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1. Throughout this paper we shall use the following notations: The set
of positive integers is denoted by N. If f(x) = O(g(x)), then we write
f(x) � g(x). pi denotes the ith prime. ω(n) denotes the number of dis-
tinct prime divisors of n, while Ω(n) denotes the number of prime divisors
of n counted with multiplicity. d(n) and σ(n) denote the number, resp. sum
of positive divisors of n. µ(n) is the Möbius function and ϕ(n) denotes Eu-
ler’s function. The smallest and greatest prime factors of n are denoted by
p(n) and P (n), respectively. If f(n) is an arithmetic function and x ≥ 1,
then we write

M(f, x) = max
n≤x

f(n) , T (f, x) = max
n≤x

(f(n− 1) + f(n))

and G(f, x) will denote the greatest integer G such that there is a number
n ∈ N with n ≤ x and

f(n) >
∑

0<|i|≤G
f(n+ i) .

In the first half of this paper (Sections 2–7) we will study isolated large
values of the arithmetic functions ω(n), Ω(n), d(n) and σ(n), i.e., the func-
tion G(f, x) with these four functions in place of f ; see [1] and [5] for related
results. (Since the first author studied a problem closely related to the es-
timate of M(ϕ, x) in [4], we do not discuss the case f(n) = ϕ(n) here.) In
the second half of the paper we will study the converse of this problem by
studying consecutive large values of these four functions, i.e., the function
T (f, x) with ω,Ω, d and σ in place of f . Note that T (Ω, x) and T (σ, x) were
studied by Erdős and Nicolas in [6]; here we will extend and sharpen their
results.
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2. First we will prove

Theorem 1. There exist effectively computable positive constants c1 and
c2 such that

(2.1) c1
log x

(log log x)2 < G(ω, x) < c2
log x

log log x log log log x
.

Note that almost certainly the lower bound gives the right order of mag-
nitude of G(ω, x) but, unfortunately, we have not been able to show this;
this is an interesting but, possibly, deep problem.

P r o o f. First we will prove the lower bound in (2.1). Define the positive
integer m = m(x) by

m−1∏

i=1

pi < x1/2 ≤
m∏

i=1

pi

and write P =
∏m
i=1 pi. Then by the prime number theorem we have

(2.2) m =
(

1
2

+ o(1)
)

log x
log log x

and

(2.3) x1/2 ≤ P = pm

m−1∏

i=1

pi � x1/2 log x .

To prove the lower bound in (2.1), it suffices to show that writing

G =
[
c1

log x
(log log x)2

]
+ 1 ,

for c1 small enough there is a j ∈ N such that

(2.4) j ≤ x/P and ω(jP ) >
∑

0<|i|≤G
ω(jP + i) .

By (2.2) we have

ω(jP ) ≥ ω(P ) = m(2.5)

=
(

1
2

+ o(1)
)

log x
log log x

for all j ∈ N .

On the other hand, if P1, P2, P3 denote the sets of primes p with p ≤ G,
G < p ≤ x1/3, resp. x1/3 < p ≤ 2x, then by (2.2), (2.3) and

(2.6)
∑

p≤y

1
p

= log log y + C +O

(
1

log y

)
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we have∑

j≤x/P

∑

0<|i|≤G
ω(jP + i)

=
∑

j≤x/P

∑

0<|i|≤G

∑

p|jP+i

1

=
∑

j≤x/P

∑

p∈P1

∑

0<|i|≤G
p|jP+i

1 +
∑

0<|i|≤G

∑

p∈P2

∑

j≤x/P
p|jP+i

1

+
∑

j≤x/P

∑

0<|i|≤G

∑

p∈P3
p|jP+i

1

�
∑

j≤x/P

∑

p≤G

G

p
+

G∑

i=1

∑

G<p≤x1/3

x

pP
+
∑

j≤x/P

G∑

i=1

1

� G
x

P

( ∑

p≤x1/3

1
p

+ 1
)
� G

x

P
log log x ,

whence

(2.7) min
j≤x/P

∑

0<|i|≤G
ω(jP + i)� G log log x <

1
3

log x
log log x

if c1 is small enough. If the minimum in (2.7) is assumed for, say, j = j0,
then it follows from (2.5) and (2.7) that (2.4) holds with j0 in place of j and
this completes the proof of the lower bound in (2.1).

To prove the upper bound in (2.1), it suffices to show that writing

H =
[
c2

log x
log log x log log log x

]
,

for c2 large enough we have

(2.8) ω(n) ≤
∑

0<|i|≤H
ω(n+ i)

for all n ≤ x. Indeed, for n ≤ x we have

(2.9) ω(n) ≤M(ω, x) = (1 + o(1))
log x

log log x

and, on the other hand, by (2.6) we have

(2.10)
∑

0<|i|≤H
ω(n+ i) ≥

∑

p≤H

∑

0<|i|≤H
p|n+i

1� H log logH .
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If c2 is large enough, then (2.8) follows from (2.9) and (2.10), and this
completes the proof of Theorem 1.

3. G(Ω, x) can be estimated similarly:

Theorem 2. There exist effectively computable positive constants c3, c4
such that

(3.1) c3
log x

log log x
< G(Ω, x) < c4

log x
log log log x

.

Again, we think that the lower bound gives the right order of magnitude.

P r o o f. The proof is similar to the proof of Theorem 1, thus we will only
sketch it. Write

G =
[
c3

log x
log log x

]
+ 1

and define u = u(x) ∈ N by

2u ≤ x1/2 < 2u+1

so that u =
[ log x

2 log 2

]
. Then for j ∈ N, 1 ≤ j ≤ x/2u we have

(3.2) Ω(j · 2u) ≥ Ω(2u) = u� log x

and, on the other hand, it can be shown by an argument similar to the one
in the proof of Theorem 1 that

∑

j≤x/2u

∑

0<|i|≤G
Ω(j · 2u + i)� x

2u
G log log x

so that

(3.3) min
j≤x/2u

∑

0<|i|≤G
Ω(j · 2u + i)� G log log x .

