
ACTA ARITHMETICA
LXVI.3 (1994)

The number of solutions to cubic Thue inequalities
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Introduction. Let F (X,Y ) ∈ Z[X,Y ] be a form of degree d ≥ 3 which
is irreducible over the rational numbers Q. In 1909 A. Thue [T] showed that
the number of integral solutions (x, y) to the equation F (x, y) = m is finite.
Equations of this form are now called Thue equations. Thue’s result implies
that the number of integral solutions (x, y) to the Thue inequality

|F (x, y)| ≤ m
is also finite, since obviously such a form takes integral values at integral
points.

Let NF (m) denote the number of integral solutions to the Thue inequal-
ity above and consider the region RF = {(x, y) ∈ R2 : |F (x, y)| ≤ 1}. Then
the dilation of RF by m1/d consists of all (x, y) ∈ R2 with |F (x, y)| ≤ m, so
that one would expect m2/dAF , where AF is the area of RF , to approximate
NF (m). Indeed, Mahler [M1] showed that

|NF (m)−m2/dAF | = O(m1/(d−1)) ,

where the constant implicit in the O notation depends on the form F . More
recently, W. Schmidt showed that

NF (m)� m2/d(d+ logm) ,

where the implied constant is absolute ([S], Chapter 3, Theorem 1C).
Together, Mahler’s and Schmidt’s results indicated that the area AF

might be bounded above by some absolute constant, or perhaps some con-
stant depending only on the degree d. In fact, more is true. Suppose we look
more generally at forms G(X,Y ) ∈ R[X,Y ] with discriminant D(G) 6= 0.
For T ∈ GL(2,R) we get a form GT (X,Y ) = G((X,Y )T ), where (X,Y )T
is the matrix product. The crucial observation here is that the product
AG|D(G)|1/d(d−1) is invariant under such actions, i.e.,

AGT |D(GT )|1/d(d−1) = AG|D(G)|1/d(d−1) .



238 J. L. Thunder

Let Ad denote the maximum of this product over all such forms of degree d.
In [B1] M. Bean showed that

(1) A3 > A4 > A5 > . . .

and also

(2) A3 = 3B(1/3, 1/3) ,

where B is the usual beta function. Since |D(F )| ≥ 1 for any form with
integral coefficients (and nonzero discriminant), (1) and (2) together show
that the area AF is bounded above by an absolute constant.

In comparing his result with Mahler’s, Schmidt conjectured that the
logarithmic term in his bound was unnecessary. In fact, one might even
hope that Mahler’s result would hold with an implied constant depending
only on d, or perhaps an error term O(mε+1/(d−1)) or O(m2/d−ε) where
the implied constant depends on d and ε > 0. In this paper we prove the
following theorem which gives partial evidence for such a result.

Theorem 1. Let F (X,Y ) ∈ Z[X,Y ] be a cubic form which is irreducible
over Q. With the notation above we have

|NF (m)−m2/3AF | = O(1 +m29/44 logm) ,

where the constant implicit in the O notation is absolute.

Using (2) and noting that 29/44 < 2/3, we get the following.

Corollary. Let F be as in Theorem 1. Then

NF (m)� m2/3,

where the implied constant is absolute.

Thus Schmidt’s conjecture is true in the cubic case.

Bounds for the height. Let F be an integral form as in the introduc-
tion and write F (X,Y ) =

∑d
i=0 aiX

iY d−i. The dependency on the form F
in the error term of Mahler’s result is essentially a positive power of the
height ,

H(F ) = max
0≤i≤d

{|ai|} .
Now if T ∈ SL(2,Z), then NF (m) = NFT (m). We say two forms F and G
are equivalent if G = FT for some T ∈ SL(2,Z). So a reasonable approach
to our problem is to find an equivalent form G where H(G) is small as
possible, making the error term in Mahler’s result small. A form F is called
minimal if its height is smallest among all equivalent forms. It is not difficult
to show that the height of a minimal form F is bounded below in terms of
the discriminant of the form, D(F ). Specifically, one has (see [M2])

(3) H(F )2(d−1)d2d−1 ≥ |D(F )|



Cubic Thue inequalities 239

for all forms F , and for S ∈ GL(2,R)

(4) |D(FS)| = |D(F )||det(S)|d(d−1) .

