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0. Introduction. The study of curves of genus 2 and their Jacobians
is rapidly becoming more constructive in nature. An explicit embedding of
the Jacobian variety has been described in P9 for the case when there is
a rational Weierstrass point [10], and in P15 for the general situation [7].
The defining equations have been determined in a manner which preserves
the arithmetic information of the original curve, and a number of additional
structures concerning the Kummer surface [8], the formal group [7], [10] and
the global group law [8] have been made both constructive and computable
in practice.

The most glaring gap in the constructive literature is the lack of a viable
and widely applicable procedure for determining the rank of the Mordell–
Weil group of the Jacobian. The motivation for such a procedure is con-
siderable, as there is a large body of general theory and conjecture which
has so far existed in a vacuum. For example, theorems of Chabauty [5]
and Coleman [6] (relating the rank of the Jacobian to finding the ratio-
nal points on the curve) have not so far had an opportunity to be applied
(apart from conditional bounds on the number of solutions to the Fermat
curves in [11]); the higher dimensional analogues of the conjectures of Birch
and Swinnerton-Dyer have not had a chance to be tested; branches of the
Mathematics of Computation (such as the search for large rank) have so far
been restricted to elliptic curves. Apart from the new classes of Diophan-
tine problems in genus 2 which could be solved, there is also the reasonable
chance that a constructive genus 2 theory will serve as a testing ground for
developing more general explicit structures for curves of any genus.

The best attempt so far is due to Gordon and Grant [9], which de-
scribes a complete 2-descent. This applies to the Jacobian of any curve of
the form:

Y 2 = (X − a1)(X − a2)(X − a3)(X − a4)(X − a5) , ai ∈ Z .

The author thanks SERC for financial support.



24 E. V. Flynn

The problem here is that this severe arithmetic restriction on the curve
forces up the number of primes of bad reduction: no such curve has < 3 bad
primes and only a few have < 4 bad primes. As a consequence, we find that,
apart from a tiny handful of examples, the number of homogeneous spaces
to be checked becomes large. Only two examples were computed in [9] and
significant enhancements will be required before the strategy in [9] can yield
more than a few additional ranks.

We overcome this difficulty by developing a technique applicable to
curves of the form:

(∗) C : Y 2 = q1(X)q2(X)q3(X)

where the qi(X) are quadratics with coefficients in Z. It is straightforward to
compute many curves of this form with only 2 or 3 bad primes (for example
the infinite family of curves: Y 2 = p(X2 + 1)(X2 + 2)(X2 + 2X + 2) has
bad reduction only at 2, 5 and p), and so the technique can be expected to
produce substantial rank tables. We illustrate this by deriving ranks of a
selection of curves in Section 3, and indicate how many can reasonably be
expected in the near future as enhancements are introduced. The technique
employed will be descent by 4-isogeny, which is analogous to descent by
2-isogeny on an elliptic curve. An unexpected bonus (which significantly
eases the computations) is that the isogenous variety is also the Jacobian of
a curve of the same type, given in Section 2; this feature is discussed in [1]
in a different context.

In Section 1, we present results which are a well known and elementary
part of the classical theory of elliptic curves (descent by 2-isogeny), but in
a manner somewhat different from the standard textbook treatment such
as that in [4], [12]. Specifically, we use a particular P3 embedding (relating
to the eigenvectors of a translation map) of the elliptic curve which allows
the underlying linear algebra to be exploited, simplifying and motivating
both the isogeny and the twisting of the curve to obtain the homogeneous
spaces. In Section 2 we present the analogous structures on the Jacobian of
a curve of genus 2 of the form (∗), including a concise description of a group
Lφ which lies above the Selmer group and assists in computing the rank.
Section 3 illustrates the technique with a selection of worked examples for
which the rank of the Jacobian is determined. A fringe benefit is that, in
the rank 0 case, it is easy to find all Q-rational points on the original curve.

1. Descent via 2-isogeny on elliptic curves. The results in this sec-
tion are well known; however, we still suggest that a perusal will assist even
the well informed reader, as the presentation of Section 2 will closely imitate
the format and style of this section. The purpose of this section is to present
a slightly unorthodox development of descent via 2-isogeny on elliptic curves
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using a P3 embedding of the curve, which allows some of the underlying lin-
ear algebra to be exploited. The presentation will be entirely elementary in
spirit; in particular, we bypass any mention of cocycles, cohomology and so
on. We also introduce a group Lφ which lies above the Selmer group and
enhances the computation of the rank. The emphasis will be on formulating
structures in a way which is highly amenable to generalisation to higher
dimension.

For a general elliptic curve C : Y 2 = X3 + aX2 + bX + c (a, b, c ∈ F
of characteristic 6= 2, discriminant of C 6= 0), we define J(C) to be the
embedding of the curve in P3 given by a = (a0..3), where a0, a1, a2, a3 are the
functions 1, X, Y,X2, respectively (we shall often use (ai..j) as a shorthand
notation for the column vector with entries ai, ai+1, . . . , aj). See [12], p. 27,
for a brief discussion of the geometric properties of this embedding. This
has the structure of an abelian variety with defining equations given by a
pair of quadratic forms: a2

1 = a0a3; a2
2 = a1a3 + aa2

1 + ba0a1 + ca2
0, and

group law given by a biquadratic map. We now assume that our curve has
a rational point of order 2, which can be taken to be at (0, 0). From now on,
the curve C will be taken to have the form

(1) C : Y 2 = X(X2 + aX + b) , b 6= 0 , a2 − 4b 6= 0.

The key advantage of embedding into P3 (rather than the usual P2) is that
addition by (0, 0) induces a linear map on the curve. In terms of the coordi-
nate functions, addition by (0, 0) gives x 7→ b/x, y 7→ −by/x2, which induces
the following linear map T on J(C):

T =




0 0 0 1
0 b 0 0
0 0 −b 0
b2 0 0 0


 .

Note that T 2 = b2I4, and that T has F-rational eigenvalues: b, −b, each
occurring with multiplicity 2. We therefore perform a change of basis to

new functions: v0, v1, v2, v3 so that T becomes diagonalised as b
(
I2 0
0 −I2

)
.

The resulting embedding of the curve provides a better foundation for con-
structing twists and isogenies.

Definition 1.1. Let C be as in (1). Define J = J (C) to be the embedding
in P3 given by v = (v0..3), where v0, v1, v2, v3 are X2 + b, X, X2 − b, Y ,
respectively. For any (x, y) on C, we let bx, yc denote the corresponding
vector v ∈ J . The defining equations of J are

(2) A : v2
2 = v2

0 − 4bv2
1 , B : v2

3 = v0v1 + av2
1 .
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With this embedding, the identity, O = b∞c, the rational point of or-
der 2, α = b0, 0c, and the translation-by-α map, Tα : v 7→ v + α, have the
form

(3)

O =




1
0
1
0


 =

(
j2
j2

)
, α =




1
0
−1
0


 =

(
j2
−j2

)
,

Tα(v) =




v0

v1

−v2

−v3


 =

(
v0..1

−v2..3

)
,

where j2 =
( 1

0

)
. We now discard our original J(C) entirely, and exclusively

use J = J (C) of Definition 1.1 as the embedding of the curve for any curve of
the form (1). An immediate benefit of using J is that we can instantly write
down a spanning set of all quadratics in v invariant under Tα. Namely, all
quadratic monomials vivj where vi, vj lie in the dual of the same eigenspace;
these are: v2

0 , v0v1, v2
1 , v2

2 , v2v3 and v2
3 . However, the defining equations (2)

give two linear conditions on these monomials so that we may discard v2
1

and v2
3 . The map τ from v to the member of P3 given by the remaining 4

monomials clearly satisfies τ(v + α) = τ(v), and composing τ with a linear
adjustment creates a 2-isogeny from J (C) to Ĵ = J (Ĉ), where Ĉ is described
in the following lemma.