If c3 is small enough, then it follows from (3.2) and (3.3) that

min
j≤x/2u

Ω(j · 2u) > min
j≤x/2u

∑

0<|i|≤G
Ω(j · 2u + i) ,

which proves the lower bound in (3.1).
To prove the upper bound in (3.1), observe that for n ≤ x we have

(3.4) Ω(n) ≤M(Ω, x) =
[

log x
log 2

]

and, writing

H =
[
c4

log x
log log log x

]
,
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we have

(3.5)
∑

0<|i|≤H
Ω(n+ i)� H log logH ,

which can be proved in the same way as (2.10). If c4 is large enough, then
it follows from (3.4) and (3.5) that

Ω(n) ≤
∑

0<|i|≤H
Ω(n+ i)

(for all n ≤ x), which implies the upper bound in (3.1).

4. The function d(n) gives the most interesting and most difficult prob-
lem. In this case, we will prove

Theorem 3. There are effectively computable absolute constants x0 and
c5 such that for x > x0 we have

(4.1) M(d, x) exp
(
− 11

log x
(log log x)3/2

)
< G(d, x) < c5M(d, x)

log log x
log x

.

Note that it follows from the results of Ramanujan [9] that

(4.2) M(d, x) = exp
(

log 2
log x

log log x
+O

(
log x

(log log x)2

))
.

It follows from (4.1) and (4.2) that

G(d, x) = exp
(

log 2
log x

log log x
+O

(
log x

(log log x)3/2

))
.

We expect the upper bound to be closer to the truth and perhaps we have

G(d, x) > M(d, x)(log x)−c .

5. The proof of the lower bound in (4.1) will be based on the following
lemma:

Lemma 1. There is an effectively computable number x0 such that if
x > x0, a ∈ N, Q ∈ N,

(5.1) aQ ≤ x ,
(5.2) Q > exp

(
8

log x
(log log x)1/2

)
,

b ∈ Z and

(5.3) |b| ≤ a ,
then there is a set S(a, b,Q) such that

(5.4) S(a, b,Q) ⊂ {1, 2, . . . , Q} ,
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(5.5) |S(a, b,Q)| < Q exp
(
− 2

log x
log log x

)

and

(5.6)
∑

i≤Q
i 6∈S(a,b,Q)

d(ai+ b) < d(b)Q exp
(

4
log x

(log log x)3/2

)
.

P r o o f o f L e m m a 1. Clearly, for all m,n ∈ N we have

(5.7) d(mn) ≤ d(m)d(n) .

Thus writing a = (a, b)a1, b = (a, b)b1, for all i ∈ N we have

(5.8) d(ai+ b) ≤ d((a, b))d(a1i+ b1) ≤ d(b)d(a1i+ b1) .

Set

K =
log x

(log log x)2 , L = exp((log log x)3/2) ,

and for n ∈ N define u = u(n), v = v(n), w = w(n) by

(5.9) n = uvw , P (u) ≤ K < p(v) ≤ P (v) ≤ L < p(w) .

(If there is no prime p with p |n and p ≤ K, K < p ≤ L or L < p, then we
put u = 1, v = 1 and w = 1, respectively.) Then for large x and n ≤ 2x, by
the prime number theorem clearly we have

d(u) =
∏

p≤K,pα‖n
d(pα) =

∏

p≤K,pα‖n
(α+ 1)(5.10)

≤
∏

p≤K

(
log 2x
log 2

+ 1
)

= exp((1 + o(1))π(K) log log x)

= exp
(

(1 + o(1))
log x

(log log x)2

)
< exp

(
2

log x
(log log x)2

)
.

Moreover, it follows from the definition of w that for n ≤ 2x we have

2x ≥ n ≥ w =
∏

p>L,pα‖n
pα ≥

∏

p>L,pα‖n
Lα = LΩ(w) ,

whence

(5.11) Ω(w) ≤ log 2x
logL

< 2
log x

(log log x)3/2
.

For all m ∈ N we have d(m) ≤ 2Ω(m). Thus from (5.11) we obtain

(5.12) d(w) ≤ exp
(

2 log 2
log x

(log log x)3/2

)
.
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By (5.1), (5.3) and (5.7), it follows from (5.8), (5.9), (5.10) and (5.12) that
for all i ≤ Q we have

d(ai+ b) ≤ d(b)d(a1i+ b1)(5.13)

≤ d(b)d(u(a1i+ b1))d(v(a1i+ b1))d(w(a1i+ b1))

< d(b)d(v(a1i+ b1)) exp
(

3
log x

(log log x)3/2

)
(for i ≤ Q) .

Now write

z =
[
7

log x
(log log x)2

]
,

and let S(a, b,Q) denote the set of the positive integers i such that i ≤ Q
and

(5.14) Ω(v(a1i+ b1)) > z .

Then (5.4) holds trivially. Write v(a1i+ b1) as the product of a square and
a square-free number:

(5.15) v(a1i+ b1) = r2q (r, q ∈ N, |µ(q)| = 1) .

It follows from (5.14) and (5.15) that either

(5.16) Ω(r) ≥ z/3
or

(5.17) Ω(q) = ω(q) ≥ z/3 .
Let T1 denote the set of the integers t with t ∈ N, K < p(t) ≤ P (t) ≤ L,

Ω(t) = [z/3], and let T2 denote the set of square-free elements of T1 so that
for t ∈ T2 we have K < p(t) ≤ P (t) ≤ L, Ω(t) = ω(t) = [z/3]. Then for
i ∈ S(n, b,Q) either there is an integer t such that t ∈ T1 and t2 | a1i+ b1, or
there is an integer t such that t ∈ T2 and t | a2i+ b2 (in fact, if (5.16) holds,
then t can be chosen as any divisor of r with Ω(t) = [z/3], while if (5.17)
holds, then t can be any divisor of q with Ω(t) = ω(t) = [z/3]). It follows
that

|S(a, b,Q)| ≤
∑

t∈T1

|{i : i ≤ Q, t2 | a1i+ b1}|(5.18)

+
∑

t∈T2

|{i : i ≤ Q, t | a1i+ b1}| .

