Some remarks about the power residue symbol

by
J. WÓJCIK

1. Introduction. Let K be an algebraic number field with $\zeta_{m} \in K$, $\zeta_{m}=e^{2 \pi i / m}$. Denote by O_{K} the ring of integers of K. If $\alpha \in O_{K} \backslash\{0\}$ and A is an ideal of O_{K} prime to $m \alpha$ then $\left(\frac{\alpha \mid K}{A}\right)_{m}$ denotes the m th power residue symbol. It is known that if a, b are rational integers different from zero and b is prime to $3 a$ or $2 a$ then $(a / b)_{3}=1$ or $(a / b)_{4}=1$ respectively.

On the other hand, H. Hasse gives in [1], p. 65, the following result: if k is an algebraic number field, $\zeta_{m} \in k, a, b \in \mathbb{Z} \backslash\{0\}$ and $(b, m a)=1$ then

$$
\left(\frac{a \mid k}{b}\right)_{m}=(\pm 1)^{g}, \quad \text { where } \quad g=\left[k: P_{m}\right], P_{m}=\mathbb{Q}\left(\zeta_{m}\right)
$$

It turns out that the above result can be refined. Namely, if the case $m=2$ and $[k: \mathbb{Q}]$ odd is excluded then we always have

$$
\begin{equation*}
\left(\frac{a \mid k}{b}\right)_{m}=1 . \tag{1}
\end{equation*}
$$

Let k, K be algebraic number fields such that $k \subseteq K$, and $\zeta_{m} \in K$. The main aim of the present paper is to give necessary and sufficient conditions for the equality

$$
\begin{equation*}
\left(\frac{\alpha \mid K}{A}\right)_{m}=1 \tag{2}
\end{equation*}
$$

to hold, where α is a number (different from zero) and A is an ideal of O_{k} prime to $m \alpha$.

It is known that the extension $K(\sqrt[m]{\alpha}) / K$ is the class field corresponding to the group of ideals A of O_{K} prime to $m \alpha$ and such that $\left(\frac{\alpha \mid K}{A}\right)_{m}=1$. (2) means that any ideal of O_{k} prime to $m \alpha$ treated as an ideal of O_{K} belongs to the principal class.

Notation. m denotes a positive integer. Let k be an algebraic number field. Put $k_{m}=k\left(\zeta_{m}\right)$ and let $N_{m}=N_{k_{m} / \mathbb{Q}}, N=N_{k / \mathbb{Q}}$ denote the absolute
norms in k_{m}, k respectively. For $a \in \mathbb{Z}, \bar{a}$ denotes the residue class $\bmod m$ containing a. Let G be any subgroup of the multiplicative group of residue classes $\bmod m$. Let $d \mid m$. Then $G_{d}=G_{d}(m)$ denotes the subgroup of those residue classes $\bmod m$ of G which are congruent to $1 \bmod m / d$.

We shall show
Theorem 1. Let k, K be algebraic number fields such that $k \subseteq K$ and $\zeta_{m} \in K$. Let n denote the number of roots of unity of degree m contained in k. Let $2^{\nu} \| m(\nu \geq 0)$ and

$$
n^{\prime}= \begin{cases}n & \text { if } n \not \equiv 2 \bmod 4 \text { or } m \not \equiv 0 \bmod 4, \\ n / 2 & \text { otherwise }\end{cases}
$$

