{2} & =\frac{1}{n^{2}} \sum_{k=1}^{n} E_{\omega}\left(e_{i}\left(x_{k}\right) e_{j}\left(x_{k}\right)-g_{i j}\right)^{2} \\
& =\frac{1}{n} \int_{a}^{b}\left(e_{i}(x) e_{j}(x)-g_{i j}\right)^{2} \varrho(x) d x
\end{aligned}
$$

and we see that the elements of $G_{n}(\omega)$ converge in L^{2} to $g_{i j}$ as $n \rightarrow \infty$.
Similarly, for the elements of the right-hand side vector of the normal equations, $g_{n}(\omega, \eta)$, we obtain

$$
\begin{align*}
E g_{n i}(\omega, \eta) & =\frac{1}{n} \sum_{k=1}^{n} E y_{k} e_{i}\left(x_{k}\right)=\frac{1}{n} \sum_{k=1}^{n} E_{\omega} E_{\eta}\left(f\left(x_{k}\right)+\eta_{k}\right) e_{i}\left(x_{k}\right) \tag{4}\\
& =\frac{1}{n} \sum_{k=1}^{n} E_{\omega} f\left(x_{k}\right) e_{i}\left(x_{k}\right)=\int_{a}^{b} f(x) e_{i}(x) \varrho(x) d x=g_{i}
\end{align*}
$$

for $i=1, \ldots, N$, because the observation errors $\eta_{k}, k=1,2, \ldots$, have zero mean values; moreover,

$$
\begin{aligned}
E\left(g_{n i}(\omega, \eta)-g_{i}\right)^{2} & =\frac{1}{n^{2}} \sum_{k=1}^{n} E_{\omega}\left(f\left(x_{k}\right) e_{i}\left(x_{k}\right)-g_{i}\right)^{2}+\frac{1}{n^{2}} \sum_{k=1}^{n} E_{\omega} E_{\eta} \eta_{k}^{2} e_{i}^{2}\left(x_{k}\right) \\
& =\frac{1}{n} \int_{a}^{b}\left(f(x) e_{i}(x)-g_{i}\right)^{2} \varrho(x) d x+\frac{1}{n} \sigma_{\eta}^{2} \int_{a}^{b} e_{i}^{2}(x) \varrho(x) d x
\end{aligned}
$$

This implies that the elements of $g_{n}(\omega, \eta)$ converge in L^{2} to g_{i} as $n \rightarrow \infty$, provided

$$
\int_{a}^{b} f^{2}(x) \varrho(x) d x<\infty
$$

In that case we can determine the limits in probability of the estimators $\widehat{c}_{1}, \ldots, \widehat{c}_{N}$ by applying the following lemma.

Lemma 2.3. Let (Ω, F, P) be a probability space. Let $A_{n}(\omega), n=1,2, \ldots$, be a sequence of random matrices of fixed dimension k, nonsingular with probability one, and let $y_{n}(\omega)$ be a sequence of random vectors of dimension k. If

1) $\lim _{n \rightarrow \infty} A_{n}(\omega) \stackrel{\mathrm{p}}{=} A$ (in probability), where A is a nonsingular matrix,
2) $\lim _{n \rightarrow \infty} y_{n}(\omega) \stackrel{\mathrm{p}}{=} y$,
then the sequence of random vectors $x_{n}(\omega)$ defined with probability one by the equations

$$
A_{n}(\omega) x_{n}(\omega)=y_{n}(\omega), \quad n=1,2, \ldots
$$

converges in probability to the vector x which is the unique solution of the equation $A x=y$.

Proof. Apply the fact that the elements of the inverse matrix A^{-1} are continuous functions of the elements of the matrix A.

