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1. Introduction and the main results. It is well known that, given
any irrational α, the sequence (nα)∞n=1 is dense modulo 1. (It is also uni-
formly distributed modulo 1, but this is of no consequence here.) In particu-
lar, given any digits a1, a2, . . . , ak, there exists a positive integer m for which
the decimal expansion of mα contains this block of digits. It was proved by
Mahler [M] that, moreover, there necessarily exists an m for which the dec-
imal expansion of mα contains the given block infinitely often. Mahler also
established an upper bound for the minimal value M of the number m with
that property; M = M(k) depends only on the number k of digits, but not
on α:

M(k) < 102k+1 .

Mahler’s original proof is based on the geometry of numbers.
In this paper we give a shorter proof of Mahler’s result (see Section 2),

which at the same time yields a better upper bound:

M(k) < 2 · 10k+1 .

This result is best possible up to a constant factor. In fact, we show that

M(k) ≥ 8 · (10k − 1) .

(Actually, the factor 8 can be replaced by any real number less than 10 for
sufficiently large k—see Example 3.1.)

Of course, there is nothing special about the base 10. Mahler’s theorem
refers equally to any base g ≥ 2, and the upper bound for M(g, k) he obtains
in this general case is:

M(g, k) < g2k+1 .

(Note that even the finiteness of M(g, k) is not obvious.)
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Our first result improves upon this bound. A g-block of length k is a
sequence of length k with entries in {0, 1, . . . , g − 1}.

Theorem 1.1. Let α be an irrational , g ≥ 2 an integer and B a g-block
of length k. Then there exists a positive integer m < 2gk+1 such that the
g-ary expansion of mα contains the block B infinitely often.

The theorem is proved in Section 2.

R e m a r k. As is well known, the g-ary expansion of almost every α (in
the sense of the Lebesgue measure) contains every g-block infinitely often
(and even in the “right” frequency). The theorem thus relates mainly to
numbers α which are “badly behaved” in base g.

It is easy to see (Proposition 3.1) that

M(g, k) ≥ gk − 1 .

Thus the gap between our upper and lower bounds is just by a factor of 2g,
which is constant (for fixed g). In Section 3 we shall discuss improvements
upon this lower bound. Our lower bounds depend on the arithmetic nature
of g (i.e., its factorization into a product of primes), and may hint that there
is no simple formula for M(g, k).

The density modulo 1 of the sequence (nα) is but a special case of a
result which asserts that, given any polynomial P with real coefficients, at
least one of which (besides the constant term) is irrational, the sequence
P (n) is dense modulo 1. (More well-known is Weyl’s even stronger result
by which this sequence is uniformly distributed modulo 1 [W].) It turns out
that Mahler’s result is true in this more general setting as well.

Theorem 1.2. Let g ≥ 2 be an integer and P ∈ R[x] a polynomial with
at least one irrational coefficient besides the constant term. Then for each
finite g-block there exists a positive integer m such that B appears infinitely
often in the g-ary expansion of P (m).

R e m a r k. It can be shown (although this does not follow from the con-
siderations of this paper) that there exists an effective upper bound, in
terms of g, the length of B and the degree of P , on the least m satisfying
the conclusion of the theorem.

Example 1.1. There are numerous sequences in which one can find,
given any g-block, an element whose g-ary expansion contains the block
infinitely often. Such are the sequences (lnn) (consider numbers n of the
form 2m and use Mahler’s result), (ln lnn) (take n’s of the form 22m and
use Theorem 1.2 for linear polynomials) and (nθ) for θ positive rational
non-integer (if θ = p/q take n’s of the form 2mq and use Theorem 1.2).
On the other hand, we do not know whether the sequences (ln ln lnn) and
(nθ) with irrational θ share this property. More generally, we note that the
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question of infinite repetitions of blocks is usually harder than the question
of density mod 1 which holds for the above sequences. For a large class of
regularly growing sequences (defined by certain formulae or recurrences), the
questions of density and of uniform distribution modulo 1 can be resolved by
means of simple tests [B], but we doubt that such criteria can be formulated
for infinite repetition problems.

