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Some remarks about the power residue symbol

by

J. Wójcik

1. Introduction. Let K be an algebraic number field with ζm ∈ K,
ζm = e2πi/m. Denote by OK the ring of integers of K. If α ∈ OK \ {0}
and A is an ideal of OK prime to mα then

(α|K
A

)
m

denotes the mth power
residue symbol. It is known that if a, b are rational integers different from
zero and b is prime to 3a or 2a then (a/b)3 = 1 or (a/b)4 = 1 respectively.

On the other hand, H. Hasse gives in [1], p. 65, the following result: if k
is an algebraic number field, ζm ∈ k, a, b ∈ Z \ {0} and (b,ma) = 1 then

(
a | k
b

)

m

= (±1)g, where g = [k : Pm], Pm = Q(ζm).

It turns out that the above result can be refined. Namely, if the case
m = 2 and [k : Q] odd is excluded then we always have

(1)
(
a | k
b

)

m

= 1.

Let k,K be algebraic number fields such that k ⊆ K, and ζm ∈ K. The
main aim of the present paper is to give necessary and sufficient conditions
for the equality

(2)
(
α |K
A

)

m

= 1

to hold, where α is a number (different from zero) and A is an ideal of Ok
prime to mα.

It is known that the extension K( m
√
α)/K is the class field corresponding

to the group of ideals A of OK prime to mα and such that
(α|K
A

)
m

= 1.
(2) means that any ideal of Ok prime to mα treated as an ideal of OK
belongs to the principal class.

Notation. m denotes a positive integer. Let k be an algebraic number
field. Put km = k(ζm) and let Nm = Nkm/Q, N = Nk/Q denote the absolute
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norms in km, k respectively. For a ∈ Z, a denotes the residue class modm
containing a. Let G be any subgroup of the multiplicative group of residue
classes modm. Let d |m. Then Gd = Gd(m) denotes the subgroup of those
residue classes modm of G which are congruent to 1 mod m/d.

We shall show

Theorem 1. Let k, K be algebraic number fields such that k ⊆ K and
ζm ∈ K. Let n denote the number of roots of unity of degree m contained
in k. Let 2ν ‖m (ν ≥ 0) and

n′ =
{
n if n 6≡ 2 mod 4 or m 6≡ 0 mod 4,
n/2 otherwise.

Moreover , let m = m′m′′, where (m′, n′) = 1 and m′′ contains only prime
factors dividing n′. Further , let m′ = 2µm′′′ (µ ≥ 0), 2 -m′′′, bm′ ≡
(m′, n) mod n, (b, n) = 1. Finally , let α ∈ Ok \ {0}, and A be an ideal
of Ok prime to mα. Then

(3)
(
α |K
A

)

m

=





(α|K
A

)b[K:km′′ ]
n

if ord2 n = ord2m
or [K : km′′2µ ] ≡ 0 mod 2
or the field k ∩ P2ν is real,(α|K

A

)b[K:km′′ ]+n/2
n

otherwise.

Theorem 2. Under the notation of Theorem 1, in order that

(4)
(
α |K
A

)

m

= 1

for every α ∈ Ok \ {0} and every ideal A of Ok prime to mα, it is necessary
and sufficient that the following two conditions hold :

(i) either ord2 n = ord2m or [K : km′′2µ ] ≡ 0 mod 2 or the field k∩P2ν

is real ,
(ii) [K : km′′ ] ≡ 0 mod n.

Corollary. Let K be an algebraic number field. Assume that ζm ∈ K.
Let a, b ∈ Z \ {0} with (b,ma) = 1. Then

(
α |K
b

)

m

= 1

except the case when m = 2 and the field K is of an odd degree.

2. Preliminaries. First we shall prove five lemmas.

Lemma 1. Let m be a positive integer and G be a subgroup of the multi-
plicative group of residue classes modm prime to m, say G = {a1, . . . , at},
aj ∈ Z, (aj ,m) = 1. Put l = (a1 − 1, . . . , at − 1,m) and S =

∑t
j=1 aj. Let
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2ν ‖m (ν ≥ 0) and

l′ =
{
l if l 6≡ 2 mod 4 or m 6≡ 0 mod 4,
l/2 otherwise.