Moreover, let $m=m^{\prime} m^{\prime \prime}$, where $\left(m^{\prime}, n^{\prime}\right)=1$ and $m^{\prime \prime}$ contains only prime factors dividing n^{\prime}. Further, let $m^{\prime}=2^{\mu} m^{\prime \prime \prime}(\mu \geq 0), 2 \nmid m^{\prime \prime \prime}$, bm \equiv $\left(m^{\prime}, n\right) \bmod n,(b, n)=1$. Finally, let $\alpha \in O_{k} \backslash\{0\}$, and A be an ideal of O_{k} prime to $m \alpha$. Then
(3) $\quad\left(\frac{\alpha \mid K}{A}\right)_{m}= \begin{cases}\left(\frac{\alpha \mid K}{A}\right)_{n}^{b\left[K: k_{m^{\prime \prime}}\right]} & \text { if } \operatorname{ord}_{2} n=\operatorname{ord}_{2} m \\ & \text { or }\left[K: k_{m^{\prime \prime}, 2 \mu}{ }^{\mu} \equiv 0 \bmod 2\right. \\ \left(\frac{\alpha \mid K}{A}\right)_{n}^{b\left[K: k_{m^{\prime \prime}}\right]+n / 2} & \text { or the field } k \cap P_{2^{\nu}} \text { is real, } \\ \text { otherwise. }\end{cases}$

Theorem 2. Under the notation of Theorem 1, in order that

$$
\begin{equation*}
\left(\frac{\alpha \mid K}{A}\right)_{m}=1 \tag{4}
\end{equation*}
$$

for every $\alpha \in O_{k} \backslash\{0\}$ and every ideal A of O_{k} prime to $m \alpha$, it is necessary and sufficient that the following two conditions hold:
(i) either $\operatorname{ord}_{2} n=\operatorname{ord}_{2} m$ or $\left[K: k_{m^{\prime \prime} 2^{\mu}}\right] \equiv 0 \bmod 2$ or the field $k \cap P_{2^{\nu}}$ is real,
(ii) $\left[K: k_{m^{\prime \prime}}\right] \equiv 0 \bmod n$.

Corollary. Let K be an algebraic number field. Assume that $\zeta_{m} \in K$. Let $a, b \in \mathbb{Z} \backslash\{0\}$ with $(b, m a)=1$. Then

$$
\left(\frac{\alpha \mid K}{b}\right)_{m}=1
$$

except the case when $m=2$ and the field K is of an odd degree.
2. Preliminaries. First we shall prove five lemmas.

Lemma 1. Let m be a positive integer and G be a subgroup of the multiplicative group of residue classes $\bmod m$ prime to m, say $G=\left\{\bar{a}_{1}, \ldots, \bar{a}_{t}\right\}$, $a_{j} \in \mathbb{Z},\left(a_{j}, m\right)=1$. Put $l=\left(a_{1}-1, \ldots, a_{t}-1, m\right)$ and $S=\sum_{j=1}^{t} a_{j}$. Let
$2^{\nu} \| m(\nu \geq 0)$ and

$$
l^{\prime}= \begin{cases}l & \text { if } l \not \equiv 2 \bmod 4 \text { or } m \not \equiv 0 \bmod 4 \\ l / 2 & \text { otherwise } .\end{cases}
$$

Moreover, let $m=k^{\prime} k^{\prime \prime}$, where $\left(k^{\prime}, l^{\prime}\right)=1$ and $k^{\prime \prime}$ contains only prime factors dividing l^{\prime}. Further, let $k^{\prime}=2^{\kappa} k^{\prime \prime \prime}(\kappa \geq 0), 2 \nmid k^{\prime \prime \prime}, a k^{\prime} \equiv\left(k^{\prime}, l\right) \bmod l$, $(a, l)=1$. Then

$$
S \equiv 0 \bmod k^{\prime \prime \prime}
$$

Proof. Let $p^{r} \| k^{\prime \prime \prime}, p$ a prime, $r>0$. Hence $p>2$. Since k^{\prime} and l^{\prime} are relatively prime we have

$$
\begin{equation*}
p \nmid l . \tag{5}
\end{equation*}
$$

Let g be a primitive root $\bmod p^{r}$. Set $H=G_{m / p^{r}}$. The quotient group G / H is isomorphic to some subgroup of the multiplicative group of residue classes $\bmod p^{r}$. Hence $G / H=\left\{g^{j u} H: j=0,1, \ldots, v-1\right\}$ where $u v=$ $\varphi\left(p^{r}\right)=(p-1) p^{r-1}$.