Lemma 1.2. Let M , U , τ , φ, φ̂, Ĉ be as follows:

(4)

M =




2a2 8ab 2(2b− a2) 0
a 4b −a 0
8b 8ab −4b 0
0 0 0 4b


 , U =




17 0 −15 0
0 8 0 0
−15 0 17 0

0 0 0 4


 ,

τ :
(
v0..1

v2..3

)
7→
(
v0v0..1

v2v2..3

)
, φ = Mτ ,

φ̂ = UM̂τ , Ĉ : Y 2 = X(X2 + âX + b̂) ,

where â = −2a and b̂ = a2 − 4b. Then the following hold :

(i) φ : J 7→ Ĵ , φ̂ : Ĵ 7→ J are 2-isogenies.
(ii) kerφ = {O, α}, ker φ̂ = {Ô, α̂}.

(iii) φ̂ ◦ φ = φ ◦ φ̂ = [2].

(iv) φ(b(−a±
√
b̂)/2, 0c) = α̂, φ̂(b(−â± 4

√
b)/2, 0c) = α.

We now assume, for the rest of the section, that F = Q, so that we may
take a, b ∈ Z. The following two lemmas construct the usual injection from
Ĵ (Q)/φ(J (Q)) into Q∗/(Q∗)2.
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Lemma 1.3. Let w ∈ Ĵ (Q). Then there exists a unique d ∈ Q∗/(Q∗)2

such that every v ∈ φ−1(w) is defined over Q(
√
d). When d 6= 1 this gives

the existence of v such that :

(i) {v, σd(v)} = φ−1(w),
(ii) Tα(v) = σd(v), where σd represents conjugation in Q(

√
d).

P r o o f. Define r = M−1w, d = r2/r0. Then

φ−1(w) = τ−1(r) =
(

r2r0..1

±(r0r2..3)
√
d

)
.

Lemma 1.4. Let ψ : Ĵ (Q)/φ(J (Q)) → Q∗/(Q∗)2 : w 7→ d, where d is
as in Lemma 1.3. Then ψ is a well defined , injective homomorphism, and
b̂ = ψ(α̂) ∈ imψ.

P r o o f. Let ϕ be the same map, but defined on Ĵ (Q). Let w′′ = w + w′

on Ĵ (Q), and v ∈ φ−1(w) over Q(
√
d), v′ ∈ φ−1(w′) over Q(

√
d′). Then

v′′ = v + v′ ∈ φ−1(w′′) is over Q(
√
d,
√
d′). Under the action

√
d → −

√
d,√

d′ → −
√
d′, we have v′′ → σd(v) + σd′(v′) = Tα(v) + Tα(v′) = v′′, giving

that v′′ ∈ Q(
√
dd′). Hence, ϕ(w′′) = dd′, and so ϕ is a homomorphism from

Ĵ (Q) to Q∗/(Q∗)2. Clearly kerϕ = φ(J (Q)), hence the induced homomor-
phism ψ on the quotient is injective.

It is easy to check that the map ψ is the same as the usual “x-coordinate”
map; that is, if w = bx̂, ŷc ∈ Ĵ (Q), where (x, y) lies on Ĉ, then d = ψ(w) = x̂
in Q∗/(Q∗)2. The advantage of the above approach to Lemmas 1.3, 1.4 (and
Lemma 1.5 to follow) is that it both is elementary and does not require
properties special to elliptic curves; these features increase amenability to
generalisation to higher dimension. In the same spirit, the finiteness of imψ
can be demonstrated using only a reduction mod p argument.

Lemma 1.5. Let S = {p : p | b(a2−4b)}∪{2} = {p1, . . . , pr}, and Q(S) =
{±pe11 . . . perr : ei = 0, 1} ≤ Q∗/(Q∗)2. Then imψ ≤ Q(S).

P r o o f. Suppose otherwise, that there exist d ∈ imψ, p 6∈ S, such that
p | d. Then there is a w ∈ Ĵ (Q) with ψ(w) = d, and so (by the definition of
ψ), there is a pair v, σd(v) ∈ J (Q(

√
d)) with σd(v) = v+α. Write v = (v0..3)

so that maxi|vi|p = 1. Since p 6∈ S, p is a prime of good reduction and we
let ˜ represent the reduction map from J (Qp(

√
d)) to J̃ (Fp). Since |

√
d |p <

1, ˜σd(v) = (σd(ṽ0..3)) = (ṽ0..3) = ṽ. Hence, ṽ = ˜σd(v) = ˜v + α = ṽ + α̃,
and so α̃ = Õ, contradicting the fact that p is a prime of good reduction.

As usual, the above lemmas immediately give the weak Mordell–Weil
theorem.
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Theorem 1.6. The groups Ĵ (Q)/φ(J (Q)), J (Q)/φ̂(Ĵ (Q)) and
J (Q)/2J (Q) are finite.

P r o o f. The finiteness of Ĵ (Q)/φ(J (Q)) and J (Q)/φ̂(Ĵ (Q)) is imme-
diate from Lemmas 1.4, 1.5. The finiteness of J (Q)/2J (Q) follows from the
usual exact sequence:

0→ {Ô, α̂} → Ĵ (Q)/φ(J (Q))
φ̂−→J (Q)/2J (Q)→ J (Q)/φ̂(Ĵ (Q))→ 0 .

To find Ĵ /φ(J (Q)) in practice, we construct, for each d ∈ Q(S), a ho-
mogeneous space Jd/Q, isomorphic to J over Q(

√
d), which contains a

Q-rational point if and only if d ∈ imψ. A further advantage of our choice
of embedding J now becomes apparent, as we find that the processes of
twisting J and constructing Jd are immediate.

Definition 1.7. Let twd : v 7→ z, where z0..1 = v0..1, z2..3 = v2..3/
√
d.

Then twd is an isomorphism from J to the homogeneous space Jd, whose
defining equations may be obtained simply by substituting v0 = z0, v1 =
z1, v2 =

√
dz2, v3 =

√
dz3 into (2):

(5) Ad : dz2
2 = z2

0 − 4bz2
1 , Bd : dz2

3 = z0z1 + az2
1 .

We define: Sφp = {d : Jd(Qp) 6= ∅}, Sφ =
⋂
p S

φ
p , with

⋂
p over all primes

including ∞.

