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Some remarks about the power residue symbol
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1. Introduction. Let K be an algebraic number field with (,, € K,
Cm = €2™/™_ Denote by O the ring of integers of K. If o € Ok \ {0}
and A is an ideal of Ok prime to ma then (O‘lTK)m denotes the mth power
residue symbol. It is known that if a, b are rational integers different from
zero and b is prime to 3a or 2a then (a/b)s =1 or (a/b)s = 1 respectively.

On the other hand, H. Hasse gives in [1], p. 65, the following result: if &

is an algebraic number field, ¢, € k, a,b € Z \ {0} and (b, ma) = 1 then

(45) =G0 where 9= [k Pl P = QG

It turns out that the above result can be refined. Namely, if the case
m =2 and [k : Q] odd is excluded then we always have

1) <‘b’“)m 1

Let k, K be algebraic number fields such that k¥ C K, and (,,, € K. The
main aim of the present paper is to give necessary and sufficient conditions
for the equality

(2) (C“'f)m 1

to hold, where « is a number (different from zero) and A is an ideal of Oy,
prime to ma.

It is known that the extension K ( §/«)/K is the class field corresponding
to the group of ideals A of Ok prime to ma and such that (Q‘TK)m = 1.
(2) means that any ideal of Oy prime to ma treated as an ideal of O
belongs to the principal class.

Notation. m denotes a positive integer. Let k£ be an algebraic number
field. Put k,, = k() and let Ny, = Ny, /0, N = Ny, /g denote the absolute
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norms in k,,, k respectively. For a € Z, a denotes the residue class mod m
containing a. Let G be any subgroup of the multiplicative group of residue
classes mod m. Let d|m. Then G4 = G4(m) denotes the subgroup of those
residue classes mod m of G which are congruent to 1 mod m/d.

We shall show

THEOREM 1. Let k, K be algebraic number fields such that k C K and
Cm € K. Let n denote the number of roots of unity of degree m contained
in k. Let 2" ||m (v > 0) and

, n if n £ 2mod 4 or m # 0 mod 4,
n' = .
n/2 otherwise.
Moreover, let m = m’m”, where (m’,n’) =1 and m” contains only prime
factors dividing n'. Further, let m' = 2m/" (un > 0), 2¢4m”, bm’ =
(m/,n) mod n, (b,n) = 1. Finally, let o € Oy \ {0}, and A be an ideal
of Oy prime to ma.. Then

(Q‘TK)Z[K:]{””] if ordo n = ordo m
(3) Oé\l _ or [K : kpmron] =0 mod 2
A ) a or the field kN Pyv is real,
(O“TK)Z[K:IC’"”HTL/Q otherwise.

THEOREM 2. Under the notation of Theorem 1, in order that

(4) (“'f)m _

for every a € Oy \ {0} and every ideal A of Oy prime to ma, it is necessary
and sufficient that the following two conditions hold:

(i) either ordan = orde m or [K : kyron] = 0 mod 2 or the field kN Pay
is real,

(ii) [K : kpr] = 0 mod n.

COROLLARY. Let K be an algebraic number field. Assume that (,, € K.
Let a,b € Z\ {0} with (b,ma) =1. Then

(), -

except the case when m = 2 and the field K is of an odd degree.

2. Preliminaries. First we shall prove five lemmas.

LEMMA 1. Let m be a positive integer and G be a subgroup of the multi-
plicative group of residue classes mod m prime to m, say G = {ay,...,a:},
a; € Z, (aj,m) =1. Putl = (a1 —1,...,a. — 1,m) and S = Z;Zl a;. Let
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2¥||m (v > 0) and
I l if | #2mod4 or m # 0mod 4,
1 l/2  otherwise.
Moreover, let m = kK'k"”, where (k',l') = 1 and k" contains only prime
factors dividing l'. Further, let k' = 2°k" (k > 0), 24k, ak’ = (K',1) mod [,
(a,l) =1. Then
S =0 mod k".

Proof. Let p" || k"', p a prime, r > 0. Hence p > 2. Since k' and !’ are
relatively prime we have

(5) p1l.

Let g be a primitive root mod p”. Set H = G,,/,-. The quotient group
G /H is isomorphic to some subgroup of the multiplicative group of residue
classes mod p". Hence G/H = {¢’*H : j = 0,1,...,v — 1} where uv =
(") =(p-1)p

We have

(6) 9" # 1 mod p.
Otherwise we would have a; = 1 mod p for every j and p |, contrary to (5).
By (6) and Euler’s theorem,

(")

vl ge®) — 1
SE|H|§ ¢ =|H|=———— =0mod p".
. g"

Jj=0

-1

Hence S=0mod k. u
LEMMA 2. Let I =2 mod 4 and m = 0 mod 4. Then
|Gk’”| = ‘Gk/”k”’ mOd 2’ ‘Gk/‘ = 0 mOd 2.

Proof. We have k = v > 2. According to the definition of [ and by the
Lemma of [2] (p. 218) the quotient group G/Gy is of order k" /I’. Since in
this case k” = 1 mod 2 we have
(7) [G : Gi] =1 mod 2.

