Some remarks about the power residue symbol

by

J. Wо́јсік

1. Introduction. Let K be an algebraic number field with $\zeta_m \in K$, $\zeta_m = e^{2\pi i/m}$. Denote by O_K the ring of integers of K. If $\alpha \in O_K \setminus \{0\}$ and A is an ideal of O_K prime to $m\alpha$ then $\left(\frac{\alpha|K}{A}\right)_m$ denotes the mth power residue symbol. It is known that if a, b are rational integers different from zero and b is prime to 3a or 2a then $(a/b)_3 = 1$ or $(a/b)_4 = 1$ respectively.

On the other hand, H. Hasse gives in [1], p. 65, the following result: if k is an algebraic number field, $\zeta_m \in k$, $a, b \in \mathbb{Z} \setminus \{0\}$ and (b, ma) = 1 then

$$\left(\frac{a \mid k}{b}\right)_m = (\pm 1)^g$$
, where $g = [k : P_m], P_m = \mathbb{Q}(\zeta_m)$.

It turns out that the above result can be refined. Namely, if the case m=2 and $[k:\mathbb{Q}]$ odd is excluded then we always have

$$\left(\frac{a\,|\,k}{b}\right)_m = 1.$$

Let k, K be algebraic number fields such that $k \subseteq K$, and $\zeta_m \in K$. The main aim of the present paper is to give necessary and sufficient conditions for the equality

(2)
$$\left(\frac{\alpha \mid K}{A}\right)_m = 1$$

to hold, where α is a number (different from zero) and A is an ideal of O_k prime to $m\alpha$.

It is known that the extension $K(\sqrt[m]{\alpha})/K$ is the class field corresponding to the group of ideals A of O_K prime to $m\alpha$ and such that $\left(\frac{\alpha|K}{A}\right)_m = 1$. (2) means that any ideal of O_K prime to $m\alpha$ treated as an ideal of O_K belongs to the principal class.

Notation. m denotes a positive integer. Let k be an algebraic number field. Put $k_m = k(\zeta_m)$ and let $N_m = N_{k_m/\mathbb{Q}}$, $N = N_{k/\mathbb{Q}}$ denote the absolute

J. Wójcik

norms in k_m , k respectively. For $a \in \mathbb{Z}$, \overline{a} denotes the residue class mod m containing a. Let G be any subgroup of the multiplicative group of residue classes mod m. Let $d \mid m$. Then $G_d = G_d(m)$ denotes the subgroup of those residue classes mod m of G which are congruent to $1 \mod m/d$.

We shall show

THEOREM 1. Let k, K be algebraic number fields such that $k \subseteq K$ and $\zeta_m \in K$. Let n denote the number of roots of unity of degree m contained in k. Let $2^{\nu} \parallel m \ (\nu \geq 0)$ and

$$n' = \begin{cases} n & \text{if } n \not\equiv 2 \bmod 4 \text{ or } m \not\equiv 0 \bmod 4, \\ n/2 & \text{otherwise.} \end{cases}$$

Moreover, let m = m'm'', where (m', n') = 1 and m'' contains only prime factors dividing n'. Further, let $m' = 2^{\mu}m'''$ $(\mu \geq 0)$, $2 \nmid m'''$, $bm' \equiv (m', n) \mod n$, (b, n) = 1. Finally, let $\alpha \in O_k \setminus \{0\}$, and A be an ideal of O_k prime to $m\alpha$. Then

$$(3) \quad \left(\frac{\alpha \mid K}{A}\right)_{m} = \begin{cases} \left(\frac{\alpha \mid K}{A}\right)_{n}^{b[K:k_{m''}]} & \text{if } \operatorname{ord}_{2} n = \operatorname{ord}_{2} m \\ & \text{or } [K:k_{m''2^{\mu}}] \equiv 0 \operatorname{mod} 2 \\ & \text{or the field } k \cap P_{2^{\nu}} \text{ is real,} \\ \left(\frac{\alpha \mid K}{A}\right)_{n}^{b[K:k_{m''}]+n/2} & \text{otherwise.} \end{cases}$$

Theorem 2. Under the notation of Theorem 1, in order that

$$\left(\frac{\alpha \mid K}{A}\right)_{m} = 1$$

for every $\alpha \in O_k \setminus \{0\}$ and every ideal A of O_k prime to $m\alpha$, it is necessary and sufficient that the following two conditions hold:

- (i) either ord₂ $n = \text{ord}_2 m$ or $[K : k_{m''2^{\mu}}] \equiv 0 \mod 2$ or the field $k \cap P_{2^{\nu}}$ is real,
 - (ii) $[K:k_{m''}] \equiv 0 \mod n$.