Theorem 1.8. imψ = {d : Jd(Q) 6= ∅}.
P r o o f. Let d ∈ imψ so that (by definition) there are w ∈ Ĵ (Q), v ∈

J (Q(
√
d)), with w = φ(v) and σd(v) = Tα(v). Let z = twd(v). Then

σd(z) =
(

σd(v0..1)

σd(v2..3/
√
d)

)
=
(

σd(v0..1)

−σd(v2..3)/
√
d

)
=
(

Tα(v0..1)

−Tα(v2..3)/
√
d

)
= z .

Hence z ∈ Jd(Q), giving Jd(Q) 6= ∅. Conversely, if z ∈ Jd(Q) then taking

v = tw−1
d z , w = φ(v) = M

(
z0z0..1

dz2z2..3

)
∈ Ĵ (Q)

clearly gives d ∈ imψ.

By way of comparison, using a P2 embedding generally involves an ad
hoc calculation on C to compute the inverse of twd (for example [12], p. 294),
whereas in our case this is immediate. If we wish, we can obtain the affine
piece z1 = 1 by substituting Bd : z0 = dz2

3 − a into Ad, giving the more
common version of Jd : dz2

2 = d2z4
3 +âz2

3 + b̂ in affine 2-space; this introduces
a singularity at infinity. Our form of Jd has the advantage that it is non-
singular, so that Hensel’s Lemma is more easily applied in calculating Sφ.
A second advantage is that the first equation Ad defines a projective variety
(containing Jd as a subvariety) which simplifies the resolution of Jd for some
choices of d.
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Definition 1.9. Lφp = {d ∈ Q(S) : Ad(Qp) 6= ∅}, Lφ =
⋂
p L

φ
p .

Theorem 1.10. Each Ad satisfies the Hasse principle, so Lφ={d∈Q(S) :
Ad(Q) 6= ∅}. The set Lφ is a group, Sφ ≤ Lφ, and the following are equiva-
lent :

(i) d ∈ Lφ.
(ii) There exists an element , %, of norm b in Q(

√
d).

(iii) (b, d)p = 1 for all p ∈ S, where ( , )p is the norm residue symbol in Qp.
(iv) There exists an element , %′, of norm d in Q(

√
b).

P r o o f. The equivalence of (i), (ii), (iv) is immediate from the defining
equation Ad, and it is well known and elementary that the Hasse principle
is satisfied and that (ii)⇔(iii). The fact that Lφ is a group follows from
criterion (iv).

As illustration, consider Cp : Y 2 = X3 + pX , Ĉp : Y 2 = X3 − 4pX,
p ≡ 3 or 5 (mod 8). The bad primes are S = {2, p}, and the only members
of Q(S) which can occur as norms in Q(

√
p) are Lφ = {1,−2,−p, 2p} (p ≡ 3)

and Lφ = {1,−1, p,−p} (p ≡ 5), which combined with Lemma 1.2(iv) gives
{1,−p} ≤ imψ ≤ Lφ, where |Lφ| = 4. Similarly, {1, p} ≤ im φ̂ ≤ Lφ̂ =
{1, p}, for both of p ≡ 3, 5. Hence, the rank of Cp has been bounded above
by one, merely by considering norms in Q(

√
p) and Q(

√−p). If, in addition,
we have a point of infinite order (such as (1, 2) when p = 3) then the
rank has been shown to be 1 without requiring the calculation of a single
homogeneous space Jd. Even when we do not have such a point, the initial
calculation of Lφ and Lφ̂ significantly reduces the number of homogeneous
spaces Jd to be checked.

2. Descent via 4-isogeny on the Jacobian of a curve of genus 2.
For a general curve C : Y 2 = f6X

6 + . . . + f0, of genus 2 (fi ∈ F of
characteristic 6= 2, 3, 5, discriminant of C 6= 0), we let Pic0(C) denote the
Picard group of C; that is, the group of divisors of C of degree 0 modulo
linear equivalence. It is convenient (following [3]) to represent any element
of Pic0(C) by an unordered pair of points {(x1, y1), (x2, y2)} on C, where we
also allow +∞, −∞ to appear in the unordered pair. This representation is
unique except that we must identify all pairs of the form {(x, y), (x,−y)}
to give the canonical equivalence class, which we denote by O. As a group,
the Jacobian may be identified with Pic0(C). Let Θ+, Θ− be the images
of C in the Jacobian via the embedding P 7→ P − (+∞), P 7→ P − (−∞),
respectively. We may give the Jacobian the structure of a smooth projective
variety J = J (C) by an embedding a = (a0..15) in P15, where a0, . . . , a15 are
a basis for L(2(Θ+ +Θ−)). Such a basis is in [7], where a0, . . . , a15 are given
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as explicit symmetric functions (10 even and 6 odd) in the points (x1, y1),
(x2, y2). The embedding is defined over F and so members of the Mordell–
Weil group—that is, pairs {(x1, y1), (x2, y2)} where the points are either
both defined over F or are conjugate over F and quadratic—correspond
to points in J(F). The embedding J in P15 is analogous to the embedding
(1, X, Y,X2) for an elliptic curve. The defining equations are 72 quadratic
forms in a0, . . . , a15, and these are listed in [7], Appendix A. We do not
reproduce a0, . . . , a15 here, as we shall soon (as in §1) apply a linear change
of basis to replace J with an embedding J better suited to developing
isogenies.

The 16 points over the closure of F which are 2-torsion are O together
with the 15 divisors in Pic0(C) of the form {(x1, 0), (x2, 0)}, where x1, x2

are distinct roots of the sextic f6X
6 + . . . + f0. Any F-rational quadratic

factor of f6X
6 + . . .+ f0 therefore corresponds to a rational point of order

2 in J(F). From now on, the curve C will be taken to have the form

(6) C : Y 2 = q1(X)q2(X)q3(X) , where qi(X) = fiX
2 + giX + hi ,

fi, gi, hi ∈ F .
We shall require that ∆, bij , bi, and δi are non-zero, where

bij = resultant(qi(X), qj(X)) , bi = bijbik ,

δi = disc(qi(X)) , ∆ =

∣∣∣∣∣∣

h1 g1 f1

h2 g2 f2

h3 g3 f3

∣∣∣∣∣∣
.

The requirements bij 6= 0, bi 6= 0, δi 6= 0 are merely a restatement that the
discriminant of C should be non-zero. The additional requirement ∆ 6= 0
will ensure that the isogeny to be described is non-degenerate. Note that
b3 = b1b2 in Q∗/(Q∗)2; the group {1, b1, b2, b3} in Q∗/(Q∗)2 will perform an
analogous arithmetic role to that of {1, b} in Section 1.

Let Ti denote translation by the rational point of order 2 in J corre-
sponding to the quadratic qi(X), namely

{(−gi +
√
δi

2fi
, 0
)
,

(−gi −
√
δi

2fi
, 0
)}

.