We have

$$
\begin{equation*}
g^{u} \not \equiv 1 \bmod p \tag{6}
\end{equation*}
$$

Otherwise we would have $a_{j} \equiv 1 \bmod p$ for every j and $p \mid l$, contrary to (5).
By (6) and Euler's theorem,

$$
S \equiv|H| \sum_{j=0}^{v-1} g^{j u}=|H| \frac{g^{\varphi\left(p^{r}\right)}-1}{g^{u}-1} \equiv 0 \bmod p^{r}
$$

Hence $S \equiv 0 \bmod k^{\prime \prime \prime}$.
Lemma 2. Let $l \equiv 2 \bmod 4$ and $m \equiv 0 \bmod 4$. Then

$$
\left|G_{k^{\prime \prime \prime}}\right| \equiv\left|G_{k^{\prime \prime \prime} k^{\prime \prime}}\right| \bmod 2, \quad\left|G_{k^{\prime}}\right| \equiv 0 \bmod 2
$$

Proof. We have $\kappa=\nu \geq 2$. According to the definition of l and by the Lemma of $[2]$ (p. 218) the quotient group $G / G_{k^{\prime}}$ is of order $k^{\prime \prime} / l^{\prime}$. Since in this case $k^{\prime \prime} \equiv 1 \bmod 2$ we have

$$
\begin{equation*}
\left[G: G_{k^{\prime}}\right] \equiv 1 \bmod 2 \tag{7}
\end{equation*}
$$

Set $H=G_{k^{\prime \prime \prime} k^{\prime \prime}}$. We have $G_{k^{\prime \prime \prime}}=H \cap G_{k^{\prime}}$ and $H / G_{k^{\prime \prime \prime}}=H / H \cap G_{k^{\prime}} \cong$ $H G_{k^{\prime}} / G_{k^{\prime}} \subseteq G / G_{k^{\prime}}$. Hence by (7), $\left[H: G_{k^{\prime \prime \prime}}\right] \equiv 1 \bmod 2$ and

$$
\begin{equation*}
|H|=\left[H: G_{k^{\prime \prime \prime}}\right]\left|G_{k^{\prime \prime \prime}}\right| \equiv\left|G_{k^{\prime \prime \prime}}\right| \bmod 2 \tag{8}
\end{equation*}
$$

The order of the quotient group G / H is a power of two. This power is not trivial. Otherwise we would have $a_{j} \equiv 1 \bmod 2^{\nu}$ for each j and $l \equiv$ $0 \bmod 4$, contrary to the assumption. Thus we have $|G| \equiv 0 \bmod 2$. Further, $|G|=\left[G: G_{k^{\prime}}\right]\left|G_{k^{\prime}}\right|$ and by (7),

$$
\begin{equation*}
\left|G_{k^{\prime}}\right| \equiv 0 \bmod 2 \tag{9}
\end{equation*}
$$

Lemma 3. We have

$$
S \equiv \begin{cases}\frac{a m}{l}\left|G_{k^{\prime}}\right| \bmod k^{\prime \prime} & \text { if } \operatorname{ord}_{2} l=\operatorname{ord}_{2} m \text { or }\left|G_{k^{\prime \prime \prime}}\right| \equiv 0 \bmod 2 \\ \frac{a m}{l}\left|G_{k^{\prime}}\right|+\frac{m}{2} \bmod k^{\prime \prime} & \text { or } a_{j} \equiv-1 \bmod 2^{\nu} \text { for some } j\end{cases}
$$

Proof. According to the definition of l and by the Lemma of [2] the quotient group $G / G_{k^{\prime}}$ is isomorphic to the multiplicative group of residue classes $\bmod k^{\prime \prime}$ congruent to $1 \bmod l^{\prime}$ and we have

$$
G / G_{k^{\prime}}=\left\{\left(u l^{\prime}+1\right) G_{k^{\prime}}: u=0,1, \ldots, k^{\prime \prime} / l^{\prime}-1\right\}
$$