COROLLARY. Let K be an algebraic number field. Assume that $\zeta_m \in K$. Let $a, b \in \mathbb{Z} \setminus \{0\}$ with (b, ma) = 1. Then

$$\left(\frac{\alpha \mid K}{b}\right)_m = 1$$

except the case when m = 2 and the field K is of an odd degree.

2. Preliminaries. First we shall prove five lemmas.

LEMMA 1. Let m be a positive integer and G be a subgroup of the multiplicative group of residue classes $\operatorname{mod} m$ prime to m, say $G = \{\overline{a}_1, \ldots, \overline{a}_t\}$, $a_j \in \mathbb{Z}$, $(a_j, m) = 1$. Put $l = (a_1 - 1, \ldots, a_t - 1, m)$ and $S = \sum_{j=1}^t a_j$. Let

 $2^{\nu} \| m \ (\nu \ge 0) \ and$

$$l' = \begin{cases} l & \text{if } l \not\equiv 2 \bmod 4 \text{ or } m \not\equiv 0 \bmod 4, \\ l/2 & \text{otherwise.} \end{cases}$$

Moreover, let m = k'k'', where (k', l') = 1 and k'' contains only prime factors dividing l'. Further, let $k' = 2^{\kappa}k'''$ $(\kappa \geq 0), 2 \nmid k''', ak' \equiv (k', l) \mod l$, (a, l) = 1. Then

$$S \equiv 0 \mod k'''$$
.

Proof. Let $p^r \parallel k'''$, p a prime, r > 0. Hence p > 2. Since k' and l' are relatively prime we have

$$(5) p \nmid l.$$

Let g be a primitive root mod p^r . Set $H = G_{m/p^r}$. The quotient group G/H is isomorphic to some subgroup of the multiplicative group of residue classes mod p^r . Hence $G/H = \{g^{ju}H : j = 0, 1, \dots, v-1\}$ where $uv = \varphi(p^r) = (p-1)p^{r-1}$.

We have

(6)
$$g^u \not\equiv 1 \bmod p.$$

Otherwise we would have $a_j \equiv 1 \mod p$ for every j and $p \mid l$, contrary to (5). By (6) and Euler's theorem,

$$S \equiv |H| \sum_{j=0}^{v-1} g^{ju} = |H| \frac{g^{\varphi(p^r)} - 1}{g^u - 1} \equiv 0 \bmod p^r.$$

Hence $S \equiv 0 \mod k'''$.

LEMMA 2. Let $l \equiv 2 \mod 4$ and $m \equiv 0 \mod 4$. Then

$$|G_{k'''}| \equiv |G_{k'''k''}| \mod 2, \quad |G_{k'}| \equiv 0 \mod 2.$$

Proof. We have $\kappa = \nu \geq 2$. According to the definition of l and by the Lemma of [2] (p. 218) the quotient group $G/G_{k'}$ is of order k''/l'. Since in this case $k'' \equiv 1 \mod 2$ we have

$$[G:G_{k'}] \equiv 1 \bmod 2.$$

Set $H = G_{k'''k''}$. We have $G_{k'''} = H \cap G_{k'}$ and $H/G_{k'''} = H/H \cap G_{k'} \cong HG_{k'}/G_{k'} \subseteq G/G_{k'}$. Hence by (7), $[H:G_{k'''}] \equiv 1 \mod 2$ and

(8)
$$|H| = [H : G_{k'''}]|G_{k'''}| \equiv |G_{k'''}| \mod 2.$$

The order of the quotient group G/H is a power of two. This power is not trivial. Otherwise we would have $a_j \equiv 1 \mod 2^{\nu}$ for each j and $l \equiv 0 \mod 4$, contrary to the assumption. Thus we have $|G| \equiv 0 \mod 2$. Further, $|G| = [G: G_{k'}]|G_{k'}|$ and by (7),

$$(9) |G_{k'}| \equiv 0 \bmod 2. \blacksquare$$

Lemma 3. We have

$$S \equiv \begin{cases} \frac{am}{l} |G_{k'}| \bmod k'' & \text{if } \operatorname{ord}_2 l = \operatorname{ord}_2 m \text{ or } |G_{k'''}| \equiv 0 \bmod 2 \\ & \text{or } a_j \equiv -1 \bmod 2^{\nu} \text{ for some } j, \\ \frac{am}{l} |G_{k'}| + \frac{m}{2} \bmod k'' & \text{otherwise.} \end{cases}$$