We note in conclusion that our approach was influenced by an idea due
to Furstenberg who, employing a certain result of Glasner [G], provided a
very short proof of the finiteness of M(g, k) (see [AP, Cor. 7.2]).

2. The improved upper bound. Let T = R/Z be the circle group. A
set E ⊆ T is ε-dense (or, alternatively, forms an ε-net) in T if every interval
of length ε meets E.

It is obvious that M(g, k) cannot be divisible by g, so that proving a weak
inequality in Theorem 1.1 is equivalent to proving the strict inequality.

P r o o f o f T h e o r e m 1.1. Denote by E the set of all limit points in T
of the sequence {gnα : n ≥ 0}. We distinguish between several (somewhat
overlapping) cases:

C a s e I: E contains a rational point r = p/q (where (p, q) = 1) with
gk < q ≤ gk+1. In this case the set {0, r, 2r, . . . , (q − 1)r} forms a 1

gk
-net

in T. Hence the g-ary expansion of some mr, 1 ≤ m < q, starts with 0.B,
and not all of the following digits are 0, neither are they all g− 1. It follows
that the g-ary expansion of mα contains the block B infinitely often. (Note
that in this case we could have replaced the upper bound 2gk+1 by gk+1.)

C a s e II: 0 ∈ E. Replacing α by −α if necessary, we may assume that
the g-ary expansion of α contains arbitrarily large blocks consisting of 0.
Take a sequence (nj) of positive integers such that the g-ary expansion
of gnjα starts with the block 0j , but that of gnj−1α does not start with
0. For each fixed positive integer d, consider the sequence gnj−dα (which
is well-defined for sufficiently large j). Replacing (nj) by a subsequence
thereof, we may assume that each of these sequences converges in T, say
gnj−dα → rd = pd/qd (where (pd, qd) = 1). Obviously, for each d we have
qd < qd+1 ≤ gqd. Hence gk < qd ≤ gk+1 for an appropriate choice of d. Since
rd ∈ E for each d, this yields a reduction to the preceding case.

C a s e III: E contains a rational point r = p/q (where (p, q) = 1) with
q ≤ gk+1. Carrying out the construction of Case II, with α replaced by qα,
we find rationals sd in qE with finite g-ary expansion and corresponding
rationals rd = pd/qd in E such that gnj−dα → rd and qsd = rd for each
d. As in the preceding case we have qd < qd+1 ≤ gqd, and since q0 ≤ gk+1

there exists an rd whose denominator is in the range (gk, gk+1], bringing us
again back to Case I.

C a s e IV: E contains no rational point r = p/q with q ≤ 2gk. We first
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claim that a point β ∈ E and a rational r = p/q can be found such that:

(a) |β − p/q| < 1/(2gk+1q).
(b) 2gk < q.
(c) q ≤ 2gk+1.
(d) (p, q) = 1.

In fact, starting with any β0 ∈ E, we can find a rational r0 = p0/q0

such that conditions (a), (c) and (d) are satisfied with β and r replaced by
β0 and r0, respectively. Choose inductively points βi ∈ E, i = 0, 1, 2, . . .
with gβi+1 = βi for each i. Next choose rationals ri = pi/qi, i = 1, 2, . . .
(in reduced form) with gri+1 = ri and |βi − ri| = g−i|β0 − r0| for each i.
Clearly, qi ≤ qi+1 ≤ gqi for each i. If qi = q ≤ 2gk for all sufficiently large
i, then some rational r = p/q appears infinitely often in the sequence (ri),
in which case r ∈ E, contradicting our assumption. Consequently, qi →∞,
whence for a suitable i the rational ri satisfies conditions (a)–(d).