In order to use Lemma 2.3 in the case of the normal equations (1) it is enough to show that the matrix G with elements $g_{i j}$ defined in (3) is positive-definite. Clearly, for any $v=\left(v_{1}, \ldots, v_{N}\right)^{T} \in \mathbb{R}^{N}$,

$$
\begin{aligned}
\langle G v, v\rangle & =\sum_{i=1}^{N} \sum_{j=1}^{N} g_{i j} v_{i} v_{j}=\sum_{i=1}^{N} \sum_{j=1}^{N} v_{i} v_{j} \int_{a}^{b} e_{i}(x) e_{j}(x) \varrho(x) d x \\
& =\int_{a}^{b}\left(\sum_{i=1}^{N} v_{i} e_{i}(x)\right)^{2} \varrho(x) d x \geq 0
\end{aligned}
$$

Suppose that $\langle G v, v\rangle=0$. Since ϱ is positive on some set with positive Lebesgue measure, $\sum_{i=1}^{N} v_{i} e_{i}(x)=0$ for $x \in \Delta, \mu(\Delta)>0$, and then $v_{1}=$ $\ldots=v_{N}=0$ as already remarked in the proof of Lemma 2.2.

We can now formulate the result concerning the convergence in probability of the estimators $\widehat{c}_{1}, \ldots, \widehat{c}_{N}$ for fixed N.

Theorem 2.1. If the density $\varrho \in L^{1}[a, b]$ satisfies $\int_{a}^{b} f^{2}(x) \varrho(x) d x$ $<\infty$, then the estimators $\widehat{c}_{1}, \ldots, \widehat{c}_{N}, N$ being fixed, are for $n \geq N$ uniquely determined with probability one and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \widehat{c}^{N} \stackrel{\mathrm{p}}{=} G^{-1} g \tag{5}
\end{equation*}
$$

where $\widehat{c}^{N}=\left(\widehat{c}_{1}, \ldots, \widehat{c}_{N}\right)^{T}, G$ is the matrix with elements

$$
g_{i j}=\int_{a}^{b} e_{i}(x) e_{j}(x) \varrho(x) d x
$$

and $g \in \mathbb{R}^{N}$ is the vector with components

$$
g_{i}=\int_{a}^{b} f(x) e_{i}(x) \varrho(x) d x
$$

$i, j=1, \ldots, N$.
Proof. The assertion follows from earlier considerations and from Lemmas 2.2 and 2.3.

The vector $G^{-1} g$ can be characterized more precisely. Namely, consider the functional defined for $z \in \mathbb{R}^{N}$ by the formula

$$
J(z)=\int_{a}^{b}\left(f(x)-\sum_{i=1}^{N} z_{i} e_{i}(x)\right)^{2} \varrho(x) d x, \quad z=\left(z_{1}, \ldots, z_{N}\right)^{T}
$$

In order to find the points of extrema of $J(z)$ we set its partial derivatives with respect to $z_{i}, i=1, \ldots, N$, to be zero and we obtain the system of linear equations $G z=g$, with G positive-definite. So the components of \widehat{c}^{N} converge in probability to the components of the vector $G^{-1} g$ which minimizes the value of $J(z)$.

In the case of constant density $(\varrho=1 /(b-a))$ we obtain, by (5),

$$
\lim _{n \rightarrow \infty} \widehat{c}^{N} \stackrel{\mathrm{p}}{=} c^{N}, \quad c^{N}=\left(c_{1}, \ldots, c_{N}\right)^{T}
$$

and so $\widehat{c}_{1}, \ldots, \widehat{c}_{N}$ are then consistent estimators of the Fourier coefficients of $f \in L^{2}[a, b]$.
3. Mean square prediction error and choice of the order of regression. Now we deal with the asymptotic properties of the projection type estimator of the regression function f :

$$
\widehat{f}_{N}(x)=\sum_{k=1}^{N} \widehat{c}_{k} e_{k}(x),
$$

where the vector of Fourier coefficient estimators $\widehat{c}^{N}=\left(\widehat{c}_{1}, \ldots, \widehat{c}_{N}\right)^{T}$ is obtained from the normal equations (1),

$$
\widehat{c}^{N}(\omega, \eta)=G_{n}^{-1}(\omega) g_{n}(\omega, \eta)=G_{n}^{-1}(\omega)\left(\frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)+\eta_{i}\right) e^{N}\left(x_{i}\right)\right)
$$

