Central extensions of the alternating group as Galois groups

by
Teresa Crespo (Barcelona)

1. Introduction. The aim of this paper is to study Galois embedding problems associated with central extensions of the alternating group with kernel a cyclic group. If $n \neq 6,7$, the nontrivial double cover $2 A_{n}$ of the alternating group A_{n} is the universal central extension of A_{n} and so, if

$$
1 \rightarrow C_{m} \rightarrow m A_{n} \rightarrow A_{n} \rightarrow 1
$$

is a nonsplit central extension of the alternating group A_{n} with kernel a cyclic group C_{m} of order m, we have a commutative diagram
where the morphism j is injective.
We identify $2 A_{n}$ with $j\left(2 A_{n}\right)$ and note that if $\left\{x_{s}\right\}$ is a system of representatives of A_{n} in $2 A_{n}$, we can take it as a system of representatives of A_{n} in $m A_{n}$ and so $m A_{n}$ is determined modulo isomorphisms. In the cases $n=6,7$, we denote by $m A_{n}$ the extension of A_{n} fitting in the commutative diagram (1).

Let now K be a field of characteristic different from $2, \bar{K}$ a separable closure of K, and G_{K} the absolute Galois group of K. Let f be an irreducible polynomial in $K[X]$, of degree $n \geq 4$ and with squared discriminant, L a splitting field of f contained in \bar{K} and $G=\operatorname{Gal}(L \mid K)$. Let $E=K(x)$, for x a root of f in L. We consider G as a subgroup of A_{n} by means of its action on the set of K-embeddings of E in \bar{K}. For $m G$ the preimage of G in $m A_{n}$, we consider the embedding problem

$$
\begin{equation*}
m G \rightarrow G \simeq \operatorname{Gal}(L \mid K) \tag{2}
\end{equation*}
$$

Partially supported by grant PB89-0215 from CICYT.

Now, if the embedding problem

$$
\begin{equation*}
2 G \rightarrow G \simeq \operatorname{Gal}(L \mid K) \tag{3}
\end{equation*}
$$

is solvable, any embedding problem (2) is solvable. On the other hand, we know that the obstruction to the solvability of (3) is given by the Hasse-Witt invariant $\mathrm{w}\left(Q_{E}\right)$ of the quadratic form trace $Q_{E}=\operatorname{Tr}_{E \mid K}\left(X^{2}\right)([5]$, Th. 1). Moreover, if it is solvable, the solutions can be computed effectively (cf. [1]).

If now $m=2^{r} l$, with $(l, 2)=1$, then $m A_{n}$ is the direct product of C_{l} and $2^{r} A_{n}$. Therefore, if $L \mid K$ is a Galois extension with Galois group G, the general solution to the embedding problem $m G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$ will be the composition $\widehat{L} \cdot M$, for \widehat{L} the general solution of the embedding problem $2^{r} G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$ and $M \mid K$ running over the Galois extensions with Galois group C_{l}.

From now on, we assume then that $m=2^{r}$. That is, we consider embedding problems of the type

$$
\begin{equation*}
2^{r} G \rightarrow G \simeq \operatorname{Gal}(L \mid K) \tag{4}
\end{equation*}
$$

In the case $r=2$, we gave in [3] a criterion for the solvability of the embedding problem (4) and an effective way of computation for the solutions.

We note that if the embedding problem $2^{r} G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$ is solvable, so is any embedding problem $2^{s} G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$, with $s \geq r$. This comes from the fact that, for $r \geq 1$, if c, d are generators of $C_{2^{r}}$ and $C_{2^{r+1}}$, respectively, $c^{i} x_{s} \rightarrow d^{2 i} x_{s}$ defines a morphism $2^{r} A_{n} \rightarrow 2^{r+1} A_{n}$ such that the diagram

$$
\begin{array}{ccc}
2^{r} A_{n} & \rightarrow & A_{n} \\
\downarrow & & \| \\
2^{r+1} A_{n} & \rightarrow & A_{n}
\end{array}
$$

is commutative.
On the other hand, the alternating groups A_{4} and A_{5} are subgroups of the projective linear group $\operatorname{PGL}(2, \mathbb{C})$ and the diagram