Hence

$$
\begin{aligned}
S & \equiv\left|G_{k^{\prime}}\right| \sum_{u=0}^{k^{\prime \prime} / l^{\prime}-1}\left(u l^{\prime}+1\right) \\
& =\frac{k^{\prime \prime}}{l^{\prime}}\left|G_{k^{\prime}}\right|+A \bmod k^{\prime \prime} \quad \text { with } \quad A=\frac{k^{\prime \prime} / l^{\prime}-1}{2}\left|G_{k^{\prime}}\right| k^{\prime \prime}
\end{aligned}
$$

It is easy to see that $k^{\prime \prime} / l^{\prime} \equiv a m / l \bmod k^{\prime \prime}$. We have $G_{k^{\prime \prime \prime}} \subseteq G_{k^{\prime}}$. Hence if $\operatorname{ord}_{2} l=\operatorname{ord}_{2} m$ or $\left|G_{k^{\prime \prime \prime}}\right| \equiv 0 \bmod 2$ then $A \equiv 0 \bmod k^{\prime \prime}$. Assume that $a_{j} \equiv-1 \bmod 2^{\nu}$ for some j and $\operatorname{ord}_{2} l \neq \operatorname{ord}_{2} m$. By the definition of l, $l \equiv 2 \bmod 4$ and $m \equiv 0 \bmod 4$. By Lemma $2, A \equiv 0 \bmod k^{\prime \prime}$.

Now assume that $\operatorname{ord}_{2} l \neq \operatorname{ord}_{2} m$ and $\left|G_{k^{\prime \prime \prime}}\right| \equiv 1 \bmod 2$ and $a_{j} \not \equiv$ $-1 \bmod 2^{\nu}$ for each j. If $l \equiv 2 \bmod 4$ and $m \equiv 0 \bmod 4$ then by Lemma 2, $A \equiv 0 \equiv m / 2 \bmod k^{\prime \prime}$. If $l \not \equiv 2 \bmod 4$ or $m \not \equiv 0 \bmod 4$ then $G_{k^{\prime}}=G_{k^{\prime \prime \prime}}$ and $A \equiv k^{\prime \prime} / 2 \equiv m / 2 \bmod k^{\prime \prime}$.

Lemma 4. We have

$$
S \equiv \begin{cases}\frac{a m}{l}\left|G_{k^{\prime}}\right| \bmod 2^{\kappa} & \text { if } \operatorname{ord}_{2} l=\operatorname{ord}_{2} m \text { or }\left|G_{k^{\prime \prime \prime}}\right| \equiv 0 \bmod 2 \\ \frac{a m}{l}\left|G_{k^{\prime}}\right|+\frac{m}{2} \bmod 2^{\kappa} & \text { or } a_{j} \equiv-1 \bmod 2^{\nu} \text { for some } j\end{cases}
$$

Proof. If $l \not \equiv 2 \bmod 4$ or $m \not \equiv 0 \bmod 4$ then $\kappa=0$ and the lemma holds trivially. So we may assume that $l \equiv 2 \bmod 4$ and $m \equiv 0 \bmod 4$. Then $\kappa=\nu \geq 2$. By Lemma $2, \frac{m}{l}\left|G_{k^{\prime}}\right| \equiv 0 \bmod 2^{\nu}$. Since $m / 2 \equiv 2^{\nu-1} \bmod 2^{\nu}$ it is enough to prove that

$$
S \equiv \begin{cases}0 \bmod 2^{\nu} & \text { if } a_{j} \equiv-1 \bmod 2^{\nu} \text { for some } j \\ \left|G_{k^{\prime \prime \prime}}\right| 2^{\nu-1} \bmod 2^{\nu} & \text { otherwise }\end{cases}
$$

Put $H=G_{k^{\prime \prime} k^{\prime \prime \prime}}$.
Assume that $a_{j} \equiv-1 \bmod 2^{\nu}$ for some j. We have $G / H=\left\{x_{i} H,-x_{i} H\right.$: $i=1, \ldots, s=[G: H] / 2\}, x_{i} \equiv 1 \bmod 4$. Hence

$$
S \equiv|H|\left(\sum_{i=1}^{s} x_{i}-\sum_{i=1}^{s} x_{i}\right)=0 \bmod 2^{\nu}
$$