From the above equality and the decomposition

$$
\begin{aligned}
f(x)=\sum_{k=1}^{N} c_{k} e_{k}(x)+r_{N}(x)=\left\langle e^{N}(x), c^{N}\right\rangle & +r_{N}(x) \\
& \text { where } r_{N}=\sum_{k=N+1}^{\infty} c_{k} e_{k}
\end{aligned}
$$

we obtain
$\widehat{c}^{N}(\omega, \eta)=c^{N}+G_{n}^{-1}(\omega)\left(\frac{1}{n} \sum_{i=1}^{n} r_{N}\left(x_{i}\right) e^{N}\left(x_{i}\right)\right)+G_{n}^{-1}(\omega)\left(\frac{1}{n} \sum_{i=1}^{n} \eta_{i} e^{N}\left(x_{i}\right)\right)$.
Set $a^{N}=(1 / n) \sum_{i=1}^{n} r_{N}\left(x_{i}\right) e^{N}\left(x_{i}\right)$. In view of the equalities

$$
\begin{gathered}
G_{n}=\frac{1}{n} \sum_{i=1}^{n} e^{N}\left(x_{i}\right) e^{N}\left(x_{i}\right)^{T}, \quad E_{\eta}\left(\eta_{i} \eta_{j}\right)=\sigma_{\eta}^{2} \delta_{i j}, \quad i, j=1, \ldots, n \\
f(x)-\widehat{f}_{N}(x)=\left\langle c^{N}-\widehat{c}^{N}, e^{N}(x)\right\rangle+r_{N}(x)
\end{gathered}
$$

it is easy to show that

$$
\begin{aligned}
E_{\eta}(f(x)- & \left.\widehat{f}_{N}(x)\right)^{2} \\
= & E_{\eta} r_{N}^{2}(x)+2 r_{N}(x) E_{\eta}\left\langle c^{N}-\widehat{c}^{N}, e^{N}(x)\right\rangle+E_{\eta}\left\langle c^{N}-\widehat{c}^{N}, e^{N}(x)\right\rangle^{2} \\
= & r_{N}^{2}(x)-2 r_{N}(x)\left\langle G_{n}^{-1} a^{N}, e^{N}(x)\right\rangle \\
& +\left\langle G_{n}^{-1} a^{N}, e^{N}(x)\right\rangle^{2}+\frac{1}{n} \sigma_{\eta}^{2}\left\langle e^{N}(x), G_{n}^{-1} e^{N}(x)\right\rangle,
\end{aligned}
$$

and further,

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} E_{\eta}\left(f\left(x_{i}\right)-\widehat{f}_{N}\left(x_{i}\right)\right)^{2} \\
& \quad=\frac{1}{n} \sum_{i=1}^{n} r_{N}^{2}\left(x_{i}\right)-2\left\langle G_{n}^{-1} a^{N}, a^{N}\right\rangle+\left\langle G_{n}^{-1} a^{N}, a^{N}\right\rangle+\sigma_{\eta}^{2} \frac{N}{n}
\end{aligned}
$$

Finally, we obtain the formula
(6) $\frac{1}{n} \sum_{i=1}^{n} E_{\eta}\left(f\left(x_{i}\right)-\widehat{f}_{N}\left(x_{i}\right)\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} r_{N}^{2}\left(x_{i}\right)-\left\langle G_{n}^{-1} a^{N}, a^{N}\right\rangle+\sigma_{\eta}^{2} \frac{N}{n}$.

Since G_{n} is a.s. positive-definite for $n \geq N$,

$$
\begin{equation*}
0 \leq \frac{1}{n} \sum_{i=1}^{n} E_{\eta}\left(f\left(x_{i}\right)-\widehat{f}_{N}\left(x_{i}\right)\right)^{2} \leq \frac{1}{n} \sum_{i=1}^{n} r_{N}^{2}\left(x_{i}\right)+\sigma_{\eta}^{2} \frac{N}{n} \tag{7}
\end{equation*}
$$