$$
\begin{array}{cccccccccc}
1 & \rightarrow & C_{2^{r}} & \rightarrow & 2^{r} A_{n} & \rightarrow & A_{n} & \rightarrow & 1 & \\
& & \downarrow & & \downarrow & & \downarrow & & & (n=4,5) \\
1 & \rightarrow & \mathbb{C}^{*} & & \rightarrow & \operatorname{GL}(2, \mathbb{C}) & \rightarrow & \operatorname{PGL}(2, \mathbb{C}) & \rightarrow & 1
\end{array}
$$

is commutative. The fact that the cohomology group $H^{2}\left(G_{K}, \mathbb{C}^{*}\right)$ is trivial, for K a global or local field, gives that, for a given Galois realization $L \mid K$ of the group A_{n}, with $n=4,5$, the embedding problem (4) is solvable, for r sufficiently big.

In the sequel, we give a criterion for the solvability of the embedding problems (4), and an explicit way of computing the solutions. We make a further study of the case $\mu_{2^{r-1}} \subset K$ in Section 3 and of the case $r=3$ in Section 4.
2. General case. The next proposition shows that solving the embedding problem (4) can be reduced to solving an embedding problem with kernel C_{2}.

Proposition 1. The embedding problem $2^{r} G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$ is solvable if and only if there exists a Galois extension $K_{1} \mid K$ with Galois group $C_{2^{r-1}}$, such that $K_{1} \cap L=K$ and $\mathrm{w}\left(Q_{E}\right)=e^{*}(b)$ in $H^{2}\left(G_{K}, C_{2}\right)$, where $b \in H^{2}\left(C_{2^{r-1}}, C_{2}\right)$ is the element corresponding to the exact sequence $1 \rightarrow C_{2} \rightarrow C_{2^{r}} \rightarrow C_{2^{r-1}} \rightarrow 1$ and $e^{*}: H^{2}\left(C_{2^{r-1}}, C_{2}\right) \rightarrow H^{2}\left(G_{K}, C_{2}\right)$ the morphism induced by the epimorphism e: $G_{K} \rightarrow C_{2^{r-1}}$ corresponding to the extension $K_{1} \mid K$.

In this case, the set of solutions to the considered embedding problem is the union of the set of solutions to the embedding problems $2^{r} G \rightarrow G \times$ $C_{2^{r-1}} \simeq \operatorname{Gal}\left(L_{1} \mid K\right)$, where $L_{1}=L . K_{1}$ and $K_{1} \mid K$ runs over the extensions with the conditions given above.

Proof. Let c be a generator of the group $C_{2^{r}}$. Let \widehat{L} be a solution field to the considered embedding problem. For $L_{1}=\widehat{L}^{\left\langle c^{2 r-1}\right\rangle}$, we have $\operatorname{Gal}\left(L_{1} \mid K\right) \simeq 2^{r} G /\left\langle c^{2^{r-1}}\right\rangle \simeq G \times\left(C_{2^{r}} /\left\langle c^{2^{r-1}}\right\rangle\right)$. By taking $K_{1}=L_{1}^{G}$, we get $\operatorname{Gal}\left(K_{1} \mid K\right) \simeq C_{2^{r-1}}$ and $L \cap K_{1}=K$.

Now, \widehat{L} is a solution to the embedding problem $2^{r} G \rightarrow G \times C_{2^{r-1}} \simeq$ $\operatorname{Gal}\left(L_{1} \mid K\right)$. For this embedding problem, the obstruction to the solvability is the product of the obstructions to the solvability of the embedding problems $2 G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$ and $C_{2^{r}} \rightarrow C_{2^{r-1}} \simeq \operatorname{Gal}\left(K_{1} \mid K\right)$. For the first, as noted above, it is $\mathrm{w}\left(Q_{E}\right)$ and for the second $e^{*}(b)$.