Proof. According to the definition of l and by the Lemma of [2] the quotient group $G/G_{k'}$ is isomorphic to the multiplicative group of residue classes mod k'' congruent to 1 mod l' and we have

$$G/G_{k'} = \{(ul'+1)G_{k'} : u = 0, 1, \dots, k''/l' - 1\}.$$

Hence

$$\begin{split} S &\equiv |G_{k'}| \sum_{u=0}^{k''/l'-1} (ul'+1) \\ &= \frac{k''}{l'} |G_{k'}| + A \bmod k'' \quad \text{with} \quad A = \frac{k''/l'-1}{2} |G_{k'}| k''. \end{split}$$

It is easy to see that $k''/l' \equiv am/l \mod k''$. We have $G_{k'''} \subseteq G_{k'}$. Hence if $\operatorname{ord}_2 l = \operatorname{ord}_2 m$ or $|G_{k'''}| \equiv 0 \mod 2$ then $A \equiv 0 \mod k''$. Assume that $a_j \equiv -1 \mod 2^{\nu}$ for some j and $\operatorname{ord}_2 l \neq \operatorname{ord}_2 m$. By the definition of l, $l \equiv 2 \mod 4$ and $m \equiv 0 \mod 4$. By Lemma 2, $A \equiv 0 \mod k''$.

Now assume that $\operatorname{ord}_2 l \neq \operatorname{ord}_2 m$ and $|G_{k'''}| \equiv 1 \mod 2$ and $a_j \not\equiv -1 \mod 2^{\nu}$ for each j. If $l \equiv 2 \mod 4$ and $m \equiv 0 \mod 4$ then by Lemma 2, $A \equiv 0 \equiv m/2 \mod k''$. If $l \not\equiv 2 \mod 4$ or $m \not\equiv 0 \mod 4$ then $G_{k'} = G_{k'''}$ and $A \equiv k''/2 \equiv m/2 \mod k''$.

Lemma 4. We have

$$S \equiv \begin{cases} \frac{am}{l} |G_{k'}| \bmod 2^{\kappa} & \text{if } \operatorname{ord}_2 l = \operatorname{ord}_2 m \text{ or } |G_{k'''}| \equiv 0 \bmod 2 \\ & \text{or } a_j \equiv -1 \bmod 2^{\nu} \text{ for } some j, \\ \frac{am}{l} |G_{k'}| + \frac{m}{2} \bmod 2^{\kappa} & \text{otherwise.} \end{cases}$$

Proof. If $l \not\equiv 2 \bmod 4$ or $m \not\equiv 0 \bmod 4$ then $\kappa = 0$ and the lemma holds trivially. So we may assume that $l \equiv 2 \bmod 4$ and $m \equiv 0 \bmod 4$. Then $\kappa = \nu \geq 2$. By Lemma 2, $\frac{m}{l} |G_{k'}| \equiv 0 \bmod 2^{\nu}$. Since $m/2 \equiv 2^{\nu-1} \bmod 2^{\nu}$ it is enough to prove that

$$S \equiv \begin{cases} 0 \bmod 2^{\nu} & \text{if } a_j \equiv -1 \bmod 2^{\nu} \text{ for some } j, \\ |G_{k'''}| 2^{\nu-1} \bmod 2^{\nu} & \text{otherwise.} \end{cases}$$

Put $H = G_{k''k'''}$.

Assume that $a_j \equiv -1 \mod 2^{\nu}$ for some j. We have $G/H = \{x_iH, -x_iH : i=1,\ldots,s=[G:H]/2\}, \ x_i \equiv 1 \mod 4$. Hence

$$S \equiv |H| \Big(\sum_{i=1}^s x_i - \sum_{i=1}^s x_i \Big) = 0 \bmod 2^{\nu}.$$

Assume now that $a_j \not\equiv -1 \mod 2^{\nu}$ for each j. Since $l \equiv 2 \mod 4$ and $m \equiv 0 \mod 4$, we have $a_i \equiv -1 \mod 4$ for some i. There exists a maximal ν_1 such that $2 \leq \nu_1 \leq \nu$ and

(10)
$$G/H = \{(u2^{\nu_1} + 1)H, \varepsilon(u2^{\nu_1} + 1)H : u = 0, 1, \dots, 2^{\nu - \nu_1} - 1\}$$

where $\varepsilon^2 \equiv 1 \mod 2^{\nu_1}, \varepsilon \equiv -1 \mod 4$.