Assume now that $a_{j} \not \equiv-1 \bmod 2^{\nu}$ for each j. Since $l \equiv 2 \bmod 4$ and $m \equiv$ $0 \bmod 4$, we have $a_{i} \equiv-1 \bmod 4$ for some i. There exists a maximal ν_{1} such that $2 \leq \nu_{1} \leq \nu$ and

$$
\begin{equation*}
G / H=\left\{\left(u 2^{\nu_{1}}+1\right) H, \varepsilon\left(u 2^{\nu_{1}}+1\right) H: u=0,1, \ldots, 2^{\nu-\nu_{1}}-1\right\} \tag{10}
\end{equation*}
$$

where $\varepsilon^{2} \equiv 1 \bmod 2^{\nu_{1}}, \varepsilon \equiv-1 \bmod 4$.
We have $\nu_{1} \geq 3$. Otherwise we would have $[G: H]=2^{\nu-1}$ and $a_{j} \equiv$ $-1 \bmod 2^{\nu}$ for some j, contrary to the assumption. We have four possibilities for $\varepsilon: \varepsilon \equiv 1 \bmod 2^{\nu_{1}}, \varepsilon \equiv 2^{\nu_{1}-1}+1 \bmod 2^{\nu_{1}}, \varepsilon \equiv 2^{\nu_{1}-1}-1 \bmod 2^{\nu_{1}}, \varepsilon \equiv$ $-1 \bmod 2^{\nu_{1}}$. The first two possibilities are excluded since $\nu_{1} \geq 3$ and $\varepsilon \equiv$ $-1 \bmod 4$. Assume that $\varepsilon \equiv-1 \bmod 2^{\nu_{1}}$. By (10),

$$
G / H=\left\{\left(u 2^{\nu_{1}}+1\right) H,-\left(u 2^{\nu_{1}}+1\right) H: u=0,1, \ldots, 2^{\nu-\nu_{1}}-1\right\} .
$$

This means that $a_{j} \equiv-1 \bmod 2^{\nu}$ for some j, contrary to the assumption. Thus $\varepsilon \equiv 2^{\nu_{1}-1}-1 \bmod 2^{\nu_{1}}$. By (10) and Lemma 2,

$$
\begin{aligned}
S & \equiv|H|(1+\varepsilon) \sum_{u=0}^{2^{\nu-\nu_{1}}-1}\left(u 2^{\nu_{1}}+1\right) \\
& =|H|(1+\varepsilon) 2^{\nu-\nu_{1}}+|H| \frac{1+\varepsilon}{2}\left(2^{\nu-\nu_{1}}-1\right) 2^{\nu} \\
& \equiv|H|(1+\varepsilon) 2^{\nu-\nu_{1}} \equiv|H| 2^{\nu-1} \equiv\left|G_{k^{\prime \prime \prime}}\right| 2^{\nu-1} \bmod 2^{\nu}
\end{aligned}
$$

Lemma 5. We have
$S \equiv \begin{cases}\frac{a m}{l}\left|G_{k^{\prime}}\right| \bmod m & \text { if } \operatorname{ord}_{2} l=\operatorname{ord}_{2} m \text { or }\left|G_{k^{\prime \prime \prime}}\right| \equiv 0 \bmod 2 \\ \frac{a m}{l}\left|G_{k^{\prime}}\right|+\frac{m}{2} \bmod m & \text { or } a_{j} \equiv-1 \bmod 2^{\nu} \text { forwise. }\end{cases}$
Proof. We have $m=2^{\kappa} k^{\prime \prime} k^{\prime \prime \prime}$ and $2^{\kappa}, k^{\prime \prime}, k^{\prime \prime \prime}$ are pairwise relatively prime. Further, $m / l \equiv 0 \bmod k^{\prime \prime \prime}$ and $m / 2 \equiv 0 \bmod k^{\prime \prime \prime}$ for $m \equiv 0 \bmod 2$. The lemma follows immediately from Lemmas 1,3 and 4 .