Clearly, if t ∈ T1 ∪ T2, then we have

t =
∏

pα‖t
pα > KΩ(t) = K [z/3] = exp

(
(1 + o(1))

z

3
logK

)
(5.19)

= exp
(

(1 + o(1))
7
3

log x
log log x

)
(for t ∈ T1 ∪ T2)
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and

t =
∏

pα‖t
pα ≤ LΩ(t) = L[z/3] = exp

(
(1 + o(1))

z

3
logL

)
(5.20)

= exp
(

(1 + o(1))
7
3

log x
(log log x)1/2

)

<

(
3

log x
(log log x)1/2

)
< Q1/2 (for t ∈ T1 ∪ T2) .

By (a1, b1) = 1, for all d ∈ {1, 2, . . . , Q} we have

(5.21) |{i : i ≤ Q, d | a1i+ b1}| ≤ Q

d
+ 1 ≤ 2

Q

d
(for d ≤ Q) .

It follows from (5.18), (5.20) and (5.21) that

(5.22) |S(a, b,Q)| ≤
∑

t∈T1

2
Q

t2
+
∑

t∈T2

2
Q

t
= 2Q

(∑

t∈T1

1
t2

+
∑

t∈T2

1
t

)
.

By (5.19) we have

(5.23)
∑

t∈T1

1
t2
≤

∑

t>exp((1+o(1)) 7
3

log x
log log x )

1
t2

= exp
(
− (1 + o(1))

7
3

log x
log log x

)
.

Moreover, by (2.6) and Stirling’s formula we have
∑

t∈T2

1
t

=
∑

K<pi1<pi2<...<pi[z/3]
≤L

1
pi1pi2 . . . pi[z/3]

(5.24)

<
1

([z/3])!

(∑

p≤L

1
p

)[z/3]

= exp
(
− (1 + o(1))

7
3

log x
log log x

)
.

(5.5) follows from (5.22), (5.23) and (5.24).
It remains to show that (5.6) also holds. By (5.13) we have

(5.25)
∑

i≤Q,i6∈S(a,b,Q)

d(ai+ b)

< d(b) exp
(

3
log x

(log log x)3/2

) ∑

i≤Q,i 6∈S(a,b,Q)

d(v(a1i+ b1)) .

Here the last sum is ∑

i≤Q,i 6∈S(a,b,Q)

|{d : d | v(a1i+ b1)}| .

If d | v(a1i + b1) for some i ≤ Q, i 6∈ S(a, b,Q), then, by the definitions of
v(n) and S(a, b,Q), for all p | d we have p ≤ L; moreover, Ω(d) ≤ z. Thus
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by (5.2), for such a d we have

d =
∏

pα‖d
pα ≤ LΩ(d) ≤ Lz = exp

(
(1 + o(1))7

log x
(log log x)1/2

)
< Q

so that for this fixed d, by (5.21) we have

|{i : i ≤ Q, i 6∈ S(a, b,Q), d | a1i+ b1}| ≤ 2
Q

d
,

whence, by Mertens’ formula,

(5.26)
∑

i≤Q,i6∈S(a,b,Q)

d(v(a1i+ b1))

≤
∑

P (d)≤L,Ω(d)≤z
2
Q

d
< 2Q

∑

P (d)≤L

1
d

= 2Q
∏

p≤L

∞∑
α=0

1
pα

= 2Q
∏

p≤L

(
1− 1

p

)−1

� Q logL = Q(log log x)3/2 .

(5.6) follows from (5.25) and (5.26), and this completes the proof of the
lemma.

6. Completion of the proof of Theorem 3. First we will prove the
lower bound in (4.1). Set

(6.1) Q =
[

exp
(

8
log x

(log log x)1/2

)]
+ 1

and

(6.2) G =
[
M(d, x) exp

(
− 11

log x
(log log x)3/2

)]
+ 1 .

Define the positive integer m by

(6.3)
m∏

i=1

pi ≤ x

Q
<

m+1∏

i=1

pi

so that, by the prime number theorem, we have

m =
log(x/Q)

log log(x/Q)
(1 +O((log log(x/Q))−1))(6.4)

=
log x

log log x
(1− 8(log log x)−1/2 +O((log log x)−1)) .
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Write

(6.5) P =
m∏

i=1

pi .

In order to prove the lower bound in (4.1), it suffices to show that for large
x there is a j ∈ N such that

(6.6) j ≤ x/P and d(jP ) >
∑

0<|i|≤G
d(jP + i) .

By (4.2) and (6.4), for large x we have

(6.7) d(jP )

≥ d(P ) = 2m

= exp
(

log 2
log x

log log x
(1− 8(log log x)−1/2 +O((log log x)−1))

)

= M(d, x) exp
(
− (1 + o(1))8 log 2

log x
(log log x)3/2

)

(for all j ≤ x/P ) .

On the other hand, let S =
⋃

0<|b|≤G S(P, b,Q) where G,P,Q are defined
by (6.2), (6.5) and (6.1), respectively, and the set S(P, b,Q) is defined in
Lemma 1. Then by Lemma 1 and (4.2), for large x we have

(6.8) |S| ≤
∑

0<|b|≤Q
|S(P, b,Q)| ≤ 2GQ exp

(
− 2

log x
log log x

)
<
Q

2
.

Let J = {1, 2, . . . , Q} \ S so that by (6.8) we have

(6.9) |J | = Q− |S| > Q/2 .