Thus, there is no hope for finding an equivalent form of small height if the
discriminant is large.

To prove his result, Schmidt reduces to considering the case when the
discriminant is relatively large in terms of the parameter m, so that the
height is large as well by (3). This is an approach exactly opposite of the one
above. The purpose of this is to force all solutions to the Thue inequality to
satisfy some type of “gap principle,” and thus allow one to get upper bounds
for the number of such solutions, as opposed to estimating the number of
solutions by m2/dAF . If one knows that the discriminant is large to begin
with, then the number of solutions to the Thue inequality can be shown to
be relatively small.

The difficulty in getting upper bounds for NF (m) which do not depend
on the coefficients of F lies with the forms of small discriminant. What is
needed is some upper bound for the height of a minimal equivalent form
in terms of the discriminant, so that one may assume the height is small
if the discriminant is small, allowing one to use Mahler’s result to bound
NF (m). For this approach to work one would need some upper bound which
is polynomial in the discriminant. J. H. Evertse has given such a polynomial
bound in [E]. Unfortunately, his bound also contains an ineffective constant
which depends both on the degree and the splitting field of the form. Worse
yet, the ineffectivity comes from the infamous ineffectivity in Roth’s theorem
on approximation of algebraic numbers by rationals. This indicates that
giving effective upper bounds for the height in terms of the discriminant is
a deep and difficult problem. Evertse and Győry in [EG] give an effective
bound using linear forms in logarithms, but it is not surprising that this
bound is far larger than polynomial in the discriminant.

From the reduction theories of Lagrange and Hermite, one sees that an
effective upper bound for the height in terms of the discriminant exists in the
cubic case. Here, making explicit some arguments given by Evertse in [E],
we give a short proof of a bound using geometry of numbers (1).

Theorem 2. Let F (X,Y ) ∈ Z[X,Y ] be a cubic form which is irreducible
over the rationals and write

F (X,Y ) =
3∏

i=1

(Xαi + Y βi) .

(1) I thank W. Schmidt for pointing out a way to improve my original result.



240 J. L. Thunder

There is a T ∈ SL(2,Z),

T =
(
a b
c d

)

such that

H(FT )�M(FT ) :=
3∏

i=1

max{|aαi + bβi|, |cαi + dβi|} ≤ 64|D(F )|1/2 .

The relationship between the height and the Mahler measure M(F ) de-
fined above is well known. See [S], for example. Define

∆1 = α2β3 − α3β2 , ∆2 = α1β3 − α3β1 , ∆3 = α1β2 − α2β1 ,

so that

|D(F )| =
3∏

i=1

|∆i|2 .

Let

C = {(x, y) ∈ R2 : |xαi + yβi| ≤ |∆i|−1 for i = 1, 2, 3} .
Then C is a convex body (closed, convex and symmetric about the origin).
Let λ1 ≤ λ2 be the successive minima of C with respect to the integer lattice
Z2. Then there are (a, b) ∈ λ1C ∩ Z2 and (c, d) ∈ λ2C ∩ Z2 with

(
a b
c d

)
∈ SL(2,Z) .

We have

(5)
3∏

i=1

max{|aαi + bβi|, |cαi + dβi|} ≤
3∏

i=1

λ2|∆i|−1 ≤ λ3
2|D(F )|−1/2 .

Suppose that

(6) λ1λ2 ≤ 4|D(F )|1/2 .
Now

∏3
i=1(aαi + bβi) is the coefficient of X3 in FT (X,Y ), hence a nonzero

integer (since F is irreducible over Q). Using this gives

(7) 1 ≤
3∏

i=1

|aαi + bβi| ≤
3∏

i=1

λ1|∆i|−1 = λ3
1|D(F )|−1/2 .

Combining (6) and (7), we get λ2 ≤ 4|D(F )|1/3. This, together with (5),
proves Theorem 2 once we have shown the validity of (6).

Lemma 1. With the notation and hypotheses above,

λ1λ2 ≤ 4|D(F )|1/2 .
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P r o o f. By Minkowski’s theorem

(8) λ1λ2 ≤ 4/Vol(C) .