Let us now assume that there exists a Galois extension $K_{1} \mid K$ with the conditions as in the proposition, and let $L_{1}=L . K_{1}$. We consider the embedding problem $2^{r} G \rightarrow G \times C_{2^{r-1}} \simeq \operatorname{Gal}\left(L_{1} \mid K\right)$. The obstruction to its solvability is $\mathrm{w}\left(Q_{E}\right) \otimes e^{*}(b)=1$ and, if \widehat{L} is a solution, we have a commutative diagram

$$
\begin{array}{ccc}
\operatorname{Gal}(\widehat{L} \mid K) & \rightarrow & \operatorname{Gal}(L \mid K) \times \operatorname{Gal}\left(K_{1} \mid K\right) \\
\simeq \downarrow & & \downarrow \\
2^{r} G & \rightarrow & G \times C_{2^{r-1}}
\end{array}
$$

and so, \widehat{L} is a solution to the embedding problem $2^{r} G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$.
Now, if the element b is the second Stiefel-Whitney class of some orthogonal representation of the group $C_{2^{r-1}}$, the element $e^{*}(b)$ can be computed effectively by means of a formula of Fröhlich (cf. [4], Th. 3). Assuming that this is the case, we will give an explicit method of computation of the solutions.

We denote by ϱ_{1} the orthogonal representation of the group G obtained by embedding A_{n} in the special orthogonal group $\operatorname{SO}\left(Q_{1}\right)$ of the standard
quadratic form in n variables. Let $\varrho_{2}: C_{2^{r-1}} \rightarrow O_{K}\left(Q_{2}\right)$ be a representation of $C_{2^{r-1}}$ in the orthogonal group $O_{K}\left(Q_{2}\right)$ of a quadratic form Q_{2} over K such that the second Stiefel-Whitney class $\operatorname{sw}\left(\varrho_{2}\right)$ of ϱ_{2} is equal to b. Taking into account [2], Prop. 3, we can assume that ϱ_{2} is special and $\operatorname{sp} \circ \varrho_{2}=1$, where sp: $O_{K}\left(Q_{2}\right) \rightarrow K^{*} / K^{* 2}$ denotes the spinor norm. The obstruction to the solvability of the embedding problem $C_{2^{r}} \rightarrow C_{2^{r-1}} \simeq \operatorname{Gal}\left(K_{1} \mid K\right)$ is then given by $\mathrm{w}\left(Q_{2}\right) \otimes \mathrm{w}\left(Q_{2, \varrho_{2}}\right)$, where $Q_{2, e_{2}}$ is the twisted form of Q_{2} by ϱ_{2}. Moreover, for the orthogonal representation $\varrho:=\varrho_{1} \perp \varrho_{2}$, we have $\operatorname{sw}(\varrho)=\operatorname{sw}\left(\varrho_{1}\right) \otimes \operatorname{sw}\left(\varrho_{2}\right)([4],(1.7))$ and $Q_{\varrho}:=Q_{E} \perp Q_{2, \varrho_{2}}$ is the twisted form of $Q:=Q_{1} \perp Q_{2}$ by ϱ.

Let $C(Q)$ and $C\left(Q_{\varrho}\right)$ be the Clifford algebras of the quadratic forms Q and Q_{ϱ}, let $C_{L_{1}}(Q)=C(Q) \otimes_{K} L_{1}$ and $C_{L_{1}}\left(Q_{\varrho}\right)=C\left(Q_{\varrho}\right) \otimes_{K} L_{1}$. For a Clifford algebra C, we denote by C^{+}the subalgebra of even elements and by N the spinor norm. The fact that Q_{ϱ} is the twisted form of Q by ϱ provides an isomorphism $f: C_{L_{1}}(Q) \rightarrow C_{L_{1}}\left(Q_{\varrho}\right)$ such that $f^{-1} f^{s}=\varrho(s)$ for all $s \in G \times C_{2^{r-1}}$. Let n^{\prime} be the dimension of the orthogonal space of the form Q, and $e_{1}, e_{2}, \ldots, e_{n^{\prime}}$ an orthogonal basis. We are under the conditions of [2], Theorem 1 and so, we can state