In the case of constant density $\varrho=1 /(b-a)$, this inequality yields

$$
\begin{aligned}
E \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\widehat{f}_{N}\left(x_{i}\right)\right)^{2} & \leq \frac{1}{n} \sum_{i=1}^{n} E_{\omega} r_{N}^{2}\left(x_{i}\right)+\sigma_{\eta}^{2} \frac{N}{n} \\
& =\frac{1}{b-a} \int_{a}^{b} r_{N}^{2}(x) d x+\sigma_{\eta}^{2} \frac{N}{n}
\end{aligned}
$$

and since

$$
\frac{1}{b-a} \int_{a}^{b} r_{N}^{2}(x) d x=\frac{1}{b-a} \sum_{k=N+1}^{\infty} c_{k}^{2}
$$

we can rewrite the last inequality in the form

$$
\begin{aligned}
& D_{N}=E \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\widehat{f}_{N}\left(x_{i}\right)\right)^{2} \leq \frac{p_{N}}{b-a}+\sigma_{\eta}^{2} \frac{N}{n} \\
& \text { where } p_{N}=\sum_{k=N+1}^{\infty} c_{k}^{2}
\end{aligned}
$$

Since the series $\sum_{k=1}^{\infty} c_{k}^{2}$ is convergent $\left(f \in L^{2}[a, b]\right)$ we conclude from the above inequality that in the case $\varrho=1 /(b-a)$ we have $\lim _{n \rightarrow \infty} D_{N(n)}=0$ provided $\lim _{n \rightarrow \infty} N(n)=\infty$ and $\lim _{n \rightarrow \infty} N(n) / n=0$. The estimator $\widehat{f}_{N(n)}$ is then consistent in the sense of the mean square prediction error $D_{N(n)}$. A similar result holds for the case of bounded density ϱ as one can see from inequality (7).

If we define the prediction error by

$$
d_{N(n)}=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\widehat{f}_{N(n)}\left(x_{i}\right)\right)^{2}
$$

then the condition $\lim _{n \rightarrow \infty} D_{N(n)}=\lim _{n \rightarrow \infty} E d_{N(n)}=0$ implies of course $\lim _{n \rightarrow \infty} d_{N(n)} \stackrel{\mathrm{p}}{=} 0$. Consequently, the previously proved facts concerning the convergence of the mean square prediction error $D_{N(n)}$ allow us to formulate the following theorem.

Theorem 3.1. If the density $\varrho \in L^{1}[a, b]$ is bounded and the sequence of natural numbers $N(n), n=1,2, \ldots$, satisfies

$$
\lim _{n \rightarrow \infty} N(n)=\infty, \quad \lim _{n \rightarrow \infty} \frac{N(n)}{n}=0
$$

then the estimator of the regression function

$$
\widehat{f}_{N(n)}=\sum_{k=1}^{N(n)} \widehat{c}_{k} e_{k}
$$

is consistent in the sense of the prediction error $d_{N(n)}$ (i.e. $\lim _{n \rightarrow \infty} d_{N(n)} \stackrel{\mathrm{p}}{=}$ 0 in $(\Omega, F, P))$.

Proof. The assertion follows from Lemma 2.2 and from earlier considerations of Section 3.

Now we consider the problem of choosing the regression order N. If we know the values of $p_{N}, N=1,2, \ldots$, and of σ_{η}^{2}, we can choose N according to the criterion

$$
\begin{equation*}
N^{*}=\arg \min _{1 \leq N \leq n}\left(\frac{p_{N}}{b-a}+\sigma_{\eta}^{2} \frac{N}{n}\right) \tag{8}
\end{equation*}
$$

Then

$$
D_{N^{*}} \leq \frac{p_{N^{*}}}{b-a}+\sigma_{\eta}^{2} \frac{N^{*}}{n}=\min _{1 \leq N \leq n}\left(\frac{p_{N}}{b-a}+\sigma_{\eta}^{2} \frac{N}{n}\right)
$$

If we only know some estimates $p_{N}^{\prime} \geq p_{N}$ we can replace p_{N} by p_{N}^{\prime} in (8). If the sequence $\left|c_{k}\right|, k=1,2, \ldots$, is decreasing, then p_{N} is a convex function (of N) and so is $A_{N}=p_{N} /(b-a)+\sigma_{\eta}^{2} N / n$, which cannot then have local minima; we thus have $N^{*}=\max \left\{N: c_{N}^{2} \geq(b-a) \sigma_{\eta}^{2} / n\right\}$ [4].