Moreover , let m = k′k′′, where (k′, l′) = 1 and k′′ contains only prime
factors dividing l′. Further , let k′ = 2κk′′′ (κ ≥ 0), 2 - k′′′, ak′ ≡ (k′, l) mod l,
(a, l) = 1. Then

S ≡ 0 mod k′′′.
P r o o f. Let pr ‖ k′′′, p a prime, r > 0. Hence p > 2. Since k′ and l′ are

relatively prime we have

(5) p - l.
Let g be a primitive root mod pr. Set H = Gm/pr . The quotient group

G/H is isomorphic to some subgroup of the multiplicative group of residue
classes mod pr. Hence G/H = {gjuH : j = 0, 1, . . . , v − 1} where uv =
ϕ(pr) = (p− 1)pr−1.

We have

(6) gu 6≡ 1 mod p.

Otherwise we would have aj ≡ 1 mod p for every j and p | l, contrary to (5).
By (6) and Euler’s theorem,

S ≡ |H|
v−1∑

j=0

gju = |H|g
ϕ(pr) − 1
gu − 1

≡ 0 mod pr.

Hence S ≡ 0 mod k′′′.

Lemma 2. Let l ≡ 2 mod 4 and m ≡ 0 mod 4. Then

|Gk′′′ | ≡ |Gk′′′k′′ | mod 2, |Gk′ | ≡ 0 mod 2.

P r o o f. We have κ = ν ≥ 2. According to the definition of l and by the
Lemma of [2] (p. 218) the quotient group G/Gk′ is of order k′′/l′. Since in
this case k′′ ≡ 1 mod 2 we have

(7) [G : Gk′ ] ≡ 1 mod 2.

Set H = Gk′′′k′′ . We have Gk′′′ = H ∩ Gk′ and H/Gk′′′ = H/H ∩ Gk′ ∼=
HGk′/Gk′ ⊆ G/Gk′ . Hence by (7), [H : Gk′′′ ] ≡ 1 mod 2 and

(8) |H| = [H : Gk′′′ ]|Gk′′′ | ≡ |Gk′′′ | mod 2.

The order of the quotient group G/H is a power of two. This power is
not trivial. Otherwise we would have aj ≡ 1 mod 2ν for each j and l ≡
0 mod 4, contrary to the assumption. Thus we have |G| ≡ 0 mod 2. Further,
|G| = [G : Gk′ ]|Gk′ | and by (7),

(9) |Gk′ | ≡ 0 mod 2.
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Lemma 3. We have

S ≡




am
l |Gk′ | mod k′′ if ord2 l = ord2m or |Gk′′′ | ≡ 0 mod 2

or aj ≡ −1 mod 2ν for some j,
am
l |Gk′ |+ m

2 mod k′′ otherwise.

P r o o f. According to the definition of l and by the Lemma of [2] the
quotient group G/Gk′ is isomorphic to the multiplicative group of residue
classes mod k′′ congruent to 1 mod l′ and we have

G/Gk′ = {(ul′ + 1)Gk′ : u = 0, 1, . . . , k′′/l′ − 1}.
Hence

S ≡ |Gk′ |
k′′/l′−1∑
u=0

(ul′ + 1)

=
k′′

l′
|Gk′ |+A mod k′′ with A =

k′′/l′ − 1
2

|Gk′ |k′′.
It is easy to see that k′′/l′ ≡ am/l mod k′′. We have Gk′′′ ⊆ Gk′ . Hence
if ord2 l = ord2m or |Gk′′′ | ≡ 0 mod 2 then A ≡ 0 mod k′′. Assume that
aj ≡ −1 mod 2ν for some j and ord2 l 6= ord2m. By the definition of l,
l ≡ 2 mod 4 and m ≡ 0 mod 4. By Lemma 2, A ≡ 0 mod k′′.

Now assume that ord2 l 6= ord2m and |Gk′′′ | ≡ 1 mod 2 and aj 6≡
−1 mod 2ν for each j. If l ≡ 2 mod 4 and m ≡ 0 mod 4 then by Lemma 2,
A ≡ 0 ≡ m/2 mod k′′. If l 6≡ 2 mod 4 or m 6≡ 0 mod 4 then Gk′ = Gk′′′ and
A ≡ k′′/2 ≡ m/2 mod k′′.