Set H = Gygrr. We have G = H N Gy and H/ka = H/H NGy =
HG/ /Gy € G/Gys . Hence by (7), [H : Gpv] =1 mod 2 and

(8) ‘H’ = [H : Gk///”Gk///| = ‘ka‘ mod 2.
The order of the quotient group G/H is a power of two. This power is
not trivial. Otherwise we would have a; = 1 mod 2" for each j and [ =

0 mod 4, contrary to the assumption. Thus we have |G| = 0 mod 2. Further,
Gl = [G : Gi]|Gi| and by (7),

9) |G| =0mod 2. m
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LEMMA 3. We have

47 |Gr| mod k" if ordsl = ordam or |G| = 0 mod 2
S = or a; = —1mod 2¥ for some j,

G| G| + 5 mod k' otherwise.

Proof. According to the definition of [ and by the Lemma of [2] the
quotient group G /Gy is isomorphic to the multiplicative group of residue
classes mod k" congruent to 1 mod I’ and we have

G/Gk}’ = {(UZ/ + 1)Gk/ LU= O,]_,. ..,]’C///l/ — ].}

Hence
K1 =1
S=[Gr| Y (ul'+1)
u=0
k' U —1
= T/’G’f” + Amod £’ with A= /2|Gk/|k'/.

It is easy to see that k”/l" = am/l mod k”. We have Gy~ C Gjs. Hence
if ordel = ordam or |G| = 0 mod 2 then A = 0 mod k”. Assume that
a; = —1mod 2¥ for some j and ordy! # ordym. By the definition of [,
I =2mod 4 and m = 0 mod 4. By Lemma 2, A = 0 mod k”.

Now assume that orda! # ordem and |G| = 1mod2 and a; #

—1 mod 2¥ for each j. If | = 2 mod 4 and m = 0 mod 4 then by Lemma 2,
A=0=m/2mod k”. If | # 2 mod 4 or m # 0 mod 4 then Gy = G and
A=kK"/2=m/2mod k". m

LEMMA 4. We have

4% |G | mod 27 if ordsl = ordam or |Gr»| =0 mod 2

S = or a; = —1 mod 2" for some j,

YR |G| + 5 mod 2% otherwise.

Proof. If I # 2mod 4 or m # 0mod 4 then k = 0 and the lemma
holds trivially. So we may assume that [ = 2 mod 4 and m = 0 mod 4. Then
k =wv > 2. By Lemma 2, 7|Gj/| = 0 mod 2”. Since m/2 = 2~ mod 2” it
is enough to prove that

|Gror|2 ! mod 2¥  otherwise.

Put H = Gk”k”"
Assume that a; = —1 mod 2" for some j. We have G/H = {z;H, —x;H :
i=1,...,s =[G : H]/2}, z; = 1 mod 4. Hence

g= {Omod 2v if a; = —1 mod 2" for some j,

S

S = |H|(ZS:JUz _le) = 0 mod 2".
i=1

i=1
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Assume now that a; # —1 mod 2¥ for each j. Since | = 2 mod 4 and m =
0 mod 4, we have a; = —1 mod 4 for some 7. There exists a maximal v, such
that 2 < v; < v and

(10) G/H ={(u2"* +1)H,e(u2"* + 1)H : u=0,1,...,2"7" — 1}

where €2 = 1 mod 2“1, £ = —1 mod 4.

We have vy > 3. Otherwise we would have [G : H] = 2! and a; =
—1 mod 2 for some j, contrary to the assumption. We have four possibilities
fore:e =1mod 2", e =21 4+ 1mod 2", e =271 —1mod 2", € =
—1 mod 2**. The first two possibilities are excluded since v; > 3 and ¢ =
—1 mod 4. Assume that ¢ = —1 mod 2*. By (10),

G/H={(u2"+1)H,—(u2" +1)H :u=0,1,...,2"7"* —1}.

This means that a; = —1 mod 2” for some j, contrary to the assumption.
Thus e = 2"*~! — 1 mod 2**. By (10) and Lemma 2,

oV—v1_q

S=[H|(1+e) Y (u2”+1)
u=0
1
— |H|(1+)2"~" + |H]| ;8(2"% Y

= |H|(1+¢)2" ™ = |[H]2"' = |Gpr|2Y " mod 27 =

LEMMA 5. We have

4% |Gy | mod m if ordal = ordam or |Gg| =0 mod 2
S = or a; = —1 mod 2" for some j,

G G| + 5 mod m  otherwise.

Proof. We have m = 2%k"k" and 2%, k", k' are pairwise relatively
prime. Further, m/l = 0 mod k" and m/2 = 0 mod k""" for m = 0 mod 2.
The lemma follows immediately from Lemmas 1, 3 and 4. =

Remark 1. Since |G| = [G : Gy]|Gr| = kl—i/|ka|, |G| may be re-

placed by k'V|G|, where
v K if | 2 mod 4 or m % 0 mod 4,
| k¥//2 otherwise.