Then by Lemma 1 and the definition of J we have∑

i∈J

∑

0<|b|≤G
d(Pi+ b) ≤

∑

0<|b|≤G

∑

i≤Q,i6∈S(P,b,Q)

d(Pi+ b)(6.10)

<
∑

0<|b|≤G
d(b)Q exp

(
4

log x
(log log x)3/2

)

= Q exp
(

4
log x

(log log x)3/2

) ∑

0<|b|≤G
d(b)

� Q exp
(

4
log x

(log log x)3/2

)
G logG .

It follows from (6.9) and (6.10) that there is a j ∈ N with

(6.11) j ≤ Q ≤ x/P
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such that
∑

0<|b|≤G
d(Pj + b)� exp

(
4

log x
(log log x)3/2

)
G logG(6.12)

< M(d, x) exp
(
− 6

log x
(log log x)3/2

)
.

(6.6) follows from (6.7), (6.11) and (6.12), and this completes the proof
of the lower bound in (4.1).

To prove the upper bound in (4.1), write

H =
[
c6

log log x
log x

M(d, x)
]
.

Then for sufficiently large c6 and all n ≤ x, by (4.2) we have
∑

0<|i|≤H
d(n+ i) =

∑

0<|i|≤H

∑

d|n+i

1 ≥
∑

0<|i|≤H

∑

d|n+i
d≤H

1

=
H∑

d=1

∑

0<|i|≤H
d|n+i

1�
H∑

d=1

H

d

� H logH > M(d, x) ≥ d(n)

which proves the upper bound in (4.1).

7. The sharpest estimate can be given for G(σ, x):

Theorem 4. We have

(7.1) G(σ, x) = (1 + o(1))3π−2eγ log log x

where γ = 0.57722 . . . is Euler’s constant.

P r o o f. First we will show that

(7.2) G(σ, x) ≥ (1 + o(1))3π−2eγ log log x .

Let 0 < ε < 1, and write

G = [(1− ε)3π−2eγ log log x] .

Moreover, for p ≤ 1
2 log x define αp by

(7.3) pαp−1 ≤ (log x)1/2 < pαp

and let

R =
∏

p≤ 1
2 log x

pαp .
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Then by the prime number theorem we have

R =
∏

p≤(log x)1/2

pαp−1
∏

p≤ 1
2 log x

p ≤
∏

p≤(log x)1/2

(log x)1/2
∏

p≤ 1
2 log x

p

= exp( 1
2 log log xπ((log x)1/2) + ( 1

2 + o(1)) log x) = exp(( 1
2 + o(1)) log x) ,

whence

(7.4) R ≤ x .
To prove (7.2), it suffices to show that for all ε and x > x0(ε) there is a
j ∈ N such that

(7.5) j ≤ x/R and σ(jR) >
∑

0<|i|≤G
σ(jR+ i) .

For all m,n ∈ N we have

(7.6)
σ(mn)
mn

≥ σ(m)
m

.

Thus by Mertens’ formula, for all j ∈ N we have

(7.7)
σ(jR)
jR

≥ σ(R)
R

=
∏

p≤ 1
2 log x

σ(pαp)p−αp

=
∏

p≤ 1
2 log x

( αp∑
α=0

p−k
)

=
∏

p≤ 1
2 log x

(
1− 1

p

)−1

(1− p−(αp+1))

>
∏

p≤ 1
2 log x

(
1− 1

p

)−1 ∏

p≤(log x)1/4

(1− (log x)−1/2)
∏

(log x)1/4<p

(
1− p−2

)

= (1 + o(1))eγ log log x (1− (log x)−1/2)π((log x)1/4)(1 + o(1))

= (1 + o(1))eγ log log x .

On the other hand, uniformly for j ∈ N, j ≤ x/R we have

1
jR

∑

0<|i|≤G
σ(jR+ i) =

∑

0<|i|≤G

σ(jR+ i)
jR+ i

· jR+ i

jR
(7.8)

=
(

1 +O

(
G

R

)) ∑

0<|i|≤G

σ(jR+ i)
jR+ i

= (1 + o(1))
∑

0<|i|≤G

σ(jR+ i)
jR+ i

.
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Now consider

(7.9)
∑

j≤x/R

∑

0<|i|≤G

σ(jR+ i)
jR+ i

=
∑

j≤x/R

∑

0<|i|≤G

∑

d|jR+i

1
d
.

We split this sum into two parts according to the magnitude of d. First we
have

∑

d≤G

∑

j≤x/R

∑

0<|i|≤G
d|jR+i

1
d

=
∑

d≤G

1
d

∑

j≤x/R

∑

0<|i|≤G
d|jR+i

1(7.10)

≤
∑

d≤G

1
d

∑

j≤x/R
2
(
G

d
+ 1
)

= 2
[
x

R

]∑

d≤G

(
G

d2 +
1
d

)

<

[
x

R

](
π2

3
G+O(logG)

)
.

Moreover, for G < d ≤ 2x, 0 < |i| ≤ G we have
∑

j≤x/R
d|jR+i

1
d

=
1
d

∣∣∣∣
{
j : j ≤ x/R, d

(d, (R, i))

∣∣∣∣
(
j

R

(R, i)
+

i

(R, i)

)}∣∣∣∣

≤ 1
d

(
x(d, (R, i))

Rd
+ 1
)
≤ 1
d

(
x(d, i)
Rd

+ 1
)
.

Thus writing (d, i) = r, d = rs, i = rt, we have

∑

G<d≤2x

∑

0<|i|≤G

∑

j≤x/R
d|jR+i

1
d
≤

∑

G<d≤2x

(
2G
d

+ 2
x

R

G∑

i=1

(d, i)
d2

)
(7.11)

� G log x+
x

R

G∑
r=1

∑

t≤G/r

∑

G/r<s≤2x/r

r

r2s2

� G log x+
x

R

G∑
r=1

∑

t≤G/r

1
G

� G log x+
x

R
logG� x

R
logG .