Remark 1. Since $|G|=\left[G: G_{k^{\prime}}\left|G_{k^{\prime}}\right|=\frac{k^{\prime \prime}}{l^{\prime}}\left|G_{k^{\prime}}\right|, \frac{m}{l}\left|G_{k^{\prime}}\right|\right.$ may be replaced by $k^{\mathrm{iv}}|G|$, where

$$
k^{\mathrm{iv}}= \begin{cases}k^{\prime} & \text { if } l \not \equiv 2 \bmod 4 \text { or } m \not \equiv 0 \bmod 4, \\ k^{\prime} / 2 & \text { otherwise }\end{cases}
$$

Proposition. $S \equiv 0 \bmod m$ if and only if the following two conditions hold:
(i) either $\operatorname{ord}_{2} l=\operatorname{ord}_{2} m$ or $\left|G_{k^{\prime \prime \prime}}\right| \equiv 0 \bmod 2$ or $a_{j} \equiv-1 \bmod 2^{\nu}$ for some j,
(ii) $\left|G_{k^{\prime}}\right| \equiv 0 \bmod l$.

Proof. Sufficiency of (i) and (ii) follows immediately from Lemma 5. Assume that $S \equiv 0 \bmod m$. We shall show that (i) and (ii) are satisfied. If
(i) does not hold then $m \equiv 0 \bmod 4$ and we have

$$
\begin{equation*}
l \equiv 0 \bmod 2, \quad a\left|G_{k^{\prime}}\right|+l / 2 \equiv 1 \bmod 2 . \tag{11}
\end{equation*}
$$

Indeed, if $l \equiv 0 \bmod 4$ then $\kappa=0, a \equiv 1 \bmod 2,\left|G_{k^{\prime}}\right| \equiv 1 \bmod 2$ and (11) follows. If $l \equiv 2 \bmod 4$ then (11) follows from Lemma 2. By Lemma 5, $a\left|G_{k^{\prime}}\right|+l / 2 \equiv 0 \bmod l$, contrary to (11). Thus (i) holds. By Lemma 5, $\left|G_{k^{\prime}}\right| \equiv 0 \bmod l$. Thus (ii) holds.
3. Proof of Theorem 1. Let $\alpha \in O_{k} \backslash\{0\}$ and \mathfrak{p} be a typical prime ideal of O_{k} prime to $m \alpha$. Since

$$
\left(\frac{\alpha \mid K}{A}\right)_{m}=\left(\frac{\alpha \mid k_{m}}{A}\right)_{m}^{\left[K: k_{m}\right]}
$$

for any ideal A of O_{k} prime to $m \alpha$ in virtue of the multiplicativity of the power residue symbol it is enough to prove that

$$
\left(\frac{\alpha \mid k_{m}}{\mathfrak{p}}\right)_{m}= \begin{cases}\left(\frac{\alpha \mid k}{\mathfrak{p}}\right)_{n}^{b\left[k_{m}: k_{m^{\prime \prime}}\right]} & \text { if ord } \operatorname{ord}_{2} n=\operatorname{ord}_{2} m \tag{12}\\ & \text { or }\left[k_{m}: k_{m^{\prime \prime} 2 \mu}\right] \equiv 0 \bmod 2 \\ \left(\frac{\alpha \mid k}{\mathfrak{p}}\right)_{n}^{b\left[k_{m}: k_{m^{\prime \prime}}\right]+n / 2} & \text { or the field } k \cap P_{2^{\nu}} \text { is real, } \\ \text { otherwise. }\end{cases}
$$