Let α′i = αi∆i and β′i = βi∆i for i = 1, 2, 3. Then

C = {(x, y) ∈ R2 : |xα′i + yβ′i| ≤ 1 for i = 1, 2, 3} .
One easily verifies that

(α′3x+ β′3y) = (α′2x+ β′2y)− (α′1x+ β′1y) ,

so that |α′3x+ β′3y| ≤ |α′2x+ β′2y|+ |α′1x+ β′1y| and hence

C ⊇ C ′ = {(x, y) ∈ R2 : |α′ix+ β′iy| ≤ 1/2 for i = 1, 2} .
If β′1/α

′
1 is complex, we may assume without loss of generality that it is the

complex conjugate of β′2/α
′
2. We then have

Vol(C)−1 ≤ Vol(C ′)−1 ≤
∣∣∣∣ det

(
α′1 β′1
α′2 β′2

)∣∣∣∣ = |∆1∆2∆3| = |D(F )|1/2 ,

and the lemma follows from (8).

Proof of Theorem 1. Throughout this section, when we write � the
implied constant is absolute. We write F as in the statement of Theorem 2
and assume, as we may by Theorem 2, that

H(F )� |D(F )|1/2 .
Let

H ′(F ) = max
1≤i≤3

{1 + |βi/αi|} .

Since, as noted above,
∏3
i=1 |αi| ≥ 1, we also have

H ′(F )� |D(F )|1/2 .
By the explicit version of Mahler’s theorem in [B2],

|NF (m)−m2/3AF | � m1/2H ′(F )3H(F )4 � m1/2|D(F )|7/2 .
In particular, if |D(F )| < m1/22 then

|NF (m)−m2/3AF | � m1/2m7/44 = m29/44 .

So Theorem 1 is correct if |D(F )| < m1/22.

Lemma 2. Let F (X,Y ) ∈ Z[X,Y ] be a form of degree d ≥ 3 which is
irreducible over Q. Then

NF (m)� d(1 + log(m1/d))(m1/d +m2/d|D(F )|−1/d(d−1)) ,

where the implicit constant is absolute.

P r o o f. Let PF (m) and P ′F (m) denote the number of primitive solutions
to |F (x, y)| ≤ m and m/2d < |F (x, y)| ≤ m, respectively. Let p be the
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smallest prime satisfying p ≥ 2500m2/d|D(F )|−1/d(d−1). By Lemma 2C,
Remark 2D and Proposition 2E of [S], Chapter 3, we have

P ′F (m)� d(1 + logm1/d)(p+ 1)

� d(1 + logm1/d)(1 +m2/d|D(F )|−1/d(d−1)) .

Let u satisfy 2du ≤ m < 2d(u+1). Then

PF (m) ≤ PF (2du) + P ′F (m) .

Now

PF (2du) =
u∑

i=0

P ′F (2di)

�
u∑

i=0

d(1 + log 2i)(1 + 22i|D(F )|−1/d(d−1))

≤ d(1 + log 2u)
u∑

i=0

1 + 22u|D(F )|−1/d(d−1)22(i−u)

� d(1 + log 2u)
(
u+ 22u|D(F )|−1/d(d−1)

∞∑

j=0

2−2j
)

� d(1 + logm1/d)(logm1/d +m2/d|D(F )|−1/d(d−1)) .

If |F (tx, ty)| ≤ m where (x, y) is primitive, then |F (x, y)| ≤ mt−d since
F is homogeneous of degree d. This yields

NF (m)

≤
∑

t≤m1/d

PF (mt−d)

�
∑

t≤m1/d

d(1 + log(m1/dt−1))(log(m1/dt−1) +m2/dt−2|D(F )|−1/d(d−1))

≤ d(1 + logm1/d)
∑

t≤m1/d

log(m1/dt−1) + t−2m2/d|D(F )|−1/d(d−1) .

Finally, we have

∑

t≤m1/d

log(m1/dt−1)� 1 +
m1/d∫
1

log(m1/dt−1) dt� m1/d

and ∑

t≤m1/d

t−2 � 1 .

This completes the proof of Lemma 2.
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Using d = 3 and |D(F )| ≥ m1/22 in Lemma 2 gives

NF (m)� (1 + logm)(m1/3 +m2/3m−1/132)

� 1 +m2/3−1/132 logm = 1 +m29/44 logm.

By (2) we also have

m2/3AF � m2/3|D(F )|−1/6 ≤ m29/44 .

These last two inequalities complete the proof of Theorem 1.
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