By (7.9), (7.10) and (7.11), we have
∑

j≤x/R

∑

0<|i|≤G

σ(jR+ i)
jR+ i

≤
[
x

R

]
(1 + o(1))

π2

3
G .
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It follows that there is a j ≤ x/R with

∑

0<|i|≤G

σ(jR+ i)
jR+ i

≤ (1 + o(1))
π2

3
G .

Combining this with (7.7), we obtain

1
jR

∑

0<|i|≤G
σ(jR+ i) ≤ (1 + o(1))

π2

3
G(7.12)

= (1 + o(1))(1− ε)eγ log log x .

(7.5) follows from (7.7) and (7.12), which completes the proof of (7.2).
To prove that

G(σ, x) ≤ (1 + o(1))3π−2eγ log log x ,

we have to show that if ε > 0 and we write

H = [(1 + ε)3π−2eγ log log x] ,

then for x > x0(ε), H < n ≤ x we have

σ(n) <
∑

0<|i|≤H
σ(n+ i)

or, in equivalent form,

(7.13)
σ(n)
n

<
1
n

∑

0<|i|≤H
σ(n+ i) .

Since (7.13) is nearly trivial for n/H = O(1), we may assume that n/H →
∞. It is well-known (and, by using Mertens’ formula, it can be shown easily)
that for n ≤ x we have

(7.14)
σ(n)
n
≤ (1 + o(1))eγ log log x .

On the other hand, for n/H →∞ we have

1
n

∑

0<|i|≤H
σ(n+ i) = (1 + o(1))

∑

0<|i|≤H

σ(n+ i)
n+ i

(7.15)

= (1 + o(1))
∑

0<|i|≤H

∑

d|n+i

1
d

≥ (1 + o(1))
H∑

d=1

1
d

∑

0<|i|≤H
d|n+i

1
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= (1 + o(1))
H∑

d=1

1
d

(
2
H

d
+O(1)

)

= (1 + o(1))
(

2H
H∑

d=1

1
d2 +O

( H∑

d=1

1
d

))

= (1 + o(1))
(
π2

3
H +O(logH)

)

= (1 + o(1))(1 + ε)eγ log log x .

If x > x0(ε), then (7.13) follows from (7.14) and (7.15), which completes
the proof of the theorem.

8. Our results and methods presented above are of different nature for
each of the four functions ω(n), Ω(n), d(n) and σ(n). The following facts
explain some of these differences:

If f(n) is an arithmetic funcion and n ∈ N, then let g(f, n) denote the
smallest integer g such that

f(n) <
g∑

i=1

f(n+ i) .

If f(n) = ω(n), Ω(n), d(n) or σ(n), then the density of the integers n with
f(n) < f(n + 1) is 1/2. Moreover, if f(n) = ω(n) or Ω(n), then for almost
all n we have f(n) = (1 + o(1)) log log n. It follows that for almost all n we
have g(ω, n) ≤ 2 and g(Ω,n) ≤ 2 and, indeed, the density of the integers n
with g(ω, n) = 1, g(ω, n) = 2, g(Ω,n) = 1, resp. g(Ω,n) = 2 is 1/2.

This is not so for the functions σ(n) and d(n). Indeed, considering the
function d(n), for every t ∈ N the density of the integers n with g(d, n) = t
is 1/2t, and for almost all n we have d(n + g(d, n)) > d(n). If we consider
the function σ(n), then again, the density of the integers n with g(σ, n) = t
is positive for all n ∈ N but, on the other hand, the density of the integers
n with σ(n+ g(σ, n)) > σ(n) is < 1 (and > 0).

One might like to study the analogous questions for f(n) = P (n). We
can show that

lim
x→∞

G(P, x) =∞ ;

it would be interesting to estimate g(P, x).

9. In the rest of this paper we will study consecutive large values of
arithmetic functions. Erdős and Nicolas [6] proved that

(9.1) T (Ω, x) = (1 + o(1))
log x
log 2
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where the error term is ineffective and
(9.2) T (σ, x) ≤ (1 + o(1))eγx log log x
where γ is Euler’s constant. In this paper our goal is to extend and sharpen
these results. Note that the estimate of T (ω, x) seems to be very difficult,
in particular, we have not been able to show that

lim
x→∞

sup(T (ω, x)−M(ω, x)) =∞
(which is certainly true), and the study of T (d, x) seems to be even more
difficult.

In Sections 9 and 10, we will study T (Ω, x), while in Sections 11 and 12
we will estimate T (σ, x). First we give a lower bound for T (Ω, x):

Theorem 5. For all ε > 0 there are infinitely many numbers x ∈ N such
that

T (Ω, x) > M(Ω, x) + exp
(

(log 2− ε) log log x
log log log x

)
(9.3)

=
[

log x
log 2

]
+ exp

(
(log 2− ε) log log x

log log log x

)
.

P r o o f. The proof will be based on the following result of A. S. Bang [2]
(see also [3, p. 385]):

Lemma 2. If n ∈ N and n 6= 1, 6, then there is a prime p such that
p | 2n − 1 but p - 2m − 1 for m = 1, 2, . . . , n− 1.

To prove (9.3), consider a highly composite number n, i.e., assume that

d(n) = M(d, n)
(

= exp
(

(1 + o(1)) log 2
logn

log log n

))
.

Write x = 2n. Then by Lemma 2 we have
T (Ω, x) ≥ Ω(x− 1) +Ω(x) = Ω(2n − 1) + n

≥ |{i : (2i − 1)|(2n − 1), i 6= 1, 6}|+M(Ω, x)

≥ (d(n)− 2) +M(Ω, x)

= exp
(

(1 + o(1)) log 2
logn

log log n

)
+M(Ω, x)

> exp
(

(log 2− ε) log log x
log log log x

)
+M(Ω, x)

for x large enough, which proves (9.3).

10. In this section we will give upper bounds for consecutive values of
the Ω function.

Erdős and Nicolas proved (9.1) by using a result of Ridout. Next we will
show by using a result of Mahler that (9.1) can be extended to k consecutive
values of the Ω function.
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Theorem 6. For every ε > 0 and k ∈ N there is an (ineffective) number
x0 = x0(ε, k) such that for x > x0 we have

(10.1)
([

log x
log 2

]
≤
)

max
n≤x

(Ω(n− k + 1) +Ω(n− k + 2) + . . .+Ω(n))

<

(
1

log 2
+ ε

)
log x .