Then (3) holds.
Put $G=\operatorname{Gal}\left(k_{m} / k\right)=\operatorname{Gal}\left(P_{m} / k \cap P_{m}\right)$. Then G can be viewed as a subgroup of the multiplicative group of residue classes $\bmod m$. We have the following decomposition in k_{m} :

$$
\begin{equation*}
\mathfrak{p}=\prod_{i=1}^{g} P^{\sigma_{t_{i}}} \tag{13}
\end{equation*}
$$

where $\sigma_{t_{i}}\left(\zeta_{m}\right)=\zeta_{m}^{t_{i}}$ for some t_{i} with $\bar{t}_{i} \in G$, and P is a prime ideal of $O_{k_{m}}$.
We have

$$
\begin{equation*}
N_{m} P=(N \mathfrak{p})^{f} \tag{14}
\end{equation*}
$$

where f is the degree of the ideal P with respect to the field k. Then f is also the smallest positive integer such that $(N \mathfrak{p})^{f} \equiv 1 \bmod m$. Further, $N_{m} P \equiv 1 \bmod m$ and $N \mathfrak{p} \equiv 1 \bmod n$.

Put $a_{i j}=t_{i}(N \mathfrak{p})^{j}(i=1, \ldots, g ; j=0,1, \ldots, f-1)$. It is known that $G=\left\{\bar{a}_{i j}\right\}_{i, j}$. Let $l, S, l^{\prime}, k^{\prime}, k^{\prime \prime}, k^{\prime \prime \prime}, \kappa, a$ be as in Lemma 1. We have

$$
\begin{equation*}
S=\sum_{i, j} a_{i j}=\sum_{i=1}^{g} \sum_{j=0}^{f-1} t_{i}(N \mathfrak{p})^{j}=\frac{(N \mathfrak{p})^{f}-1}{N \mathfrak{p}-1} \sum_{i=1}^{g} t_{i} \tag{15}
\end{equation*}
$$

Further, $l=\left(\left\{a_{i j}-1\right\}_{i, j}, m\right)$. By Galois theory, $l=n$. Hence
(16) $l^{\prime}=n^{\prime}, \quad k^{\prime}=m^{\prime}, \quad k^{\prime \prime}=m^{\prime \prime}, \quad k^{\prime \prime \prime}=m^{\prime \prime \prime}, \quad \kappa=\mu, \quad a \equiv b \bmod n$.

By Lemma $5, S n / m \in \mathbb{Z}$ and

$$
S \frac{n}{m} \equiv \begin{cases}b\left|G_{m^{\prime}}\right| \bmod n & \text { if } \operatorname{ord}_{2} n=\operatorname{ord}_{2} m \tag{17}\\ & \text { or }\left|G_{m^{\prime \prime \prime}}\right| \equiv 0 \bmod 2 \\ & \text { or } a_{i j} \equiv-1 \bmod 2^{\nu} \text { for some } i \text { and } j \\ b\left|G_{m^{\prime}}\right|+\frac{n}{2} \bmod n & \text { otherwise. }\end{cases}
$$

By (13)-(15) and Euler's criterion,

$$
\begin{aligned}
\left(\frac{\alpha \mid k_{m}}{\mathfrak{p}}\right)_{m} & =\prod_{i=1}^{g}\left(\frac{\alpha \mid k_{m}}{P^{\sigma_{t_{i}}}}\right)_{m}=\prod_{i=1}^{g}\left(\frac{\alpha \mid k_{m}}{P}\right)_{m}^{\sigma_{t_{i}}}=\prod_{i=1}^{g}\left(\frac{\alpha \mid k_{m}}{P}\right)_{m}^{t_{i}} \\
& =\left(\frac{\alpha \mid k_{m}}{P}\right)_{m}^{\Sigma_{i=1}^{g} t_{i}} \equiv \alpha^{\frac{(N \mathfrak{p}) f-1}{m} \Sigma_{i=1}^{g} t_{i}} \\
& =\alpha^{\frac{N \mathfrak{p}-1}{n} S \frac{n}{m}} \equiv\left(\frac{\alpha \mid k_{m}}{\mathfrak{p}}\right)_{n}^{S \frac{n}{m}} \bmod P .
\end{aligned}
$$