The values of $p_{N}, N=1,2, \ldots$, can of course be unknown, but we can define the statistic

$$
s_{N}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\widehat{f}_{N}\left(x_{i}\right)\right)^{2}
$$

for which

$$
\begin{aligned}
E_{\eta} s_{N}= & \frac{1}{n} \sum_{i=1}^{n} E_{\eta}\left(f\left(x_{i}\right)-\widehat{f}_{N}\left(x_{i}\right)+\eta_{i}\right)^{2} \\
= & \frac{1}{n} \sum_{i=1}^{n} E_{\eta}\left(f\left(x_{i}\right)-\widehat{f}_{N}\left(x_{i}\right)\right)^{2}-\frac{2}{n} \sum_{i=1}^{n} E_{\eta} \widehat{f}_{N}\left(x_{i}\right) \eta_{i}+\sigma_{\eta}^{2} \\
= & \frac{1}{n} \sum_{i=1}^{n} E_{\eta}\left(f\left(x_{i}\right)-\widehat{f}_{N}\left(x_{i}\right)\right)^{2}-\frac{2}{n} \sum_{i=1}^{n} E_{\eta}\left\langle\widehat{c}^{N}, e^{N}\left(x_{i}\right)\right\rangle \eta_{i}+\sigma_{\eta}^{2} \\
= & \frac{1}{n} \sum_{i=1}^{n} E_{\eta}\left(f\left(x_{i}\right)-\widehat{f}_{N}\left(x_{i}\right)\right)^{2} \\
& -\frac{2}{n} \sum_{i=1}^{n} E_{\eta}\left\langle G_{n}^{-1}\left(\frac{1}{n} \sum_{j=1}^{n} y_{j} e^{N}\left(x_{j}\right)\right), e^{N}\left(x_{i}\right)\right\rangle \eta_{i}+\sigma_{\eta}^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{n} \sum_{i=1}^{n} E_{\eta}\left(f\left(x_{i}\right)-\widehat{f}_{N}\left(x_{i}\right)\right)^{2} \\
& -\frac{2}{n} \sum_{i=1}^{n} E_{\eta}\left\langle G_{n}^{-1}\left(\frac{1}{n} \sum_{j=1}^{n} \eta_{j} e^{N}\left(x_{j}\right)\right), e^{N}\left(x_{i}\right)\right\rangle \eta_{i}+\sigma_{\eta}^{2} \\
= & \frac{1}{n} \sum_{i=1}^{n} E_{\eta}\left(f\left(x_{i}\right)-\widehat{f}_{N}\left(x_{i}\right)\right)^{2}-\frac{2}{n^{2}} \sigma_{\eta}^{2} \sum_{i=1}^{n}\left\langle G_{n}^{-1} e^{N}\left(x_{i}\right), e^{N}\left(x_{i}\right)\right\rangle+\sigma_{\eta}^{2} \\
= & \frac{1}{n} \sum_{i=1}^{n} E_{\eta}\left(f\left(x_{i}\right)-\widehat{f}_{N}\left(x_{i}\right)\right)^{2}-2 \sigma_{\eta}^{2} \frac{N}{n}+\sigma_{\eta}^{2} .
\end{aligned}
$$

Hence, remembering the definition of D_{N}, we obtain

$$
\begin{equation*}
E s_{N}=E_{\omega} E_{\eta} s_{N}=D_{N}-2 \sigma_{\eta}^{2} \frac{N}{n}+\sigma_{\eta}^{2} \tag{9}
\end{equation*}
$$

which can be rewritten in the form

$$
E\left(s_{N}+2 \sigma_{\eta}^{2} \frac{N}{n}\right)=D_{N}+\sigma_{\eta}^{2}
$$

So if we choose N (the order of regression) according to the criterion

$$
N^{*}=\arg \min _{1 \leq N \leq n}\left(s_{N}+2 \sigma_{\eta}^{2} \frac{N}{n}\right)
$$

we can assert that in the mean we obtain those values of N which minimize D_{N} [4]. This kind of criterion for the choice of N is known in the literature as the Mallows-Akaike criterion [1], [3].
4. Conclusions. It is worth remarking that we can obtain a better lower bound for the mean square prediction error than the obvious one $D_{N} \geq 0$. We apply the following lemma proved in [5].