P r o o f. If S = {q1, q2, . . . , qt} is a finite set of prime numbers and a ∈ N,
then denote the largest divisor of a composed solely of powers of primes
form S by [a]S so that a can be represented in the form

(10.2) a = [a]Sv , v ∈ N,
(
v,
∏

p∈S
p
)

= 1 .

The proof of (10.1) will be based on the following result of Mahler [8,
p. 159, Theorem 5, II]:

Lemma 3. If S is a finite set of prime numbers, k ∈ N and ε > 0, then
there is an (ineffective) number n0 = n0(S, k, ε) such that for n > n0 we
have

[(n− k + 1)(n− k + 2) . . . n]S < n1+ε .

In order to prove (10.1), clearly it suffices to show that for n > n1(k, ε)
we have

(10.3) Ω(n− k + 1) +Ω(n− k + 2) + . . .+Ω(n) <
(

1
log 2

+ ε

)
logn .

Define t by

(10.4)
k

log pt+1
≤ ε

2
<

k

log pt

and let S = {p1, p2, . . . , pt}. Write u = [(n − k + 1)(n − k + 2) . . . n]S and
define v by

(10.5) (n− k + 1)(n− k + 2) . . . n = uv

so that v ∈ N,

(10.6)
(
v,

t∏

i=1

pi

)
= 1

and

(10.7) Ω(n− k + 1) +Ω(n− k + 2) + . . .+Ω(n) = Ω(u) +Ω(v) .

By Lemma 3 (with ε/4 in place of ε), for n > n2(k, ε) we have

u < n1+ε/4 ,
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whence

(10.8) Ω(u) ≤
[

log n1+ε/4

log 2

]
<

(
1

log 2
+
ε

2

)
log n .

Moreover, by (10.5) and (10.6) we have

nk ≥ uv ≥ v =
∏

pα‖v
pα ≥ pΩ(v)

t+1 ,

whence

(10.9) Ω(v) ≤ k log n
log pt+1

.

(10.3) follows from (10.4), (10.7), (10.8) and (10.9), and this completes the
proof of Theorem 6.

Since both (9.1) and Theorem 6 are ineffective, one might like to give
an effective upper bound for consecutive values of the Ω function. Here
we restrict ourselves to the case k = 2 (the case k > 2 could be handled
similarly).

Theorem 7. There are effectively computable positive numbers n3 and
c7 such that for n > n3, n ∈ N we have

(10.10) Ω(n− 1) +Ω(n) <
(

1
log 2

+
1

log 3
− c7

)
log n .

P r o o f. The proof will be based on the following result of Stewart [10,
Theorem 2]:

Lemma 4. If S = {q1, q2, . . . , qr} is a finite set of distinct prime numbers
and k ∈ N, then there are positive numbers c8 and c9 which are effectively
computable in terms of q1, q2, . . . , qr and k such that for all n ∈ N, n > k
we have

[(n− k + 1)(n− k + 2) . . . n]S < c8n
t−c9

where t = min(k, r).

Note that

(10.11) m ∈ N , z > 1 ,
(
m,
∏
p<z

p
)

= 1 imply Ω(m) ≤ logm
log z

since by (m,
∏
p<z p) = 1 we have

m =
∏

pα‖m
pα ≥

∏

pα‖m
zα = zΩ(m) .

For n ∈ N, define the non-negative integers a, b and the positive integers
u, v, z by

(10.12) (n− 1)n = 2a3bv = uv , 2α‖(n− 1)n , 3b ‖ (n− 1)n , z = 2a ,
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so that clearly we have

(10.13) Ω(n− 1) +Ω(n) = Ω(u) +Ω(v)

and

(10.14) z ≤ n .
By (10.11) and (10.12) we have

(10.15) Ω(v) ≤ log v
log 5

<
log(n2/u)

log 5
.

Finally, by using Lemma 4 with S = {2, 3}, we see that there are effectively
computable positive numbers c8 and c9 such that

u = [(n− 1)n]S < c8n
2−c9

so that there are effectively computable positive numbers c10 and n4 such
that

(10.16) u < n2−c10 for n > n4 .

By (10.12) and (10.14), we have

Ω(u) = Ω(z) +Ω(u/z) =
log z
log 2

+
log(u/z)

log 3
(10.17)

=
(

1
log 2

− 1
log 3

)
log z +

log u
log 3

≤
(

1
log 2

− 1
log 3

)
log n+

log u
log 3

.

It follows from (10.13), (10.15), (10.16) and (10.17) that for n > n4 we have

Ω(n− 1) +Ω(n) =
((

1
log 2

− 1
log 3

)
log n+

log u
log 3

)
+

log(n2/u)
log 5

=
(

1
log 2

+
1

log 3

)
logn−

(
1

log 3
− 1

log 5

)
log(n2/u)

<

(
1

log 2
+

1
log 3

− c10

(
1

log 3
− 1

log 5

))
logn ,

which proves (10.10).

11. Finally, we will sharpen (9.2) by proving

Theorem 8. For x→∞ we have

(11.1) T (σ, x) ≤ x
(
M

(
σ(n)
n

, x

)
+ 1 +O((log log x)−1)

)
.
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Note that it is well-known [7, §22.9] that

(11.2) M

(
σ(n)
n

, x

)
= (1 + o(1))eγ log log x .

Moreover, note that (11.1) is the best possible apart from the error term,
as the following example shows: since

lim
x→∞

M

(
σ(n)
n

, x

)
=∞ ,

there are infinitely many integers x such that

(11.3)
σ(n)
n
≤ σ(x)

x
= M

(
σ(n)
n

, x

)
for all n ≤ x .

