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1. Introduction. In its simplest form, the additive divisor problem is
to determine the asymptotic behaviour of the sum

Se(x) =) _dn)d(n+k) (x>0),

where d(n) stands for the number of positive divisors of n and k is a positive
integer.

On the assumption that the shift & is fixed, the best result was obtained
by J.-M. Deshouillers and H. Iwaniec [3], who proved that for every ¢ > 0
we have

Sk(x) = 2Py (logx) + Ex(x)
with
(1.1) Ep(z) <pe 223 (2 = 0),
where Py is a quadratic polynomial.

On the other hand, confirming a conjecture by A. Ivié¢, Y. Motohashi
[10] has recently proved that for each fixed k we have

(1.2) En(z) = QY?) (2 — 00).
In this note we shall prove a slight improvement of this result.
THEOREM. For fixed k > 1, we have
Ep(z) = Qu(z¥?) (2 — 00).

The proof of (1.2) [10] (and of (1.1) [3]) proceeds via Kloosterman sums
and Kuznetsov’s trace formulas (cf. [2], [7], [8] and [12]). But it is perhaps
easy to conceive that there should be a more direct approach avoiding these
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tools, namely the one using the zeta-function of our problem,

oo

Ck(s) == Z W (Res>1).
n=1

Moreover, within this approach it would then be natural to try to apply a

certain general result of Landau [9] (cf. Lemma 0 in Section 2). Actually, we

choose this line of argument.

The function (i(s) was analyzed earlier by L. A. Takhtajan and
A. 1. Vinogradov [14]; see also [5] for some revision of [14]. They applied
the spectral theory of the hyperbolic Laplacian (cf. [6]) directly to a modi-
fication of the Eisenstein series.

Needed facts from [14] (and [5]) will be given below in Lemmas 1 and 2
(Section 4). Lemma 3 in Section 4 (non-vanishing lemma) is not new. It is
stated in [10] as a fact needed for completing the proof of (1.2). It is also
remarked there that this fact is a consequence of a lemma of [11] which in
turn is proved via Kloosterman sums and Kuznetsov’s trace formulas. We
shall prove Lemma 3 in another way.

Acknowledgements. I would like to thank Professors Matti Jutila and
Yoichi Motohashi for kindly putting unpublished material at my disposal.

2. Consequence of a theorem of Landau. The following lemma is a
corollary of a classical result of Landau [9] (cf. e.g. [1]).

LEMMA 0. Suppose g(x) is a piecewise continuous function bounded on
finite intervals such that

o0

G(s) := fg($):1:_5_1 dx

1

converges absolutely for Res > o,. Suppose G(s) analytically continues into
a region including the reals s > o (with no singularity at o) while G(s)
has a simple pole at oo + itg, to 7 0 with residue r. Then

limsupg(a)e~7 > [r|,  liminf g(z)a~" < —r|.
xr— 00 Tr— 00

3. Notations and auxiliary facts. The following notations will be
used (cf. [5], [7] and [14]):

(3.1) K,(v):= f e Vet cosh(vt)dt (v >0, veC)
0

(the K-Bessel function);

os(k) == Z d’;

d|k
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§(s) =12 (s/2)¢(s);
du(z) ==y~ % dz dy (the invariant hyperbolic measure in the upper
half-plane z = = + iy, y > 0);

Kj:=y/A; —1/4, where \; is the jth (non-zero) eigenvalue of the
hyperbolic Laplacian (it is well known that A; > 1/4);

zj = 1/2+ikj;

0j(1) — the first Fourier coefficient of the Maass wave form attached
to Aj;

Hj(s):=>>° ti(n)/n® (Res > 1) (the Maass L-function attached
to Aj);

(32)  E*(2):=yllogy—c)+2yy Y d(|n])Ko(2|n|y)e(nz) (y > 0),

n=-—oo
n#0
where e(a) := exp(2mia) and ¢ := log(47) —« with Euler’s
constant ~;
(3.3) f |E*(2))%e(k2)y® du(z)  (Res > 1),

where I7 is the strip |z| < 1/2, y > 0;
22-2spl=spw=sq, o (k)(s —w)(s —1+w)

(34) Ix(w,s):=

§(2w)I'(s)
We will also use the following facts about the K-Bessel function (3.1):
(3.5) Ko(v) >0 (v>0),
(3.6) Ko(v) = v 2™ (v — o0),
(3.7) <8) K, (v) <v V% (v—o00; n=0,1,2),
v v=1/2
(3.8) |Kiw(v)] < Ko(v) (u>0, v>0),
(3.9) K, (v) < e(=3/2)u (u>1,v>1)
and

I'(s+v)['(s—v)
I'(s+1/2)

(3.10) [ K,()e 't dt = /727"
0

(Re(stv)>0).