Then T1, T2, T3 are 16 × 16 matrices over F (see [8]). The set of affine
matrices I, T1, T2, T3, satisfy Tk = (bk/bibj)TiTj = (1/b2ij)T1T2, T 2

i =
b2i I, and TiTj = TjTi. The matrix Ti has the F-rational eigenvalues bi,
−bi, each occurring with multiplicity 8. Commutativity implies that we can
simultaneously diagonalise, say, T1 and T2 (after which T3 = (b3/b1b2)T1T2

is also diagonalised), so that I, 1
b1
T1, 1

b2
T2, 1

b3
T3 become
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I4 0 0 0
0 I4 0 0
0 0 I4 0
0 0 0 I4


 ,



I4 0 0 0
0 I4 0 0
0 0 −I4 0
0 0 0 −I4


 ,



I4 0 0 0
0 −I4 0 0
0 0 I4 0
0 0 0 −I4


 ,



I4 0 0 0
0 −I4 0 0
0 0 −I4 0
0 0 0 I4


 ,

respectively, where I4 represents the 4×4 identity. We now replace the basis
(a0..15) with the new basis (v0..15) on which the Ti’s have the above diagonal
form.

Definition 2.1. Let C be as in (6). Define J = J (C) to be the em-
bedding in P15 given by v = (v0..15), where v0, . . . , v15 are as in Appendix
A. For any divisor {(x1, y1), (x2, y2)} in Pic0(C), we let b(x1, y1), (x2, y2)c
represent the corresponding vector v ∈ J .

A computational tool available here, which was not present in the elliptic
curve situation, is the invariance of C under the action of the permutation
group S3 on the quadratics qi(X), which induces a natural action on all of
the objects described so far, including the coordinate functions v0, . . . , v15.
The induced action may be described completely by observing that it is
simply the natural action on the indices of qi(X), bij , bi, δi, αi and Tαi . The
action may be extended to v0..15 by taking v0 to be invariant, and identi-
fying {1, 2, 3} with {v1, v2, v3}, {v4, v8, v12}, {v5, v9, v13}, {v6, v10, v14} and
{v7, v11, v15}. This can be made to be the natural action on the indices by
expressing the functions as v0, vi, v4i, v1+4i, v2+4i, v3+4i, for i = 1, 2, 3.
Note also that ∆ → −∆ under an odd permutation and is invariant un-
der an even permutation. This action simplifies the handling of the defining
equations of J , since the variety is invariant under the action. For exam-
ple, there is a set of 20 equations in the even functions which perform an
analogous role to equation A in (2) of Section 1. We can encode these as 6
equations in i, j, k, each representing the orbit under the action of S3 on the
indices:

(7)

A(1) : bij(v2
j − v2

1+4j) = bik(v2
k − v2

1+4k) ,

A(2) : 4biviv1+4i = v4jv4k − v0v4i ,

A(3) : 4bi(v2
i + v2

1+4i) = v2
0 + v2

4i − v2
4j − v2

4k ,

A(4) : 2bijvivj = v0vk + v4kv1+4k ,

A(5) : 2bijv1+4iv1+4j = v0v1+4k + vkv4k ,

A(6) : 2bijv1+4ivj = −v4ivk − v4jv1+4k .
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The number of independent equations in each of the above orbits is:
|A(1)| = 2, |A(n)| = 3, for n = 2, . . . , 5, and |A(6)| = 6, giving a total of 20
equations represented.

With this embedding, the identity, O, the rational points of order 2,
αi =

⌊(−gi+√δi
2fi

, 0
)
,
(−gi−√δi

2fi
, 0
)⌋

, and the translation-by-αi maps Tαi , for
i = 1, 2, 3, are given by:

(8)

O



j4
j4
j4
j4


 ,

α1


j4
j4
−j4
−j4


 ,

α2


j4
−j4
j4
−j4


 ,

α3


j4
−j4
−j4
j4


 ,

Tα1(v)



v0..3

v4..7

−v8..11

−v12..15


 ,

Tα2(v)



v0..3

−v4..7

v8..11

−v12..15


 ,

Tα3(v)



v0..3

−v4..7

−v8..11

v12..15


 ,

where j4 =
( 1

0
0
0

)
. We now discard our original J(C) entirely, and exclusively

use J = J (C) of Definition 2.1 as the projective embedding of the Jacobian
for any curve of the form (6). Note that the block of functions (v0..3) invariant
under {I, Tα1 , Tα2 , Tα3} are all even (and are analogous to the (v0..1) of
Section 1); the remaining eigenspace blocks v4..7, v8..11, v12..15 each contain
2 even and 2 odd functions.

We now fix one function in (the dual of) each eigenspace: fix v0, v4, v8,
v12, say, we can multiply each of these by the 4 functions in its eigenspace
to give v0v0..3, v4v4..7, v8v8..11, v12v12..15. The map τ from v to the member
of P15 given by these 16 functions clearly satisfies τ(v + αi) = τ(v), and
composing τ with a linear adjustment creates a 4-isogeny from J (C) to
Ĵ = J (Ĉ) where Ĉ is described in the following lemma.

Lemma 2.2. Let M , M̂ , U be as in Appendix A. For any two polynomials
p(X), q(X), let [p, q] denote [p′q − pq′], and let τ , φ, φ̂, q̂i, Ĉ, b̂ij , b̂i, δ̂i be
as follows:

(9)

τ : v 7→




v0v0..3

v4v4..7

v8v8..11

v12v12..15


 , φ = Mτ , φ̂ = UM̂τ ,

q̂1 = [q2, q3] , q̂2 = [q3, q1] , q̂3 = [q1, q2] ,

Ĉ : ∆Y 2 = q̂1(X)q̂2(X)q̂3(X) ,

b̂ij = res(q̂i(X), q̂j(X)) , b̂i = b̂ij b̂ik , δ̂i = disc(q̂i(X)) .
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Then δ̂i = bjk, b̂jk = δi in Q∗/(Q∗)2, and the following hold :

(i) φ : J 7→ Ĵ , φ̂ : Ĵ 7→ J are 4-isogenies.
(ii) kerφ = {O, α1, α2, α3}, ker φ̂ = {Ô, α̂1, α̂2, α̂3}.

(iii) φ̂ ◦ φ = φ ◦ φ̂ = [2].

(iv) φ
(⌊(−gj ±

√
δj

2fj
, 0
)
,

(−gk ±
√
δk

2fk
, 0
)⌋)

= α̂i ,

φ̂

(⌊(−ĝj ±
√
δ̂j

2f̂j
, 0
)
,

(−ĝk ±
√
δ̂k

2f̂k
, 0
)⌋)

= αi .

The original conditions: bij 6= 0, δi 6= 0, char(F) 6= 2 guarantee that
all of the above matrices mentioned so far have non-zero determinant, and
so are well defined maps on P15. The isogeny from J to Ĵ , computed in
this case by algebraic experimentation, turned out to be the same as an
isogeny of Richelot, recently publicised [1] by Bost and Mestre in a different
context. We now assume, for the rest of the section, that F = Q, so that
we may take fi, gi, hi ∈ Z (and so bij , bi, δi ∈ Z). The following two lemmas
construct an injection, analogous to that in Section 1, from Ĵ (Q)/φ(J (Q))
into (Q∗/(Q∗)2)2, where (Q∗/(Q∗)2)2 represents the product with itself of
Q∗/(Q∗)2.