Since P is prime to m, we obtain

$$
\begin{equation*}
\left(\frac{\alpha \mid k_{m}}{\mathfrak{p}}\right)_{m}=\left(\frac{\alpha \mid k}{\mathfrak{p}}\right)_{n}^{S \frac{n}{m}} \tag{18}
\end{equation*}
$$

By Galois theory, $\left|G_{m^{\prime}}\right|=\left[k_{m}: k_{m^{\prime \prime}}\right],\left|G_{m^{\prime \prime \prime}}\right|=\left[k_{m}: k_{m^{\prime \prime} 2^{\mu}}\right]$, the field $k \cap P_{2^{\nu}}$ is real if and only if the group G contains a residue class $\bmod m$ congruent to $-1 \bmod 2^{\nu}$. Now (12) follows immediately from (18) and (17).
4. Proof of Theorem 2. If conditions (i) and (ii) are satisfied then (4) holds by Theorem 1. Assume that (4) holds. Let \mathfrak{p} be a prime ideal of O_{k} prime to m and α be a number in O_{k} such that

$$
\begin{equation*}
\left(\frac{\alpha \mid k}{\mathfrak{p}}\right)_{n}=\zeta_{n} \tag{19}
\end{equation*}
$$

We shall show that conditions (i) and (ii) are satisfied. If (i) is not satisfied then $m \equiv 0 \bmod 4$ and

$$
\begin{equation*}
n \equiv 0 \bmod 2, \quad b\left[K: k_{m^{\prime \prime}}\right]+n / 2 \equiv 1 \bmod 2 \tag{20}
\end{equation*}
$$

Indeed, if $n \equiv 0 \bmod 4$ then $\mu=0, b \equiv 1 \bmod 2,\left[K: k_{m^{\prime \prime}}\right] \equiv 1 \bmod 2$ and (20) follows. If $n \equiv 2 \bmod 4$ then by Lemma 2 and $(16),\left[K: k_{m^{\prime \prime}}\right]=$ $\left[K: k_{m}\right]\left|G_{m^{\prime}}\right| \equiv 0 \bmod 2$ and (20) follows again.

By Theorem 1 with $A=\mathfrak{p}$, (19) and (20) we have $\left(\frac{\alpha \mid K}{\mathfrak{p}}\right)_{m} \neq 1$, contrary to the assumption. Thus (i) holds. By (4) for $A=\mathfrak{p}$, Theorem 1 and (19) we obtain (ii).
5. Proof of Corollary. Put $k=\mathbb{Q}$ in Theorem 2. The condition (i) is satisfied. Assume that $m \neq 2$ or the field K is of an even degree. By

Theorem 2 it is enough to prove that (ii) is satisfied. If $m \equiv 1 \bmod 2$ then $n=1$ and obviously (ii) holds. If $m \equiv 0 \bmod 2$ then $n=2 ; m^{\prime \prime}=2$ if $m \equiv 2 \bmod 4, m^{\prime \prime}=1$ if $m \equiv 0 \bmod 4$. Hence $k_{m^{\prime \prime}}=\mathbb{Q}$. If $m>2$ then $[K: \mathbb{Q}]=\left[K: P_{m}\right]\left[P_{m}: \mathbb{Q}\right]=\left[K: P_{m}\right] \varphi(m) \equiv 0 \bmod 2$. Thus (ii) holds. If $m=2$ then $[K: \mathbb{Q}] \equiv 0 \bmod 2$. Thus (ii) holds again.

Remark 2. The Corollary may be proved without using Theorem 2. For this purpose it is enough to use the equality $\sum_{i=1}^{\varphi(m)} r_{i}=\frac{1}{2} m \varphi(m)$, where $r_{1}, \ldots, r_{\varphi(m)}$ are all residues mod m prime to m contained between 0 and m.

References

[1] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Teil II: Reziprozitätsgesetz, Würzburg-Wien, 1965.
[2] J. Wójcik, Powers of cyclotomic numbers, Comment. Math. 32 (1992), 213-223.