Lemma 4.1. Let $h=\left(h_{1}, \ldots, h_{n}\right)^{T} \in \mathbb{R}^{n}$. Then

$$
\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} h_{i} h_{j} e^{N}\left(x_{i}\right)^{T} G_{n}^{-1} e^{N}\left(x_{j}\right) \leq \frac{1}{n} \sum_{i=1}^{n} h_{i}^{2} .
$$

Since $a^{N}=(1 / n) \sum_{i=1}^{n} r_{N}\left(x_{i}\right) e^{N}\left(x_{i}\right)$ and $G_{n}>0$ a.s. for $n \geq N$, putting $h_{i}=r_{N}\left(x_{i}\right), i=1, \ldots, n$, by Lemma 4.1 we obtain

$$
0 \leq\left\langle G_{n}^{-1} a^{N}, a^{N}\right\rangle \leq \frac{1}{n} \sum_{i=1}^{n} r_{N}\left(x_{i}\right)^{2}
$$

almost surely for $n \geq N$. Now, taking into account (6) we easily obtain the
lower and upper bounds for D_{N}, valid for $n \geq N$:

$$
\begin{equation*}
\sigma_{\eta}^{2} \frac{N}{n} \leq D_{N} \leq M_{\varrho} p_{N}+\sigma_{\eta}^{2} \frac{N}{n}, \quad \text { where } M_{\varrho}=\sup _{a \leq x \leq b} \varrho(x) . \tag{10}
\end{equation*}
$$

From (9) and (10) it follows immediately that in the case when ϱ is bounded and the conditions $\lim _{n \rightarrow \infty} N(n)=\infty$ and $\lim _{n \rightarrow \infty} N(n) / n=0$ are satisfied, $s_{N(n)}$ is an asymptotically unbiased estimator of σ_{η}^{2}.

The lower and upper bounds for $D_{N(n)}$ also allow us to estimate the bias of $s_{N(n)}$ for $n \geq N(n)$, namely

$$
-\sigma_{\eta}^{2} \frac{N(n)}{n} \leq E s_{N(n)}-\sigma_{\eta}^{2} \leq M_{\varrho} p_{N(n)}-\sigma_{\eta}^{2} \frac{N(n)}{n} .
$$

The results presented in the two preceding sections can be easily proved in the case of regression functions $f \in L^{2}(A), A \subset \mathbb{R}^{m}, m>1, \mu(A)<\infty$, and certain complete orthonormal systems of functions (like the functions

$$
\exp (i k x+i l y) / 2 \pi, \quad 0 \leq x, y \leq 2 \pi, k, l=0, \pm 1, \pm 2, \ldots,
$$

forming a complete orthonormal system in $\left.L^{2}([0,2 \pi] \times[0,2 \pi])\right)$.

References

[1] H. Akaike, A new look at the statistical model identification, IEEE Trans. Automat. Control AC-19 (1974), 716-723.
[2] Y. S. Chow and H. Teicher, Probability Theory, Independence, Interchangeability, Martingales, Springer, Heidelberg, 1978.
[3] C. L. Mallows, Some comments on C_{p}, Technometrics 15 (1973), 661-675.
[4] B. T. Polyak and A. B. Tsybakov, Asymptotic optimality of the C_{p} criterion in projection type estimation of a regression function, Teor. Veroyatnost. i Primenen. 35 (1990), 305-317 (in Russian).
[5] E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358.
[6] G. Sansone, Orthogonal Functions, Interscience, New York, 1959.

WALDEMAR POPIŃSKI
RESEARCH AND DEVELOPMENT CENTER OF STATISTICS
AL. NIEPODLEGŁOŚCI 208
00-925 WARSZAWA, POLAND

[^0]: 1991 Mathematics Subject Classification: Primary 62G07, 62F12.
 Key words and phrases: Fourier series, least squares method, regression, consistent estimator