Lemma 2.3. Let w ∈ Ĵ (Q). Then there exists a unique pair (d1, d2) ∈
(Q∗/(Q∗)2)2 such that for every v ∈ φ−1(w), the sets {v}, {v, Tαi(v)},
{v, Tα1(v), Tα2(v), Tα3(v)} are defined over Q(

√
d1,
√
d2), Q(

√
di), Q, re-

spectively (i = 1, 2, 3, d3 = d1d2). When d1 6= 1, d2 6= 1, d3 6= 1, this gives
that :

(i) {v, σd1(v), σd2(v), σd3(v)} = φ−1(w),
(ii) Tαi(v) = σdi(v), i = 1, 2, 3,

where σdi represents conjugation in Q(
√
d1,
√
d2) over Q(

√
di).

P r o o f. Let r = M−1w, as in the proof of Lemma 1.3, taking d1 = v4/v0,
d2 = v8/v0.

The explicit derivation of (d1, d2) is computationally useful, since there is
not a simple function on Ĉ which performs the function of the x-coordinate
on elliptic curves.

Lemma 2.4. Let ψ : Ĵ (Q)/φ(J (Q)) 7→ (Q∗/(Q∗)2)2 : w 7→ (d1, d2),
where the ordered pair (d1, d2) is as in Lemma 2.2. Then ψ is a well defined
injective homomorphism, and (̂b12b̂13, b̂12), (̂b12, b̂12b̂23), (̂b13, b̂23) ∈ imψ.

P r o o f. Identical in nature to that of Lemma 1.4. The given points in
imψ are (using Lemma 2.2) the images of α̂1, α̂2, α̂3, respectively.
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Lemma 2.5. Let S = {p : p |∆b1b2b3δ1δ2δ3} ∪ {2} = {p1 . . . pr}, and
Q(S) = {±pe11 . . . perr } ≤ Q∗/(Q∗)2. Then imψ ≤ (Q(S))2.

P r o o f. Suppose otherwise, that there exists (d1, d2) ∈ imψ, p 6∈ S such
that p divides either d1 or d2: p | d1, say. Now apply the reduction argument
in the proof of Lemma 1.5 to give the contradiction that α̂1 = Ô.

The same exact sequence as in Section 1 justifies deducing the weak
Mordell–Weil theorem from the above lemmas.

Theorem 2.6. The groups Ĵ (Q)/φ(J (Q)), J (Q)/φ̂(Ĵ (Q)) and
J (Q)/2J (Q) are finite.

As in Section 1, our choice of embedding J eases the construction of the
homogeneous spaces Jd1,d2 .

Definition 2.7. Let (d1, d2) ∈ (Q(S))2, and take d3 = d1d2 inQ∗/(Q∗)2.
We adopt the convention that d1, d2, d3 are represented by square free inte-
gers. Further, define dij = gcd(di, dj), also represented uniquely by square
free integers. Note that the dij are pairwise coprime, and that di = dijdik.
Let twd1,d2 : v 7→ z, where z0..3 =v0..3, z4..7 =v4..7/

√
d1, z8..11 =v8..11/

√
d2,

z12..15 = v12..15/
√
d3 (d3 = d1d2 in Q∗/(Q∗)2). Then twd1,d2 is an iso-

morphism from J to the homogeneous space Jd1,d2 , whose defining equa-
tions are obtained simply by substituting v0..3 = z0..3, v4..7 = z4..7

√
d1,

v8..11 = z8..11
√
d2, v12..15 = z12..15

√
d3 into the defining equations of J . The

permutation group action can be extended to the indices of di, dij , so that
the twists of the equations A in (7) become

(10)

A
(1)
d1,d2

: bij(z2
j − djz2

1+4j) = bik(z2
k − dkz2

1+4k) ,

A
(2)
d1,d2

: 4biziz1+4i = djkz4jz4k − z0z4i ,

A
(3)
d1,d2

: 4bi(z2
i + diz

2
1+4i) = z2

0 + diz
2
4i − djz2

4j − dkz2
4k ,

A
(4)
d1,d2

: 2bijzizj = z0zk + dkz4kz1+4k ,

A
(5)
d1,d2

: 2bijdijz1+4iz1+4j = z0z1+4k + zkz4k ,

A
(6)
d1,d2

: 2bijz1+4izj = −z4izk − djkz4jz1+4k .

The complete set of defining equations of Jd1,d2 are given in Appendix A.
We further define

Sφp = {(d1, d2) : Jd1,d2(Qp) 6= ∅} , Sφ =
⋂
p

Sφp ,

with
⋂
p over all primes including ∞.

Theorem 2.8. imψ = {(d1, d2) : Jd1,d2(Q) 6= ∅}.
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P r o o f. Let (d1, d2) ∈ imψ so that (by definition) there are w ∈ Ĵ (Q),
v ∈ J (Q(

√
d1,
√
d2)), with w = φ(v) and σdi(v) = Tαi(v). Let z =

twd1,d2(w). Then, as in the proof of Theorem 1.8, it is clear that σi(z) = z,
so that Jd1,d2(Q) 6= ∅. Conversely, given z ∈ Jd1,d2(Q), then taking v =
tw−1
d1,d2

(z), w = φ(v) ∈ Ĵ (Q) clearly gives (d1, d2) ∈ imψ.

As in Section 1, we find that the equations Ad1,d2 = {A(n)
d1,d2

: n =
1, . . . , 6} define a projective variety (of dimension 3, containing Jd1,d2 as a
subvariety) which simplifies finding Jd1,d2(Q) for some choices of (d1, d2).

Definition 2.9. Lφp = {d ∈ Q(S) : Ad1,d2(Qp) 6= ∅}, Lφ =
⋂
p L

φ
p .

The group Lφ can be interpreted in terms of a pair of norm equations,
which satisfy similar properties to the corresponding object in Section 1.
In the following theorem, the properties of the norm equations (that is,
(ii)⇔(iii)⇔(iv)) are due to J. W. S. Cassels. The symmetry of the norm
form equations (that is: (ii)⇔(iv)) holds true not only for Q, but for any
field of characteristic 6= 2, and a proof of this fact is included as Appendix B.
I am also grateful to B. J. Birch for helpful insight to the group Lφ (in a
different context).

Theorem 2.10. Each Ad1,d2 satisfies the Hasse principle, so that Lφ =
{(d1, d2) ∈ (Q(S))2 : Ad1,d2(Q) 6= ∅}. The set Lφ is a group, Sφ ≤ Lφ, and
following are equivalent :

(i) (d1, d2) ∈ Lφ.
(ii) There exist elements, %i ∈ Q(

√
di) (i = 1, 2, 3), such that :

b1 = N2(%2)N3(%3) and b2 = N1(%1)N3(%3) .

(iii) (b1, d2)p(b2, d1)p = 1, for all p ∈ Q(S).
(iv) There exist elements, %′i ∈ Q(

√
bi) (i = 1, 2, 3), such that :

d1 = N2(%′2)N3(%′3) and d2 = N1(%′1)N3(%′3)

where Ni represents NormQ(
√
di)/Q, and ( , )p represents the norm residue

symbol in Qp.