We have $\nu_1 \geq 3$. Otherwise we would have $[G:H] = 2^{\nu-1}$ and $a_j \equiv -1 \mod 2^{\nu}$ for some j, contrary to the assumption. We have four possibilities for ε : $\varepsilon \equiv 1 \mod 2^{\nu_1}$, $\varepsilon \equiv 2^{\nu_1-1} + 1 \mod 2^{\nu_1}$, $\varepsilon \equiv 2^{\nu_1-1} - 1 \mod 2^{\nu_1}$, $\varepsilon \equiv -1 \mod 2^{\nu_1}$. The first two possibilities are excluded since $\nu_1 \geq 3$ and $\varepsilon \equiv -1 \mod 4$. Assume that $\varepsilon \equiv -1 \mod 2^{\nu_1}$. By (10),

$$G/H = \{(u2^{\nu_1} + 1)H, -(u2^{\nu_1} + 1)H : u = 0, 1, \dots, 2^{\nu - \nu_1} - 1\}.$$

This means that $a_j \equiv -1 \mod 2^{\nu}$ for some j, contrary to the assumption. Thus $\varepsilon \equiv 2^{\nu_1 - 1} - 1 \mod 2^{\nu_1}$. By (10) and Lemma 2,

$$\begin{split} S &\equiv |H|(1+\varepsilon) \sum_{u=0}^{2^{\nu-\nu_1}-1} (u2^{\nu_1}+1) \\ &= |H|(1+\varepsilon)2^{\nu-\nu_1} + |H| \frac{1+\varepsilon}{2} (2^{\nu-\nu_1}-1)2^{\nu} \\ &\equiv |H|(1+\varepsilon)2^{\nu-\nu_1} \equiv |H|2^{\nu-1} \equiv |G_{k'''}|2^{\nu-1} \bmod 2^{\nu}. \quad \blacksquare \end{split}$$

Lemma 5. We have

$$S \equiv \begin{cases} \frac{am}{l} |G_{k'}| \bmod m & \text{if } \operatorname{ord}_2 l = \operatorname{ord}_2 m \text{ or } |G_{k'''}| \equiv 0 \bmod 2 \\ & \operatorname{or } a_j \equiv -1 \bmod 2^{\nu} \text{ for } some j, \\ \frac{am}{l} |G_{k'}| + \frac{m}{2} \bmod m & \text{otherwise.} \end{cases}$$

Proof. We have $m=2^{\kappa}k''k'''$ and 2^{κ} , k'', k''' are pairwise relatively prime. Further, $m/l\equiv 0 \bmod k'''$ and $m/2\equiv 0 \bmod k'''$ for $m\equiv 0 \bmod 2$. The lemma follows immediately from Lemmas 1, 3 and 4.

Remark 1. Since $|G| = [G:G_{k'}]|G_{k'}| = \frac{k''}{l'}|G_{k'}|$, $\frac{m}{l}|G_{k'}|$ may be replaced by $k^{iv}|G|$, where

$$k^{\text{iv}} = \begin{cases} k' & \text{if } l \not\equiv 2 \bmod 4 \text{ or } m \not\equiv 0 \bmod 4, \\ k'/2 & \text{otherwise.} \end{cases}$$

Proposition. $S \equiv 0 \mod m$ if and only if the following two conditions hold:

- (i) either $\operatorname{ord}_2 l = \operatorname{ord}_2 m$ or $|G_{k'''}| \equiv 0 \mod 2$ or $a_j \equiv -1 \mod 2^{\nu}$ for some j,
 - (ii) $|G_{k'}| \equiv 0 \mod l$.