Now the set {r, 2r, . . . , qr} forms a 1
2gk -net in T. Since |mβ − mr| <

1/(2gk) for 1 ≤ m ≤ q, the set {β, 2β, . . . , qβ} forms a 1
gk

-net in T. We
conclude as in Case I.

This completes the proof.

3. Lower bounds. In this section we shall discuss the question of lower
bounds on M(g, k). A simple observation is

Proposition 3.1. M(g, k) ≥ gk − 1 for every g ≥ 2, k ≥ 1.

In fact, considering a number of the form α =
∑∞
j=1 g

−nj , where nj+1−
nj → ∞, and the block B consists of k consecutive (g − 1)’s, we easily see
that the g-ary expansion of mα will not contain B infinitely often for any
m < gk − 1.

The bound provided by Proposition 3.1 may be equal exactly to M(g, k).
This is the case, for example, for g = 2, k = 1 and for g = 3, k = 1. It is,
however, usually possible to improve on this lower bound, as we first see for
composite g.

Theorem 3.1. Let a be a proper divisor of g. Then

M(g, k) ≥ a(gk − 1), k ≥ 1 .

Taking a = 1 we obtain Proposition 3.1. Of course, the best result is
obtained in general by selecting a as the maximal proper divisor of g. Thus
Theorem 3.1 improves Proposition 3.1 unless g is a prime.

The proof of Theorem 3.1 is almost the same as that of Proposition 3.1,
except that we choose the “bad number” this time as



Decimal expansions of (nα) 319

α =
g

a

∞∑

j=1

g−nj .

The least multiple of g/a containing the block consisting of k consecutive
(g − 1)’s is the number

gk+1 − g =
g

a
· a(gk − 1) .

Consequently, the least positive integer m for which mα contains the block
B infinitely often is a(gk − 1), which proves the theorem.

Even more can be said if g is not a prime power.

Theorem 3.2. If g is not a prime power , then for every ε > 0 there
exists a positive integer K = K(ε) such that

M(g, k) ≥ (1− ε)gk+1, k ≥ K .

P r o o f. Let p be a prime divisor of g. Since g is not a prime power,
log p/ log g is irrational. Therefore one can find positive integers l and r
such that gl < pr < (1 + ε)gl. We first claim that the g-ary expansion of no
positive multiple of pr contains the block B, consisting of r − l consecutive
(g − 1)’s, within its r lowest digits. In fact, if this were possible, then by
multiplying this multiple of pr by an appropriate power of g, we would get
a number of the form mpr whose block of r lowest digits starts with the
block B. Since gr is divisible by pr, we can find such a number with exactly
r digits. But then for this number mpr we have

gr − gl ≤ mpr < gr .

As all three numbers involved in the inequality are multiples of pr, this is
inconsistent with the fact that pr > gl. Thus the minimal mpr containing a
block consisting of k ≥ r − l consecutive (g − 1)’s is at least

l+k∑

i=l+1

(g − 1)gi = gl+1(gk − 1) .

Now set

α =
(
p

g

)r ∞∑

j=1

g−nj ,

where nj+1 − nj → ∞. The foregoing discussion implies that the smallest
m for which mα contains the block consisting of k (≥ r − l) consecutive
(g − 1)’s infinitely often is at least

gl+1(gk − 1)
pr

>

(
1− ε

2

)
(gk+1 − g) > (1− ε)gk+1

for sufficiently large k. This completes the proof.
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Example 3.1. For g = 10, taking p = 2, l = 0, r = 1 in the proof we
see that M(10, k) ≥ 5 · (10k − 1) for k ≥ 1. Taking p = 5, l = 2, r = 3,
we obtain a better result, namely M(10, k) ≥ 8 · (10k − 1) for k ≥ 1. With
p = 2, l = 3, r = 10 we get M(10, k) ≥ 9.765 · (10k − 1) for k ≥ 7.

We do not know whether it is true in general that M(g, k) < gk+1.
However, except for the cases g = 2 and g = 3, mentioned earlier, we never
have M(g, 1) = g−1. In view of Theorem 3.1 we have to prove this assertion
only for prime g. The following theorem includes this case.