P r o o f. We show the equivalence (ii)⇔(iii) ((iii)⇔(iv) follows by sym-
metry), then (i)⇔(ii).

(ii)⇒(iii). Let r = N1(%1)N2(%2)N3(%3). Then Ni(%i)bi = r in Q∗/(Q∗)2

for i = 1, 2, 3, and so (bi, di) = (r, di), giving (bi, di)p = (r, di)p for any p.
Hence,

(b1, d1)p(b2, d2)p = (r, d1)p(r, d2)p = (r, d3)p = (b3, d3)p
= (b1b2, d1d2)p = (b1, d1)p(b1, d2)p(b2, d1)p(b2, d2)p ,

giving (b1, d2)p(b2, d1)p = 1, as required.
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(iii)⇒(ii). Let p ∈ S. From (iii), (b1, d2)p = (b2, d1)p = 1 or − 1. In the
former case, define rp = b3; in the latter case, define rp = 1, b2, b1, b1, when
[(b1, d1)p, (b2, d2)p] = [1, 1], [−1, 1], [1,−1], [−1,−1], respectively. In all cases,
(rp, di)p = (bi, di)p for i = 1, 2, 3. By a standard global approximation, there
exists r ∈ Q such that (r, di)p = (bi, di)p, i = 1, 2, 3, for all primes p such
that p | r or p ∈ S. Hence (bi/r, di)p = 1 for all such primes, and so bi/r is
globally a norm of an element %i ∈ Q(

√
di). Clearly, %1, %2, r%3 satisfy the

requirements of (ii).
(iii)⇔(iv). Symmetrical to (iii)⇔(ii).
(i)⇒(ii). Assume for simplicity that each di 6= 1. Let p be any prime, and

by (i) let z0, . . . , z5, z8, z9, z12, z13, not all 0, be a Qp-rational solution to the
equations Ad1,d2 . Then zi 6= 0 or z1+4i 6= 0 for i = 1, 2, 3, since otherwise
the equations A(1)

d1,d2
, A(3)

d1,d2
would force z = 0. Now, equation A

(1)
d1,d2

gives
the two equations:

b12(z2
2 − d2z

2
9) = b13(z2

3 − d3z
2
13) ,

b12(z2
1 − d1z

2
5) = b23(z2

3 − d3z
2
13) .

Clearly, %1 = z1 + z5
√
d1, %2 = z2 + z9

√
d2, %3 = b12/(z3 + z13

√
d3) satisfy

the requirements of (ii) with Q replaced be Qp, for any prime p. However,
we have already seen from (ii)⇔(iii) above that the equations in (ii) satisfy
the Hasse principle; therefore we can deduce (ii) globally, as required. It is
straightforward to adjust the argument for the case when some di = 1.

(ii)⇒(i). Let %i satisfy (ii). Then there are rational zi, z1+4i such that
%i = zi+

√
diz1+4i, i = 1, 2, 3. Further, 2%̄1%̄2%3 ∈ Q(

√
d1,
√
d2), so there are

rational z0, z4, z8, z12 such that 2%̄1%̄2%3 = z0 +
√
d1z4 +

√
d2z8 +

√
d3z12. It is

straightforward to verify that the zi satisfy the equations A(1)
d1,d2

, . . . , A
(6)
d1,d2

.
The fact that Lφ is a group immediately follows from criterion (iv) and

the multiplicative property of norms (this would not have been at all obvious
from criterion (ii)).

As with elliptic curves, the group Lφ is a useful computational device.
It is quick to compute and, once computed, there are a smaller number of
cosets to be checked when determining the Selmer group. We shall illustrate
this (and the rest of the above theory) in the next section.

3. Worked examples. We illustrate the theory of Section 2 by comput-
ing the ranks of a selection of 12 Jacobians. For simplicity, we shall represent
a member of J (C) as an unordered pair {(x1, y1), (x2, y2)} of points on C
(as described at the beginning of Section 2) and not as a member of P15. We
have tried to choose a varied selection, indicating how the computations are
affected by such things as the existence of additional torsion points, and the
multiplication of the sextic by a non-square constant. In the various Boolean
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groups which occur, we shall use the notation 〈g1, . . . , gk〉 to represent the
group of size 2k generated by g1, . . . , gk.

Example 3.1. Let C, Ĉ be as follows:

C : Y 2 = (X2 + 1)(X2 + 2)(X2 + 2X + 2) ,

Ĉ : Y 2 = (X2 − 2)(X2 +X − 1)(−X) .

Then J (Q) and Ĵ (Q) have rank 1.

P r o o f. The only bad primes are 2, 5, and so Q(S) = {±1,±2,±5,±10}.
Finite field reductions modulo 3 and 7 give that no torsion points occur
apart from the 2-torsion group of size 4 on each of J (Q) and Ĵ (Q).
Ĵ (Q)/φ(J (Q)): Using Theorem 2.10, Lφ = 〈(2,−1), (−1, 1), (2, 1), (1, 5),

(5, 2)〉. Applying Lemma 2.4 to the points of order 2 on Ĵ (Q) gives that
ψ(〈α̂1, α̂2〉) = 〈(2,−1), (−1, 1)〉. Further, there is the divisor of infinite order:

D = {(0, 0), (−1, 1)} ψ−→ (2, 1) .

Hence, 〈(2,−1), (−1, 1), (2, 1)〉 ≤ imψ ≤ Lφ. There are only three cosets to
check: (1, 5), (5, 2), (5, 10). But a straightforward search in Q5 (modulo 54

was sufficient) gives J1,5(Q5), J5,2(Q5), J5,10(Q5) = ∅, so (1, 5), (5, 2), (5, 10)
6∈ Sφ5 . Hence imψ = Sφ = 〈(2,−1), (−1, 1), (2, 1)〉 and Ĵ (Q)/φ(J (Q)) =
〈α̂1, α̂2, D〉.
J (Q)/φ̂(Ĵ (Q)): Here, Lφ̂ = 〈(5, 1), (1, 2), (1,−1), (−1, 1), (2, 1)〉, and

ψ̂(〈α1, α2〉) = 〈(5, 1), (1, 2)〉. Hence 〈(5, 1), (1, 2)〉 ≤ im ψ̂ ≤ Lφ̂. There

are seven cosets to check, none of which lie in Sφ̂2 . Hence im ψ̂ = Sφ̂ =
〈(5, 1), (1, 2)〉, and J (Q)/φ̂(Ĵ (Q)) = 〈α1, α2〉.

Finally, we take φ̂(D) = {+∞,+∞} to obtain a point of infinite order on
J (Q), and use the exact sequence of Theorem 2.6 to see that J (Q) and Ĵ (Q)
have rank 1, with J (Q)/2J (Q) = 〈α1, α2, {+∞,+∞}〉 and Ĵ (Q)/2Ĵ (Q) =
〈α̂1, α̂2, D〉.

The initial calculation of Lφ, Lφ̂ in the above example meant that sig-
nificantly fewer homogeneous spaces were required to be checked locally. An
even more dramatic illustration of this is given by the following example,
for which only two homogeneous spaces need to be checked in total.