Proof. Sufficiency of (i) and (ii) follows immediately from Lemma 5. Assume that $S \equiv 0 \mod m$. We shall show that (i) and (ii) are satisfied. If

J. Wójcik

(i) does not hold then $m \equiv 0 \mod 4$ and we have

(11)
$$l \equiv 0 \mod 2, \quad a|G_{k'}| + l/2 \equiv 1 \mod 2.$$

Indeed, if $l \equiv 0 \mod 4$ then $\kappa = 0$, $a \equiv 1 \mod 2$, $|G_{k'}| \equiv 1 \mod 2$ and (11) follows. If $l \equiv 2 \mod 4$ then (11) follows from Lemma 2. By Lemma 5, $a|G_{k'}| + l/2 \equiv 0 \mod l$, contrary to (11). Thus (i) holds. By Lemma 5, $|G_{k'}| \equiv 0 \mod l$. Thus (ii) holds. \blacksquare

3. Proof of Theorem 1. Let $\alpha \in O_k \setminus \{0\}$ and \mathfrak{p} be a typical prime ideal of O_k prime to $m\alpha$. Since

$$\left(\frac{\alpha \mid K}{A}\right)_{m} = \left(\frac{\alpha \mid k_{m}}{A}\right)_{m}^{[K:k_{m}]}$$

for any ideal A of O_k prime to $m\alpha$ in virtue of the multiplicativity of the power residue symbol it is enough to prove that

$$(12) \quad \left(\frac{\alpha \mid k_m}{\mathfrak{p}}\right)_m = \begin{cases} \left(\frac{\alpha \mid k}{\mathfrak{p}}\right)_n^{b[k_m : k_{m''}]} & \text{if } \operatorname{ord}_2 n = \operatorname{ord}_2 m \\ & \text{or } [k_m : k_{m''2^{\mu}}] \equiv 0 \bmod 2 \\ & \text{or the field } k \cap P_{2^{\nu}} \text{ is real,} \\ \left(\frac{\alpha \mid k}{\mathfrak{p}}\right)_n^{b[k_m : k_{m''}] + n/2} & \text{otherwise.} \end{cases}$$

Then (3) holds.

Put $G = \operatorname{Gal}(k_m/k) = \operatorname{Gal}(P_m/k \cap P_m)$. Then G can be viewed as a subgroup of the multiplicative group of residue classes mod m. We have the following decomposition in k_m :

(13)
$$\mathfrak{p} = \prod_{i=1}^{g} P^{\sigma_{t_i}}$$

where $\sigma_{t_i}(\zeta_m) = \zeta_m^{t_i}$ for some t_i with $\bar{t}_i \in G$, and P is a prime ideal of O_{k_m} . We have

$$(14) N_m P = (N\mathfrak{p})^f$$

where f is the degree of the ideal P with respect to the field k. Then f is also the smallest positive integer such that $(N\mathfrak{p})^f \equiv 1 \mod m$. Further, $N_m P \equiv 1 \mod m$ and $N\mathfrak{p} \equiv 1 \mod n$.

Put $a_{ij}=t_i(N\mathfrak{p})^j$ $(i=1,\ldots,g;\ j=0,1,\ldots,f-1)$. It is known that $G=\{\overline{a}_{ij}\}_{i,j}$. Let $l,\ S,\ l',\ k',\ k'',\ k'',\ \kappa,\ a$ be as in Lemma 1. We have

(15)
$$S = \sum_{i,j} a_{ij} = \sum_{i=1}^{g} \sum_{j=0}^{f-1} t_i (N\mathfrak{p})^j = \frac{(N\mathfrak{p})^f - 1}{N\mathfrak{p} - 1} \sum_{i=1}^{g} t_i.$$

Further, $l = (\{a_{ij} - 1\}_{i,j}, m)$. By Galois theory, l = n. Hence

(16)
$$l' = n', \quad k' = m', \quad k'' = m'', \quad k''' = m''', \quad \kappa = \mu, \quad a \equiv b \bmod n.$$

By Lemma 5, $Sn/m \in \mathbb{Z}$ and

$$(17) \quad S\frac{n}{m} \equiv \begin{cases} b|G_{m'}| \bmod n & \text{if } \operatorname{ord}_2 n = \operatorname{ord}_2 m \\ & \text{or } |G_{m'''}| \equiv 0 \bmod 2 \\ & \text{or } a_{ij} \equiv -1 \bmod 2^{\nu} \text{ for some } i \text{ and } j, \\ b|G_{m'}| + \frac{n}{2} \bmod n & \text{otherwise.} \end{cases}$$