PROPOSITION. S = 0 mod m if and only if the following two conditions

hold:
(i) either ords ! = ordem or |G| = 0mod 2 or a;j = —1 mod 2 for

some j,

(ii) |G| =0 mod I.

Proof. Sufficiency of (i) and (ii) follows immediately from Lemma 5.
Assume that S = 0 mod m. We shall show that (i) and (ii) are satisfied. If
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(i) does not hold then m = 0 mod 4 and we have
(11) l=0mod2, a|Gy|+1/2=1mod2.

Indeed, if I = 0 mod 4 then k = 0, a = 1 mod 2, |Gy/| = 1 mod 2 and
(11) follows. If I = 2 mod 4 then (11) follows from Lemma 2. By Lemma 5,
a|Gg/| +1/2 = 0mod I, contrary to (11). Thus (i) holds. By Lemma 5,
|Gr/| =0 mod . Thus (ii) holds. m

3. Proof of Theorem 1. Let a € Oy \ {0} and p be a typical prime
ideal of Oy prime to ma. Since

alK  (alkn (K]
A m_ A m

for any ideal A of O prime to ma in virtue of the multiplicativity of the
power residue symbol it is enough to prove that

(O‘T“c)fl[km:km”] if ordg n = ordam
(12) <a!km> _ or [km : kmrow] =0 mod 2
» " or the field k£ N Pyv is real,
(O‘le)i[km:km”an otherwise.

Then (3) holds.

Put G = Gal(k,,/k) = Gal(P,,/k N P,,). Then G can be viewed as a
subgroup of the multiplicative group of residue classes mod m. We have the
following decomposition in k,,:

g
(13) p=T1P
i=1
where oy, ((n) = (% for some ¢; with ¢; € G, and P is a prime ideal of Oy, .
We have

(14) Ny P = (Np)!

where f is the degree of the ideal P with respect to the field k. Then f
is also the smallest positive integer such that (Np)¥ = 1 mod m. Further,
Ny P =1mod m and Np =1 mod n.

Put a;; = t;(Np)? (i =1,...,9; j = 0,1,...,f —1). It is known that
G ={ai;}i ;.- Let [, S, U, k', k", k", Kk, a be as in Lemma 1. We have

g f-1 g
(15) S=> ay =Zzti(Np)j:%Zti.
i,j i=1 j=0 i=1

Further, [ = ({a;; — 1} j, m). By Galois theory, [ = n. Hence

(16) I'=n', K=m', K'=m", ¥'"=m", k=p, a=bmodn.
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By Lemma 5, Sn/m € Z and

b|G | mod n if ordg n = ordom
n _ or |G| = 0 mod 2
(17) S% - or a;; = —1 mod 2" for some i and 7,

b|Gp/| + 5 mod n  otherwise.

By (13)—(15) and Euler’s criterion,

ok, T (o km alky, 7"
(5), () -I() -1
p : ,
m i=1 m i=1 i=1
$9_ 1
_ (alkn )TN el
P m

_ . k m
:aanlSEE <a > mod P.
b/

t;
>m

Since P is prime to m, we obtain

n

() - ()

By Galois theory, |G| = [km @ kmr]s |G| = [km ¢ kmeow], the
field £ N Py is real if and only if the group G contains a residue class

mod m congruent to —1 mod 2”. Now (12) follows immediately from (18)
and (17). m

4. Proof of Theorem 2. If conditions (i) and (ii) are satisfied then (4)
holds by Theorem 1. Assume that (4) holds. Let p be a prime ideal of Oy
prime to m and « be a number in Oy such that

() <.

We shall show that conditions (i) and (ii) are satisfied. If (i) is not satisfied
then m = 0 mod 4 and
(20) n=0mod2, bK :ky]+n/2=1mod?2.

Indeed, if n = 0 mod 4 then =0, b = 1 mod 2, [K : k,,»] = 1 mod 2
and (20) follows. If n = 2 mod 4 then by Lemma 2 and (16), [K : k]| =
[K : km]|Gm| =0 mod 2 and (20) follows again.

By Theorem 1 with A = p, (19) and (20) we have (alK) # 1, contrary

to the assumption. Thus (i) holds. By (4) for A = p, Theorem 1 and (19)
we obtain (ii). m

5. Proof of Corollary. Put £ = Q in Theorem 2. The condition (i)
is satisfied. Assume that m # 2 or the field K is of an even degree. By
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Theorem 2 it is enough to prove that (ii) is satisfied. If m = 1 mod 2 then
n = 1 and obviously (ii) holds. If m = 0 mod 2 then n = 2; m” = 2 if
m = 2mod 4, m” = 1 if m = 0 mod 4. Hence k,,» = Q. If m > 2 then
[K :Q] =[K : P,][P, : Q] =[K : Py,]e(m) = 0mod 2. Thus (ii) holds. If
m = 2 then [K : Q] = 0 mod 2. Thus (ii) holds again. m

Remark 2. The Corollary may be proved without using Theorem 2. For
this purpose it is enough to use the equality E;P:(T) r; = smep(m), where
T1,- -+ Ty(m) are all residues mod m prime to m contained between 0 and m.
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