Example 3.2. Let C, Ĉ be as follows:

C : Y 2 = (X2 + 6X + 7)(X2 + 4X + 1)(X2 + 2X + 3) ,

Ĉ : Y 2 = (X2 − 2X − 5)(X2 + 2X − 1)(X2 + 6X + 11) .

Then J (Q) and Ĵ (Q) have rank 2.
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P r o o f. The only bad primes are 2, 3, and so Q(S) = {±1,±2,±3,±6}.
Finite field reductions modulo 5 and 7 give that no torsion points occur
apart from the 2-torsion group of size 4 on each of J (Q) and Ĵ (Q).
Ĵ (Q)/φ(J (Q)): We have Lφ = 〈(−6,−2), (−2,−1), (1, 2), (2, 3)〉,

ψ(〈α̂1, α̂2〉) = 〈(−6,−2), (−2,−1)〉, and

D1 =
{(− 5

3 + 1
3

√−2, 32
27 + 80

27

√−2
)
,
(− 5

3 − 1
3

√−2, 32
27 − 80

27

√−2
)} ψ−→ (1, 2) .

Hence, 〈(−6,−2), (−2,−1), (1, 2)〉 ≤ imψ ≤ Lφ. There is only one coset,
(2, 3), to be checked; but (2, 3) 6∈ Sφ2 , giving imψ = Sφ = 〈(−6,−2),
(−2,−1), (1, 2)〉.
J (Q)/φ̂(Ĵ (Q)): We have Lφ̂ = 〈(−1,−2), (−2,−3), (−2,−2), (3, 2)〉,

ψ(〈α̂1, α̂2〉) = 〈(−1,−2), (−2,−3)〉, and

D2 = {(−1 +
√

6, 16 + 8
√

6), (−1−
√

6, 16− 8
√

6)} ψ−→ (−2,−2) .

Hence, 〈(−1,−2), (−2,−3), (−2,−2)〉 ≤ imψ ≤ Lφ. There is only one coset,
(3, 2), to be checked; but (3, 2) 6∈ Sφ3 , giving im ψ̂ = Sφ̂ = 〈(−1,−2),
(−2,−3), (−2,−2)〉.

We therefore find that J (Q) and Ĵ (Q) both have rank 2 with

J (Q)/2J (Q) = 〈α1, α2, D2, {(−2, 3), (−2, 3)}〉 ,
Ĵ (Q)/2Ĵ (Q) =

〈
α̂1, α̂2, D1,

{(− 5
2 ,

15
8

)
,
(− 5

2 ,
15
8

)}〉
.

In our final example, we exploit the fact that much of the work is in
common between curves of the form Y 2 = k · q1(X)q2(X)q3(X) where k ∈
Q(S). This allows us quickly to handle a group of curves at once. In the
cases when the Jacobian has rank 0, it is straightforward to determine all
the Q-rational points on the underlying curve.

Example 3.3. Let C(k), Ĉ(k) be as follows for k = 1, 2,−2, 6:

C(k) : Y 2 = k(X2 + 1)(X2 + 2)(X2 +X + 1) ,

Ĉ(k) : Y 2 = k(X2 − 2X − 2)(X2 − 1)(−X) .

Then J (k)(Q), Ĵ (k)(Q) has rank 1 when k = 1, 2, 6, and rank 0 when
k = −2. The curve Ĉ(−2) has no rational points apart from (0, 0), (±1, 0),∞.

P r o o f. The only bad primes are 2, 3, and so Q(S) = {±1,±2,±3,±6}.
For all k, there are four 2-torsion points 〈α1, α2〉, on J (k)(Q), and for
k = 2 there is the 4-torsion point β = {(0, 2), (1, 6)} (where 2β = α1).
For all k, there are eight 2-torsion points 〈α̂1, α̂2, γ〉, on Ĵ (k)(Q), where
γ = {∞, (−1, 0)}. Finite field reductions modulo 5 and 7 show that these give
the whole rational torsion group. We now observe that Lφ, Lφ̂ depend only
on the values of b1, b2, b3, b̂1, b̂2, b̂3 modulo squares, which are not affected by
the value of k. Hence, for any k = 1, 2,−2, 6, Lφ = 〈(6,−3), (−3, 3), (1,−1),
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(1, 2), (1, 3)〉. Also, ψ(〈α̂1, α̂2, γ〉) = 〈(6,−3), (−3, 3), (1, 2k)〉. Hence,
〈(6,−3), (−3, 3), (1, 2k)〉 ≤ imψ ≤ Lφ. Similarly, for any such k, ψ(〈α1, α2〉)
= 〈(1, 3)〉 ≤ im ψ̂ ≤ Lφ̂ = 〈(1, 3), (1,−2), (−1,−1), (2, 6), (−3, 1)〉.

In the same manner as Examples 3.1, 3.2, there are only a few cosets
to check, and for each k = 1, 2,−2, 6 it can be shown that imψ = Sφ, and
im ψ̂ = Sφ̂. The set of generators for each k = 1, 2,−2, 6 is as follows, with
the point of infinite order (k = 1, 2, 6) listed last in each case.

J (1)(Q)/2J (1)(Q) = 〈α1, α2, {+∞,+∞}〉 ,
Ĵ (1)(Q)/2Ĵ (1)(Q) =

〈
α̂1, α̂2, γ,

{
(0, 0),

(− 1
2 ,

3
4

)}〉
,

J (2)(Q)/2J (2)(Q) = 〈α2, β, {(0, 2), (0, 2)}〉 ,
Ĵ (2)(Q)/2Ĵ (2)(Q) = 〈α̂1, α̂2, γ, {(0, 0), (−2, 12)}〉 ,

J (−2)(Q)/2J (−2)(Q) = 〈α1, α2〉 ,
Ĵ (−2)(Q)/2Ĵ (−2)(Q) = 〈α̂1, α̂2, γ〉 ,
J (6)(Q)/2J (6)(Q) = 〈α1, α2, {(−1, 6), (−1, 6)}〉 ,
Ĵ (6)(Q)/2Ĵ (6)(Q) = 〈α̂1, α̂2, γ, {(0, 0), (2, 12)}〉 .

The most surprising feature of the above examples was how little actual
computation was required to determine the rank. Once the equations defin-
ing Jd1,d2 had been processed, the time required for determining whether
there were points locally took only a few seconds on a Sun 3/60 work sta-
tion (indeed Example 3.1 was computed by hand in about 12 hours). There
are still gaps in the methodology—for example, we have not yet devel-
oped a technique for higher descents, and so our method currently requires
imψ = Sφ and im ψ̂ = Sφ̂. It seems reasonable to expect (judging by anal-
ogous computations on elliptic curves) that sufficiently many curves will
satisfy these requirements to allow rank tables for several thousand Jaco-
bians to be produced.

Appendix A. The embedding J (C), and isogeny from J to
Ĵ . The equations defining the embedding J (C), the homogeneous spaces
Jd1,d2 , and the isogeny φ would require roughly 50 pages to list, and so
we do not include them here. Instead, they have been placed in the file:
/pub/genus2/isogeny which is available by anonymous ftp from 131.111.24.1
(pmms.cam.ac.uk). The contents of this file are as follows.