Theorem 1. If the embedding problem $2^{r} G \rightarrow G \times C_{2^{r-1}} \simeq \operatorname{Gal}\left(L_{1} \mid K\right)$ is solvable, there exists a $\mathbb{Z} / 2 \mathbb{Z}$-graduated algebra isomorphism $g: C(Q) \rightarrow$ $C\left(Q_{\varrho}\right)$ such that the element in $C_{L_{1}}^{+}\left(Q_{\varrho}\right)$:

$$
z=\sum_{\varepsilon_{i}=0,1} v_{1}^{-\varepsilon_{1}} v_{2}^{-\varepsilon_{2}} \ldots v_{n^{\prime}}^{-\varepsilon_{n^{\prime}}} w_{n^{\prime}}^{\varepsilon_{n^{\prime}}} \ldots w_{2}^{\varepsilon_{2}} w_{1}^{\varepsilon_{1}},
$$

where $v_{i}=f\left(e_{i}\right), w_{i}=g\left(e_{i}\right), 1 \leq i \leq n^{\prime}$, is invertible.
The general solution to the considered embedding problem is then $\widetilde{L}=$ $L_{1}(\sqrt{r \gamma})$, where γ is any nonzero coordinate of $N(z)$ in the basis $\left\{w_{1}^{\varepsilon_{1}} w_{2}^{\varepsilon_{2}} \ldots\right.$ $\left.\ldots w_{n^{\prime}}^{\varepsilon_{n^{\prime}}}\right\}, \varepsilon_{i}=0,1$, of $C_{L_{1}}\left(Q_{e}\right)$, and r runs over $K^{*} / K^{* 2}$.
3. Case $\mu_{2^{r-1}} \subset K$. We now assume that the field K contains a root of unity ζ of precise order 2^{r-1}. Under this hypothesis, we obtain

Proposition 2. The embedding problem $2^{r} G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$ is solvable if and only if there exists an element a in $K-L^{2}$ such that $\mathrm{w}\left(Q_{E}\right)=$ (ζ, a).

Proof. Let $K_{1}=K(\sqrt[2 r-1]{a})$. We have $K_{1} \cap L=K$ and the obstruction to the solvability of the embedding problem $C_{2^{r}} \rightarrow C_{2^{r-1}} \simeq \operatorname{Gal}\left(K_{1} \mid K\right)$ is equal to the element $(\zeta, a) \in H^{2}\left(G_{K},\{ \pm 1\}\right)([4],(7.10))$. So we obtain the result by applying Proposition 1.

We will now see how to compute the solutions to the embedding problem in this case. We assume $\mathrm{w}\left(Q_{E}\right)=(\zeta, a)$ for an element a in K and let
$K_{1}=K(\alpha)$, where $\alpha=\sqrt[2 r-1]{a}, L_{1}=L . K_{1}$. Let $Q_{2}=\langle 2,-2,1,-\zeta, 1,-1\rangle$ and ϱ_{2} be the orthogonal representation $C_{2^{r-1}} \rightarrow \mathrm{SO}\left(Q_{2}\right)$ given by

$$
\varrho_{2}(c)=\left(\begin{array}{cc}
R & 0 \\
0 & -I_{4}
\end{array}\right) \quad \text { where } \quad R=\left(\begin{array}{cc}
\frac{\zeta+\zeta^{-1}}{2} & \frac{\zeta-\zeta^{-1}}{2} \\
\frac{\zeta-\zeta^{-1}}{2} & \frac{\zeta+\zeta^{-1}}{2}
\end{array}\right)
$$

(cf. [2], Prop. 6).
Let ϱ_{1} be the orthogonal representation $G \rightarrow A_{n} \rightarrow \mathrm{SO}_{n}(Q)$ and $\varrho=$ $\varrho_{1} \perp \varrho_{2}$. The twisted form of Q by ϱ is then $Q_{\varrho}=Q_{E} \perp\langle 2,-2, a,-\zeta a, a,-a\rangle$ and the solvability of the embedding problem $2^{r} G \rightarrow G \times C^{2^{r-1}} \simeq \operatorname{Gal}\left(L_{1} \mid K\right)$ implies $\mathrm{w}\left(Q_{\varrho}\right)=\mathrm{w}(Q)$. We can then apply the results obtained in [2]. Let $\left(x_{1}, \ldots, x_{n}\right)$ be a K-basis of E, and $\left\{s_{1}, \ldots, s_{n}\right\}$ the set of K-embeddings of E in \bar{K}.