If x satisfies (11.3), then

T (σ, x) ≥ σ(x− 1) + σ(x) =
∑

d|x−1

d+ xM

(
σ(n)
n

, x

)

≥ 1 + (x− 1) + xM

(
σ(n)
n

, x

)
= x

(
M

(
σ(n)
n

, x

)
+ 1
)
.

To prove Theorem 8, we need the following lemma:

Lemma 5. For all ω > 0 there exist numbers ε = ε(ω) > 0 and x0 =
x0(ω) such that for x > x0 we have

∏

p≤ε log x

(
1− 1

p

)−1

< M

(
σ(n)
n

, x

)
− ω .

P r o o f o f L e m m a 5. Clearly, it suffices to show that there is a num-
ber R ∈ N with

(11.4) R ≤ x
and

(11.5)
σ(R)
R

>
∏

p≤ε log x

(
1− 1

p

)−1

+ ω .

Indeed, define R in the same way as in the proof of Theorem 4. Then
(11.4) holds by (7.4). Moreover, by (2.6) and Mertens’ formula we have

σ(R)
R

=
∏

p≤ 1
2 log x

σ(pαp)
pαp

=
∏

p≤ 1
2 log x

(
1− 1

p

)−1

(1− p−(αp+1))
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>
∏

p≤ε log x

(
1− 1

p

)−1 ∏

ε log x<p≤ 1
2 log x

(
1− 1

p

)−1

(1− (log x)−1/2)π((log x)1/2)

×
∏

(log x)1/2<p

(
1− 1

p2

)

=
∏

p≤ε log x

(
1− 1

p

)−1

exp
(

(1 + o(1))
( ∑

ε log x<p≤ 1
2 log x

1
p
− 2

log log x

))

=
∏

p≤ε log x

(
1− 1

p

)−1

exp
(

(1 +O(1)) log(1/(2ε)) +O(1)
log log x

)

=
∏

p≤ε log x

(
1− 1

p

)−1

+ (1 + o(1))eγ log log x · log(1/(2ε)) +O(1)
log log x

=
∏

p≤ε log x

(
1− 1

p

)−1

+ (1 + o(1))eγ(log(1/(2ε)) +O(1)) ,

which implies (11.5) if ε is small enough in terms of ω, and this completes
the proof of the lemma.

12. Completion of the proof of Theorem 8. We have to show that
for all m ≤ x we have

(12.1) σ(m− 1) + σ(m)

≤ x
(
M

(
σ(n)
n

, x

)
+ 1 +O((log log x)−1)

)
for all m ≤ x .

For all m ≤ x we have

σ(m− 1) + σ(m) < m

(
σ(m− 1)
m− 1

+
σ(m)
m

)
≤ x

(
σ(m− 1)
m− 1

+
σ(m)
m

)
.

Thus in order to prove (12.1), it suffices to show that

(12.2)
σ(m− 1)
m− 1

+
σ(m)
m
≤M

(
σ(n)
n

, x

)
+ 1 +O((log log x)−1) .

If

(12.3) max
(
σ(m− 1)
m− 1

,
σ(m)
m

)
≤ 1

2
log log x ,

then for x large enough, (12.2) follows from (11.2) and (12.3). Thus we may
assume that

(12.4) max
(
σ(m− 1)
m− 1

,
σ(m)
m

)
>

1
2

log log x .
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Now we will define a finite sequence (u0, v0), (u1, v1), . . . , (uz, vz) of pairs
of positive integers by the following recursion: Define u0, v0 so that one of
them is equal to n− 1 and the other is n, and

σ(v0)
v0

≥ σ(u0)
u0

.

Then by (12.4) we have

(12.5)
σ(v0)
v0

>
1
2

log log x .

On the other hand, by (m− 1,m) = 1 and (11.2) we have

σ(u0)
u0

· σ(v0)
v0

=
σ(u0v0)
u0v0

=
σ((m− 1)m)

(m− 1)m
(12.6)

≤M
(
σ(n)
n

, x2
)

= (1 + o(1))eγ log log x .

It follows from (12.5) and (12.6) that for x large enough we have

(12.7)
σ(u0)
u0

< 6 .

Assume now that i is a non-negative integer and (u0, v0), . . . , (ui, vi) have
been defined so that

(uj , vj) = 1 for j = 0, 1, . . . , i ,(12.8)

ujvj |uj−1vj−1 for j = 1, 2, . . . , i ,(12.9)

vj < vj−1 for j = 1, 2, . . . , i ,(12.10)

P (vj) < P (vj−1) for j = 1, 2, . . . , i ,(12.11)

p(uj) > p(uj−1) for j = 1, 2, . . . , i ,(12.12)
σ(vj)
vj

>
σ(vj−1)
vj−1

for j = 1, 2, . . . , i ,(12.13)

and

(12.14)
σ(uj)
uj

+
σ(vj)
vj
≥ σ(uj−1)

uj−1
+
σ(vj−1)
vj−1

for j = 1, 2, . . . , i

(note that (12.8) holds trivially for j = 0). If P (vi) < p(ui), then the
construction terminates, i.e., we put z = i so that we have

(12.15) P (vz) < p(uz) .

(Note that (12.11) ensures that the construction terminates in finitely many
steps.) If P (vi) > p(ui), then write vi and ui as the product of prime powers:

vi = qα1
1 . . . qαss , q1 < . . . < qs ,

ui = rβ1
1 . . . rβtt , r1 < . . . < rt
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where

(12.16) P (vi) = qs > p(ui) = r1 .

(Note that P (vi) 6= p(ui) by (12.8).) Then define ui+1 and vi+1 by

vi+1 = qα1
1 . . . q

αs−1
s−1 r1 ,

ui+1 = qαss rβ2
2 . . . rβtt .

Then by (12.16), each of (12.8)–(12.12) holds trivially with i+1 in place
of j.