The facts (3.5) and (3.8) follow directly from (3.1). The fact (3.6) is,
of course, a corollary of the asymptotic formula for K, (v) (see [4], p. 86,
(7)). The estimate (3.7) can be derived from (3.1), and (3.9) from a suitable
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integral representation for K, (v) (see for example [13], (8.8)). Finally, (3.10)
is a particular case of the formula (26) on p. 50 of [4].

We will use the following simple estimates from the theory of the Rie-
mann zeta-function:

(3.11) C(1/2+idit) <t (t— 00),
(3.12) C1+it) P <log™t  (t— 00)
and
T
(3.13) [1ca/2+it)*dt < Tlog*T (T — o0);
0

see [15], (2.12.2), (3.6.3) and (7.6.1).

4. Analytic properties of (i (s). All needed facts from [5] and [14] are
stated in the following two lemmas.

LEMMA 1. The function (x(s) can be meromorphically continued onto
the whole complex plane. The only singularities of (x(s) in the half-plane
Res > 1/2 are: a triple pole at s = 1 and simple poles at s = z;, Z;
(j=1,2,...). For z=1/2+ ik € {21, 22, ...} we have

2/2)|4 T (2ki)
(4.1) Res ((s) = f(tfk( £ | F 2 Z |o; ( (k)H?(1/2).
LEMMA 2. For Res > 1/2 we have

(4.2) I (s) = B(s) + C(s) + D(s),
where
(4.3) B(s) = <£v — c> I (w, s) N

Y
44 O6) = Gpr(s)

y f k=g, (K)[E(1/2 + iu) AT (s — 1/2 — iu) (s — 1/2 + iu) "
2 ['(1/2 4 ) |2|¢(1 + 2iu)|?
and
Vk
e s )
XZ|QJ (k)H?(1/2)|I (2 /2)|*T(s — 2;) (s — 2;) .

The above series converges absolutely.
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LEMMA 3. There is a k > 0 such that

> Lo (WPt (k) HF (1/2) #

I’\'/J—H/
Proof. Suppose the contrary. Then by (4.2) and (4.5) we have
I(s) = B(s) + C(s) .
For y > 0 consider

24100
(4.6)  m( — [ I(s)y*ds
2 100
1 2+i00 1 2+i00
=5 f B(s)y ds—i—% f C(s)y *ds
2—1i00 2—1i00

Fb(y) +e(y) -
From (4.3), (3 4) and (3. 10) we obtain

b(y) < > [47rk o1 gw

2+z<>o

I's—w)'(s+w-—1) _
Arky)~°d
X2m 2_;/;0 I'(s) (4mky) " ds wel
_ i . *T ( a factor which depends ) Kw—l/z(Qka)e_Zka
— \ ow only on k and w NG I
From this and (3.7) it follows that
(4.7) bly) <y e (y — o0).

Next, using (4.4) and (3.10), we first obtain
e~ 2mky j? k™" 05, (K)|€(1/2 + iu) |* K (27ky)
2,/y |I(1/2 + i) |?|¢(1 + 2iu)|?

Let T' > 2. From Stirling’s formula, (3.11)—(3.13), (3.8) and (3.9) it follows
that

c(y) = du.

—2rky T 1 14
ety) < Kotk [ lot1/2 +ingl* 22
1
+ f ulogtu - 732 gy
e—27rky
< [Ko(2rky)log"® T + e T7.
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Putting T := 37ky, we obtain by (3.6),

(4.8) cly) <y~ Be AR (y = o).
Combining (4.7) and (4.8), we obtain
(4.9) m(y) <y~ P (y — o00).

On the other hand, by (3.2), (3.3) and (4.6), we have

m(y) = exp(~2rky) | 4d(k) Ko(2mky) (log y )

k—1
+4> " d(n)d(k — n)Ko(2mny) Ko (2 (k — n)y)

+8 " d(n)d(n + k) Iy (2mny) Ko(2m(n + k:)y)} .

Thus, by (3.5) and (4.9), we conclude that
Ko(2rky) < y~23e7 2™ (y — 0).

Comparison with (3.6) gives the desired contradiction.

5. Proof of the theorem. We are going to check whether the assump-
tions of Lemma 0 (Section 2) will be satisfied if we put there

g(x) = Eg(z) (x>1).

We have of course
o) 3
(5.1)  G(s):= f g(x)x™* tdr = G(s) _ Z v (Res > 1)

; S — (s —1)¥

with some constants a, (v =1,2,3). By (1.1) and Lemma 1 (Section 4) we
conclude that G(s) is regular in the half-plane Re s > 1/2 and that G(s) has
no singularity at s = 1/2. Also, by (4.1), Lemma 3 (Section 4) and (5.1),
G(s) has a simple pole at some s = z # 1/2 with Re z = 1/2 such that

1
r:=ResG(s) = 2 Res(x(s) #0.

The theorem follows now immediately from Lemma 0.
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