Let $M \in \mathrm{GL}\left(n+6, L_{1}\right)$ be the matrix

$$
M=\left(\begin{array}{cc}
M_{E} & 0 \\
0 & M_{a}
\end{array}\right)
$$

where

$$
M_{E}=\left(x_{j}^{s_{i}}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}^{\substack{ \\1 \leq j}}
$$

and

$$
M_{a}=\left(\begin{array}{cc}
N & 0 \\
0 & \sqrt{a} I_{4}
\end{array}\right) \quad \text { with } \quad N=\left(\begin{array}{cc}
\frac{\alpha+\alpha^{-1}}{2} & \frac{\alpha-\alpha^{-1}}{2} \\
\frac{\alpha-\alpha^{-1}}{2} & \frac{-\left(\alpha+\alpha^{-1}\right)}{2}
\end{array}\right) .
$$

We denote by $f: C_{L_{1}}(Q) \rightarrow C_{L_{1}}\left(Q_{e}\right)$ the isomorphism associated with the matrix M^{-1}. We have $f^{-1} f^{s}=\varrho(s), \forall s \in G \times C_{2^{r-1}}$.

We are then under the conditions of [2], Theorem 2 and can state
Theorem 2. If the forms Q and Q_{ϱ} are K-equivalent, we can choose $P \in \mathrm{GL}(n+6, K)$ such that

$$
P^{t}\left[Q_{\varrho}\right] P=[Q] \quad \text { and } \quad \operatorname{det}(M P+I) \neq 0 .
$$

Then the general solution to the embedding problem $2^{r} G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$ is

$$
\widetilde{L}=L_{1}(\sqrt{r \operatorname{det}(M P+I)}),
$$

with r running over $K^{*} / K^{* 2}$.
Proof. We consider the isomorphism of quadratic spaces associated with the matrix P and take the isomorphism g in Theorem 1 to be the extension of this isomorphism to the Clifford algebras. Then it is enough to compute the element z as in [1], Theorem 4.
4. Extensions with kernel C_{8}. The next proposition gives the obstruction to the solvability of the considered embedding problem in the particular case $r=3$.

Proposition 3. The embedding problem $8 G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$ is solvable if and only if there exist elements a and b in K such that $b \notin K^{* 2}, b\left(a^{2}-4 b\right) \in$ $K^{* 2}$ and $\mathrm{w}\left(Q_{E}\right)=(-2, b) \otimes(-2 a,-1)$.

Proof. We note that an extension $K_{1} \mid K$ with Galois group C_{4} is given by a polynomial $X^{4}+a X^{2}+b \in K[X]$, with a and b as in the proposition. By embedding C_{4} in S_{4} and using [4], Theorem 1, we conclude that the obstruction to the solvability of the embedding problem $C_{8} \rightarrow C_{4} \simeq \operatorname{Gal}\left(K_{1} \mid K\right)$ is equal to the element $(-2, b) \otimes(-2 a,-1) \in H^{2}\left(G_{K}, C_{2}\right)$.

We will now see how to compute the solutions to such an embedding problem. We assume that we are under the conditions of the proposition and let $K_{1} \mid K$ be the extension given by the polynomial $X^{4}+a X^{2}+b$, and $Q_{K_{1}}$ its quadratic trace form. We observe that $8 A_{n}$ is the pullback of the diagram

$$
\begin{array}{llc}
& A_{n} \times C_{4} \\
& & \downarrow \\
2 A_{n+6} & \rightarrow & A_{n+6}
\end{array}
$$

where the vertical arrow is obtained by sending a generator of C_{4} to the element (1234)(56) of A_{6}.

We then take $\varrho_{2}: C_{4} \rightarrow A_{6} \rightarrow \mathrm{SO}\left(Q_{2}\right)$, for Q_{2} the standard quadratic form in 6 variables. We have $Q_{2, \varrho_{2}}=Q_{K_{1}} \perp\langle 2,2 b\rangle$ and so $Q_{\varrho}=Q_{E} \perp$ $Q_{K_{1}} \perp\langle 2,2 b\rangle$.