Moreover, if p is a prime number and α ∈ N, then

σ(pα)
pα

= 1 +
1
p

+ . . .+
1
pα

<

(
1− 1

p

)−1

≤
(

1− 1
2

)−1

= 2

and thus it follows from (12.5) and (12.13) that

(12.17) ω(vi)→∞ .

By (12.16) and (12.17) we have

(12.18) qs ≥ r1 + 2 .

It follows that
σ(vi+1)
vi+1

=
σ(vi)
vi
· qαss
σ(qαss )

· σ(r1)
r1

(12.19)

=
σ(vi)
vi

( αs∑

k=0

q−ks
)−1

(
1 +

1
r1

)

>
σ(vi)
vi

(
1− 1

qs

)(
1 +

1
r1

)

=
σ(vi)
vi

(
1 +

qs − r1 − 1
qsr1

)
>
σ(vi)
vi

,

which proves (12.13) with i+ 1 in place of j.
Finally, by (12.18) we have

σ(ui+1)
ui+1

=
σ(ui)
ui
· rβ1

1

σ(rβ1
1 )
· σ(qαss )

qαss
(12.20)

=
σ(ui)
ui

( β1∑

k=0

r−k1

)−1( αs∑

k=0

q−ks
)

>
σ(ui)
ui

(
1− 1

r1

)(
1 +

1
qs

)

=
σ(ui)
ui

(
1− qs − r1 + 1

qsr1

)
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=
σ(ui)
ui

(
1− (qs − r1 − 1) + 2

r1qs

)

≥ σ(ui)
ui

(
1− 3(qs − r1 − 1)

r1qs

)
.

Combining (12.19) and (12.20) we obtain

(12.21)
σ(ui+1)
ui+1

+
σ(vi+1)
vi+1

>
σ(ui)
ui

(
1− 3(qs − r1)

qsr1

)
+
σ(vi)
vi

(
1 +

qs − r1 − 1
qsr1

)

=
(
σ(ui)
ui

+
σ(vi)
vi

)
+
qs − r1 − 1

qsr1

(
σ(vi)
vi
− 3

σ(ui)
ui

)
.

By (7.6), (12.5), (12.7), (12.9) and (12.13) we have

σ(vi)
vi
→∞ ,

σ(ui)
ui

= O(1) ,

whence

(12.22)
σ(vi)
vi
− 3

σ(ui)
ui

> 0

if x is large enough. (12.14) (with i + 1 in place of j) follows from (12.21)
and (12.22), and this completes the proof of the existence of a sequence
(u0, v0), (u1, v1), . . . , (uz, vz) with the desired properties.

It follows from (12.5) and (12.13) that

(12.23)
σ(vz)
vz

>
σ(v0)
v0

>
1
2

log log x

where, by (12.10), we have

(12.24) vz < v0 ≤ n .
Moreover, by (11.2), (12.8), (12.9) and u0v0 = (m− 1)m ≤ x2 we have

σ(uz)
uz

· σ(vz)
vz

=
σ(uzvz)
uzvz

≤M
(
σ(n)
n

, x2
)

(12.25)

= (1 + o(1))eγ log log x .

It follows from (12.23) and (12.25) that

(12.26)
σ(uz)
uz

< 6 .

If

(12.27)
σ(vz)
vz

≤M
(
σ(n)
n

, x

)
− 5 ,
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then (12.2) follows from (12.14), (12.26) and (12.27). Thus we may assume
that

(12.28)
σ(vz)
vz

> M

(
σ(n)
n

, x

)
− 5 ,

whence, by (11.2),

(12.29)
σ(vz)
vz

≥ (1 + o(1))eγ log log x .

Write vz and uz as a product of prime powers:

vz = qα1
1 . . . qαss , q1 < . . . < qs ,

uz = rβ1
1 . . . rβtt , r1 < . . . < rt .

By (12.15) we have

(12.30) qs = P (vz) < p(uz) = r1 .

By Mertens’ formula, clearly we have

σ(vz)
vz

=
s∏

i=1

σ(qαii )
qαii

=
s∏

i=1

( αi∑

k=0

q−ki
)

(12.31)

<

s∏

i=1

(
1− 1

qi

)−1

≤
s∏

i=1

(
1− 1

pi

)−1

=
∏

p≤ps

(
1− 1

p

)−1

.

By using Lemma 5 with ω = 5, we deduce from (12.28) and (12.31) that
there is a positive number ε > 0 such that

(12.32) qs ≥ ps > ε log x .

It follows from

u0v0 = (m− 1)m ≤ x2

and (12.9) that

(12.33) uz ≤ x2 .

This implies that

(12.34) t = ω(uz) < 3 log x

since by the prime number theorem, otherwise we had

uz = rβ1
1 . . . rβtt ≥ r1 . . . rt ≥

∏

i≤3 log x

pi

≥
∏

p≤3 log x

p = exp((1 + o(1))3 log x) > x2 ,

which contradicts (12.33).
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It follows from (12.30), (12.32) and (12.34) that

σ(uz)
uz

=
t∏

i=1

σ(rβii )

rβii
=

t∏

i=1

( βi∑

k=0

r−ki
)

(12.35)

<

t∏

i=1

(
1− 1

ri

)−1

≤
t∏

i=1

(
1− 1

ps+i

)−1

≤
∏

i<3 log x

(
1− 1

ps+i

)−1

<
∏

ε log x<p<4 log x

(
1− 1

p

)−1

= exp
(

(1 + o(1))
∑

ε log x<p<4 log x

1
p

)

= exp(O((log log x)−1)) = 1 +O((log log x)−1) .

It follows from (12.10), (12.14) and (12.35) that

σ(m− 1)
m− 1

+
σ(m)
m

=
σ(u0)
u0

+
σ(v0)
v0

≤ σ(uz)
uz

+
σ(vz)
vz

≤ (1 +O((log log x)−1)) + max
n≤x

σ(n)
n

= M

(
σ(n)
n

, x

)
+ 1 +O((log log x)−1) ,

which proves (12.2), and this completes the proof of the theorem.
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