By (13)–(15) and Euler's criterion,

$$\left(\frac{\alpha \mid k_m}{\mathfrak{p}}\right)_m = \prod_{i=1}^g \left(\frac{\alpha \mid k_m}{P^{\sigma_{t_i}}}\right)_m = \prod_{i=1}^g \left(\frac{\alpha \mid k_m}{P}\right)_m^{\sigma_{t_i}} = \prod_{i=1}^g \left(\frac{\alpha \mid k_m}{P}\right)_m^{t_i}$$

$$= \left(\frac{\alpha \mid k_m}{P}\right)_m^{\sum_{i=1}^g t_i} \equiv \alpha^{\frac{(N\mathfrak{p})^f - 1}{m} \sum_{i=1}^g t_i}$$

$$= \alpha^{\frac{N\mathfrak{p} - 1}{n} S \frac{n}{m}} \equiv \left(\frac{\alpha \mid k_m}{\mathfrak{p}}\right)_n^{S \frac{n}{m}} \mod P.$$

Since P is prime to m, we obtain

(18)
$$\left(\frac{\alpha \mid k_m}{\mathfrak{p}}\right)_m = \left(\frac{\alpha \mid k}{\mathfrak{p}}\right)_n^{S\frac{n}{m}}.$$

By Galois theory, $|G_{m'}| = [k_m : k_{m''}]$, $|G_{m'''}| = [k_m : k_{m''2\mu}]$, the field $k \cap P_{2\nu}$ is real if and only if the group G contains a residue class mod m congruent to $-1 \mod 2^{\nu}$. Now (12) follows immediately from (18) and (17).

4. Proof of Theorem 2. If conditions (i) and (ii) are satisfied then (4) holds by Theorem 1. Assume that (4) holds. Let \mathfrak{p} be a prime ideal of O_k prime to m and α be a number in O_k such that

(19)
$$\left(\frac{\alpha \mid k}{\mathfrak{p}}\right)_n = \zeta_n.$$

We shall show that conditions (i) and (ii) are satisfied. If (i) is not satisfied then $m \equiv 0 \mod 4$ and

(20)
$$n \equiv 0 \mod 2, \quad b[K : k_{m''}] + n/2 \equiv 1 \mod 2.$$

Indeed, if $n \equiv 0 \mod 4$ then $\mu = 0$, $b \equiv 1 \mod 2$, $[K:k_{m''}] \equiv 1 \mod 2$ and (20) follows. If $n \equiv 2 \mod 4$ then by Lemma 2 and (16), $[K:k_{m''}] = [K:k_m]|G_{m'}| \equiv 0 \mod 2$ and (20) follows again.

By Theorem 1 with $A = \mathfrak{p}$, (19) and (20) we have $\left(\frac{\alpha|K}{\mathfrak{p}}\right)_m \neq 1$, contrary to the assumption. Thus (i) holds. By (4) for $A = \mathfrak{p}$, Theorem 1 and (19) we obtain (ii).

5. Proof of Corollary. Put $k = \mathbb{Q}$ in Theorem 2. The condition (i) is satisfied. Assume that $m \neq 2$ or the field K is of an even degree. By

358 J. Wójcik

Theorem 2 it is enough to prove that (ii) is satisfied. If $m \equiv 1 \mod 2$ then n=1 and obviously (ii) holds. If $m \equiv 0 \mod 2$ then n=2; m''=2 if $m \equiv 2 \mod 4$, m''=1 if $m \equiv 0 \mod 4$. Hence $k_{m''}=\mathbb{Q}$. If m>2 then $[K:\mathbb{Q}]=[K:P_m][P_m:\mathbb{Q}]=[K:P_m]\varphi(m)\equiv 0 \mod 2$. Thus (ii) holds. If m=2 then $[K:\mathbb{Q}]\equiv 0 \mod 2$. Thus (ii) holds again. \blacksquare

Remark 2. The Corollary may be proved without using Theorem 2. For this purpose it is enough to use the equality $\sum_{i=1}^{\varphi(m)} r_i = \frac{1}{2} m \varphi(m)$, where $r_1, \ldots, r_{\varphi(m)}$ are all residues mod m prime to m contained between 0 and m.

References

- [1] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Teil II: Reziprozitätsgesetz, Würzburg-Wien, 1965.
- [2] J. Wójcik, Powers of cyclotomic numbers, Comment. Math. 32 (1992), 213–223.

Received on 20.11.1992 and in revised form on 21.5.1993 (2339)