Now, we can apply the results obtained in [1]. We consider the matrix

$$
M=\left(\begin{array}{ccc}
M_{E} & 0 & 0 \\
0 & M_{a, b} & 0 \\
0 & 0 & M_{b}
\end{array}\right)
$$

where

$$
M_{E}=\left(x_{j}^{s_{i}}\right)_{\substack{1 \leq i \leq n \\
1 \leq j \leq n}} \quad M_{a, b}=\left(y_{j}^{t_{i}}\right)_{\substack{1 \leq i \leq 4 \\
1 \leq j \leq 4}} \quad \text { and } \quad M_{b}=\left(\begin{array}{cc}
1 & \sqrt{b} \\
1 & -\sqrt{b}
\end{array}\right)
$$

for $\left(x_{j}\right)_{1 \leq j \leq n}$ a K-basis of $E,\left\{s_{i}\right\}_{1 \leq i \leq n}$ the set of K-embeddings of E in $\bar{K},\left(y_{j}\right)_{1 \leq j \leq 4}$ a K-basis of K_{1}, and $\left\{t_{i}\right\}_{1 \leq i \leq 4}$ the set of K-embeddings of K_{1} in \bar{K}.

We now assume $K=\mathbb{Q}$ and let $q=r_{2}(E)+r_{2}\left(K_{1}\right)+s g(b)$, where $r_{2}(E)$ (resp. $r_{2}\left(K_{1}\right)$) is the number of nonreal places of $E \mid \mathbb{Q}\left(\right.$ resp. $\left.K_{1} \mid \mathbb{Q}\right)$ and $s g(b)=0$ (resp. 1) if $b>0$ (resp. $b<0$). We have that the signature of Q_{ϱ} is $(n+6-q, q)$ and, by comparing Q_{ϱ} with $Q_{q}:=-\left(X_{1}^{2}+\ldots+X_{q}^{2}\right)+$ $X_{q+1}^{2}+\ldots+X_{n+6}^{2}$, we see that the solvability of the embedding problem
$8 G \rightarrow G \times C_{4} \simeq \operatorname{Gal}\left(L \cdot K_{1} \mid \mathbb{Q}\right)$ implies $q \equiv 0(\bmod 4)$ and $Q_{\varrho} \mathbb{Q}$-equivalent to Q_{q}.

We now come back to the general hypothesis that K is any field of characteristic different from 2 and, applying [1], Theorems 4 and 5 , we obtain

Theorem 3. Assume $\mathrm{w}\left(Q_{E}\right)=(-2, b) \otimes(-2 a,-1)$ with $a, b \in K$ such that $b \notin K^{* 2}$ and $b\left(a^{2}-4 b\right) \in K^{* 2}$. Let K_{1} be the splitting field of the polynomial $X^{4}+a X^{2}+b$ over K and $L_{1}=L . K_{1}$. Assume further that Q_{ρ} is K-equivalent to a quadratic form $Q_{q}:=-\left(X_{1}^{2}+\ldots+X_{q}^{2}\right)+X_{q+1}^{2}+\ldots+X_{n+6}^{2}$, with $q \equiv 0(\bmod 4)$. Let $P \in \mathrm{GL}(n+6, K)$ such that $P^{t}\left(Q_{\varrho}\right) P=\left(Q_{q}\right)$.
(a) If $q=0$, the solutions to the embedding problem $8 G \rightarrow G \times C_{4} \simeq$ $\operatorname{Gal}\left(L_{1} \mid K\right)$ are the fields $L_{1}(\sqrt{r \operatorname{det}(M P+I)})$, with r running over $K^{*} / K^{* 2}$.
(b) If $q>0$, the solutions to the embedding problem $8 G \rightarrow G \times C_{4} \simeq$ $\operatorname{Gal}\left(L_{1} \mid K\right)$ are the fields $L_{1}(\sqrt{r \gamma})$, with r running over $K^{*} / K^{* 2}$ and where the element γ is given as a sum of minors of the matrix MP as in [1], Theorem 5.

Example. I thank J. Quer for the computation of this example. Let $f(X)=X^{4}-2 X^{3}+3 X^{2}+3 X+1$. The Galois group of f over \mathbb{Q} is the alternating group A_{4} and we have $\mathrm{w}\left(Q_{E}\right)=-1$ in 5 and ∞ and $\mathrm{w}\left(Q_{E}\right)=1$ in all other primes. By applying [5], Theorem 1, we find that the embedding problem $2 A_{4} \rightarrow A_{4} \simeq \operatorname{Gal}(L \mid \mathbb{Q})$ is not solvable and, by noting that -1 is a square in \mathbb{Q}_{5} and applying Proposition 2, that the embedding problem $4 A_{4} \rightarrow A_{4} \simeq \operatorname{Gal}(L \mid \mathbb{Q})$ is also not solvable.