Theorem 3.3. Let g ≥ 5 be an odd integer. Then

M(g, 1) ≥ 3
2 (g − 1) .

P r o o f. Take

α = 1
2 +

∞∑

j=1

g−nj ,

where nj+1−nj →∞. One easily writes down the g-ary expansion of α and
of multiples mα. It is easily checked that if g ≡ 1 (mod 4) then the digit
(g − 3)/2 appears at most finitely many times in the expansion of mα for
every m < 3

2 (g − 1). The same is true for the digit g − 2 if g ≡ 3 (mod 4).
This proves the theorem.

4. The polynomial Mahler theorem. In this section we prove The-
orem 1.2.

Define (for the purposes of this section) the complexity of a polynomial
P (x) = a0 + a1x + . . . + adx

d with real coefficients as the least common
denominator of the numbers a1, . . . , ad if they are all rational and as ∞
otherwise.

Lemma 4.1. Given ε > 0 and a positive integer d , there exists a positive
integer M such that for every polynomial P of degree d with complexity at
least M , the set {P (n) : n ∈ N} is ε-dense modulo 1.

P r o o f. If P is of infinite complexity, then the sequence (P (n))∞n=1 is
uniformly distributed modulo 1, and in particular dense modulo 1. Suppose
therefore that the coefficients a1, . . . , ad of P are all rational, and let Q be
the complexity of P . Let xn = {P (n)} be the fractional part of P (n), n =
1, . . . , Q. We ought to show that the set {xn : 1 ≤ n ≤ Q} is ε-dense in [0, 1]
if Q is large enough. We shall prove, moreover, that even the discrepancy
DQ = DQ(x1, . . . , xQ) must be small as Q becomes large. Indeed, according
to LeVeque’s Inequality (see, for example, [KN, Ch. 1, Th. 2.4]) we have

DQ ≤
(

6
π2

∞∑

h=1

1
h2

∣∣∣∣
1
Q
S(h,Q, P )

∣∣∣∣
2)1/3

,
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where

S(h,Q, P ) =
Q∑
n=1

exp(2πihP (n)) .

Setting h′ = h/(h,Q) and Q′ = Q/(h,Q), and employing some well-known
estimates of exponential sums involving a rational polynomial [C], [S] (which
are, up to a multiplicative constant, best possible; Hua’s original estimates
[H, Ch. 7, Th. 10.1] would suit our purposes as well), we obtain

|S(h,Q, P )| = (h,Q) · |S(h′, Q′, P )| ≤ hC1(d)Q′1−1/d,

where C1(d) depends only on d. Thus

DQ ≤
(
C2(d)

∞∑

h=1

1
h2

(
Q

h

)−2/d)1/3

≤ C3(d)Q−1/(2d) .

Consequently, if Q is sufficiently large, then DQ < ε, which completes the
proof.

P r o o f o f T h e o r e m 1.2. Let B be a g-block of an arbitrary length k.
Write:

P (x) = a0 + a1x+ . . .+ adx
d .

Let al (1 ≤ l ≤ d) be an irrational coefficient of P . Let ε = 1/gk+2. Take M
as in Lemma 4.1. One easily verifies that the set of limit points modulo 1 of
the sequence (gnal)∞n=1 is infinite, whence there exists a sequence (nj) such
that gnjal → bl (mod 1) where bl is either irrational or is a rational number
with denominator at least M . Replacing (nj) by a subsequence thereof, we
may assume that each of the subsequences (gnjai), 1 ≤ i ≤ d, converges
modulo 1, say gnjai → bi (mod 1). Consider the polynomial

P0(x) = b0 + b1x+ . . .+ bdx
d .

By Lemma 4.1 we can find a positive integer m such that the g-ary expansion
of the number P0(m) modulo 1 starts with the block B01. But then the
number P (m) contains the block B infinitely often in its expansion. This
proves the theorem.
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