(1) The embedding (v0..15) of Definition 2.1.
(2) The defining equations satisfied by v0, . . . , v15.
(3) The defining equations for Jd1,d2 of Definition 2.7.

(4) The 16× 16 matrices M, M̂, U which define φ, φ̂ of Lemma 2.2.
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These are given in full generality for any curve of the form C : Y 2 =
q1(X)q2(X)q3(X), where qi(X) = fiX

2 + giX + hi. The file is suitable for
input to the symbolic algebra package Maple, and may easily be modified
for input to other similar packages.

Appendix B. A theorem about norms. The contents of this ap-
pendix are due to J. W. S. Cassels. Throughout this appendix k is any field
of characteristic not 2 and we shall use Norm to indicate the norm from a
quadratic extension; which extension will be clear from the context.

Theorem. Let d1, d2 ∈ k∗ be multiplicatively independent modulo
squares. Let

δ2
1 = d1 , δ2

2 = d2 , δ3 = δ1δ2 .

Let e1, e2, e3 ∈ k∗ be of the shape

e1 = Norm γ2 Norm γ3 ,

e2 = Norm γ3 Norm γ1 ,

e3 = Norm γ1 Norm γ2 ,

where γj ∈ k(δj) (j = 1, 2, 3). Let ε2
j = ej (j = 1, 2, 3). Then there are

ξj ∈ k(εj) such that

d1 = Norm ξ2 Norm ξ3 , d2 = Norm ξ3 Norm ξ1 .

We shall first give a brief but entirely unilluminating verification. The
rest of the appendix explains how it was obtained via a normal extension of k
of degree 32. We motivate it here in terms of a simpler and well known result.
Let d, e ∈ k∗ and let δ2 = d, ε2 = e. Then d is a norm for k(ε) precisely
when e is a norm for k(δ): indeed, both are equivalent to the existence of a
nontrivial solution x, y, z of

z2 = dx2 + ey2.

From our point of view it is more relevant that both are equivalent to the
existence of a quadratic extension of k(δ, ε) which is normal but not abelian
over k. More precisely, let e = Norm γ, where γ ∈ k(δ) and put ζ2 = γ.
Then K = k(δ, ε, ζ) is normal of degree 8. Its group is generated, as is easy
to see, by three automorphisms σ, τ , λ of order 2 given by

σδ = −δ , σε = ε , σζ = ε/ζ ,

τδ = δ , τε = −ε , τζ = ζ ,

λδ = δ, λε = ε, λζ = −ζ .
Here λ is in the centre and τσ = λστ . The rôles of d, e in the above are not
symmetric, but can be made so by considering η = ζ − σζ. Then λη = −η,
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ση = −η and η(τη) = γ − σγ = uδ for some u ∈ k. Let β = η2. It follows
that β ∈ k(ε) and Normβ = du2.

For the corresponding result for pure cubic extensions, see [2], p. 87
(Lemma 13). Results of this nature are related to the theory of the Hilbert
Norm Residue symbol, and could doubtless be proved by the theory of cen-
tral simple algebras; but perhaps not so explicitly.

Verification. We may take

γj = xj + yjδj ,

where xj , yj ∈ k. Consider

(∗)
η1 = x1y2x3 + d1y1x2y3 + y2ε1 ,

η2 = y1x2x3 + d2x1y2y3 + y1ε2 ,

η3 = x1x2y3 + y1y2x3 + y3ε3 ,

where ε2
j = ej . One checks readily that

Norm η1 = d1 Norm η3 , Norm η2 = d2 Norm η3 .

The result follows.

P r o o f. We define first a group Γ of order 32. It is generated by λ, σ1,
σ2, τ1, τ2 all of order 2. Further,

(B.1) σ1τ2 = λτ2σ1 , σ2τ1 = λτ1σ2 ,

but otherwise the generators commute; in particular, the centre consists of
just λ and the identity.

Lemma. Let K/k be a normal extension with Galois group Γ . Then there
are dj , ej , γj satisfying the hypotheses of the Theorem and such that

(B.2) K = k(δ1, δ2, ε1, ε2, α),

where

(B.3) α2 = γ1γ2γ3.

Conversely , if dj , ej , γj satisfy the conditions of the Theorem and d1, d2, e1,
e2 are multiplicatively independent modulo squares, then the field K given
by (B.2), (B.3) has Galois group Γ .

P r o o f. The fixed field of {σ2, τ1, τ2, λ} is an extension of k of degree 2,
say k(δ1), where

σ1δ1 = −δ1 , δ2
1 = d1

for some d1 ∈ k∗. Similarly we obtain δ2, ε1, ε2 with

σ2δ2 = −δ2 , τ1ε1 = −ε1 , τ2ε2 = −ε2 ,

but otherwise fixed by the group generators. Put δ2
2 = d2, ε2

1 = e1, ε2
2 = e2.

Clearly the fixed field of λ is k(δ1, δ2, ε1, ε2) of degree 16.
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The Galois group of K/k(δ1, δ2) is generated by {τ1, τ2, λ}, and so of
type (2, 2, 2). Hence

(B.4) K = k(δ1, δ2, ε1, ε2, α)

for some α with

(B.5) λα = −α , τ1α = τ2α = α,

so

(B.6) α2 ∈ k(δ1, δ2).

Now

τ1σ1α = σ1τ1α = σ1α , τ2σ1α = λσ1τ2α = λσ1α = −σ1α

etc. Hence

(B.7) h = α(σ1α)(σ2α)(σ1σ2α)

is fixed under all the generators of the group, that is,

(B.8) h ∈ k∗ .
Similarly one checks that α(σ1α)/ε2 is fixed under σ1, τ1, τ2, λ, that is,

(B.9) α(σ1α) = ε2γ2 , γ2 ∈ k(δ2) .

In the same way,

(B.10) α(σ2α) = ε1γ1 , γ1 ∈ k(δ1) ,

and

(B.11) α(σ1σ2α) = ε1ε2γ3 , γ3 ∈ k(δ1δ2) .

On applying σ2, σ1, σ1σ2 to (B.9), (B.10), (B.11) respectively, we have

(B.12) h = e2 Norm γ2 = e1 Norm γ1 = e1e2 Norm γ3 .

Further,

(B.13) hα2 = e1e2γ1γ2γ3

by (B.7), (B.9), (B.10), (B.11). Finally, on replacing γ3 by (h/e1e2)γ3 we
get (B.2), (B.3), as required.

The converse is straightforward and left to the reader with the hint to
define σ1α = ε2γ2/α.

P r o o f o f T h e o r e m. The structure of the field K of the Lemma is
symmetric in the d’s and the e’s. More precisely, let

(B.14) β = α+ σ1α+ σ2α+ σ1σ2α .

Then

(B.15) λβ = −β , σ1β = σ2β = β .
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Hence β corresponds to α and we can go on to construct the analogues ξj of
the γj . The formulae of the verification (∗) were obtained by going through
this in detail.

References

[1] J. B. Bost et J.-F. Mestre, Moyenne arithmético-géometrique et périodes des
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