Now, we take $a=b=5$. We have $\mathrm{w}\left(Q_{E}\right)=(-2, b) \otimes(-2 a,-1)$ and the polynomial $X^{4}+5 X^{2}+5$ has Galois group C_{4} over \mathbb{Q}. Then Proposition 3 gives that the embedding problem $8 A_{4} \rightarrow A_{4} \simeq \operatorname{Gal}(L \mid \mathbb{Q})$ is solvable.

In this case, the two fields L and K_{1} are totally imaginary and so we have $q=4$. By applying Theorem 3(b), we deduce that an element γ in $L_{1}=L . K_{1}$ giving the solutions to the embedding problem $8 A_{4} \rightarrow A_{4} \times C_{4} \simeq \operatorname{Gal}\left(L_{1} \mid \mathbb{Q}\right)$ is

$$
\begin{aligned}
\gamma= & -262247420+283980105 x_{2}+29522845 x_{2}^{2} \\
& +x_{1}\left(211777885-179361840 x_{2}+116960680 x_{2}^{2}\right) \\
& +x_{1}^{2}\left(-23491885+35604590 x_{2}+12872070 x_{2}^{2}\right) \\
& +x_{1}^{3}\left(14803890+36883740 x_{2}+5569800 x_{2}^{2}\right) \\
& +r\left[-538192364-95254026 x_{2}-15821714 x_{2}^{2}\right. \\
& +x_{1}\left(-615191018+273851088 x_{2}-102712988 x_{2}^{2}\right) \\
& +x_{1}^{2}\left(504346598-192250828 x_{2}+21267108 x_{2}^{2}\right) \\
& \left.+x_{1}^{3}\left(-240082752+42410712 x_{2}-61752 x_{2}^{2}\right)\right] \\
& +r^{2}\left[-5967888+56866278 x_{2}+3865242 x_{2}^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +x_{1}\left(105764994-55214244 x_{2}+14643444 x_{2}^{2}\right) \\
& +x_{1}^{2}\left(-30093294+46771044 x_{2}-6310584 x_{2}^{2}\right) \\
& \left.+x_{1}^{3}\left(13943376-12532896 x_{2}+44136 x_{2}^{2}\right)\right] \\
& +r^{3}\left[-156513876-39659400 x_{2}-4293114 x_{2}^{2}\right. \\
& +x_{1}\left(-177964704+52921440 x_{2}-25362414 x_{2}^{2}\right) \\
& +x_{1}^{2}\left(155999832-27872568 x_{2}+1914552 x_{2}^{2}\right) \\
& \left.+x_{1}^{3}\left(-73067526+2548296 x_{2}-640404 x_{2}^{2}\right)\right]
\end{aligned}
$$

where x_{1} and x_{2} are two distinct roots of the polynomial f and r is a root of the polynomial $X^{4}+5 X^{2}+5$. We note that the extension $L_{1}(\sqrt{\gamma}) \mid \mathbb{Q}$ is nonramified outside 5 and 13 , which are the ramified primes in $L \mid K$.

References

[1] T. Crespo, Explicit construction of \widetilde{A}_{n}-type fields, J. Algebra 127 (1989), 452-461.
[2] -, Explicit solutions to embedding problems associated to orthogonal Galois representations, J. Reine Angew. Math. 409 (1990), 180-189.
[3] -, Extensions de A_{n} par C_{4} comme groupes de Galois, C. R. Acad. Sci. Paris 315 (1992), 625-628.
[4] A. Fröhlich, Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants, J. Reine Angew. Math. 360 (1985), 84-123.
[5] J.-P. Serre, L'invariant de Witt de la forme $\operatorname{Tr}\left(x^{2}\right)$, Comment. Math. Helv. 59 (1984), 651-676.

DEPARTAMENT D'ÀLGEBRA I GEOMETRIA
FACULTAT DE MATEMÀTIQUES
UNIVERSITAT DE BARCELONA
GRAN VIA DE LES CORTS CATALANES 585
08007 BARCELONA, SPAIN
E-mail: CRESPO@CERBER.UB.ES

Received on 20.4.1993 and in revised form on 10.11.1993