Lemma 4. We have

S ≡




am
l |Gk′ | mod 2κ if ord2 l = ord2m or |Gk′′′ | ≡ 0 mod 2

or aj ≡ −1 mod 2ν for some j,
am
l |Gk′ |+ m

2 mod 2κ otherwise.

P r o o f. If l 6≡ 2 mod 4 or m 6≡ 0 mod 4 then κ = 0 and the lemma
holds trivially. So we may assume that l ≡ 2 mod 4 and m ≡ 0 mod 4. Then
κ = ν ≥ 2. By Lemma 2, m

l |Gk′ | ≡ 0 mod 2ν . Since m/2 ≡ 2ν−1 mod 2ν it
is enough to prove that

S ≡
{

0 mod 2ν if aj ≡ −1 mod 2ν for some j,
|Gk′′′ |2ν−1 mod 2ν otherwise.

Put H = Gk′′k′′′ .
Assume that aj ≡ −1 mod 2ν for some j. We have G/H = {xiH,−xiH :

i = 1, . . . , s = [G : H]/2}, xi ≡ 1 mod 4. Hence

S ≡ |H|
( s∑

i=1

xi −
s∑

i=1

xi

)
= 0 mod 2ν .
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Assume now that aj 6≡ −1 mod 2ν for each j. Since l ≡ 2 mod 4 and m ≡
0 mod 4, we have ai ≡ −1 mod 4 for some i. There exists a maximal ν1 such
that 2 ≤ ν1 ≤ ν and

(10) G/H = {(u2ν1 + 1)H, ε(u2ν1 + 1)H : u = 0, 1, . . . , 2ν−ν1 − 1}
where ε2 ≡ 1 mod 2ν1 , ε ≡ −1 mod 4.

We have ν1 ≥ 3. Otherwise we would have [G : H] = 2ν−1 and aj ≡
−1 mod 2ν for some j, contrary to the assumption. We have four possibilities
for ε: ε ≡ 1 mod 2ν1 , ε ≡ 2ν1−1 + 1 mod 2ν1 , ε ≡ 2ν1−1 − 1 mod 2ν1 , ε ≡
−1 mod 2ν1 . The first two possibilities are excluded since ν1 ≥ 3 and ε ≡
−1 mod 4. Assume that ε ≡ −1 mod 2ν1 . By (10),

G/H = {(u2ν1 + 1)H,−(u2ν1 + 1)H : u = 0, 1, . . . , 2ν−ν1 − 1}.
This means that aj ≡ −1 mod 2ν for some j, contrary to the assumption.
Thus ε ≡ 2ν1−1 − 1 mod 2ν1 . By (10) and Lemma 2,

S ≡ |H|(1 + ε)
2ν−ν1−1∑
u=0

(u2ν1 + 1)

= |H|(1 + ε)2ν−ν1 + |H|1 + ε

2
(2ν−ν1 − 1)2ν

≡ |H|(1 + ε)2ν−ν1 ≡ |H|2ν−1 ≡ |Gk′′′ |2ν−1 mod 2ν .

Lemma 5. We have

S ≡




am
l |Gk′ | mod m if ord2 l = ord2m or |Gk′′′ | ≡ 0 mod 2

or aj ≡ −1 mod 2ν for some j,
am
l |Gk′ |+ m

2 mod m otherwise.

P r o o f. We have m = 2κk′′k′′′ and 2κ, k′′, k′′′ are pairwise relatively
prime. Further, m/l ≡ 0 mod k′′′ and m/2 ≡ 0 mod k′′′ for m ≡ 0 mod 2.
The lemma follows immediately from Lemmas 1, 3 and 4.

R e m a r k 1. Since |G| = [G : Gk′ ]|Gk′ | = k′′
l′ |Gk′ |, m

l |Gk′ | may be re-
placed by kiv|G|, where

kiv =
{
k′ if l 6≡ 2 mod 4 or m 6≡ 0 mod 4,
k′/2 otherwise.

Proposition. S ≡ 0 mod m if and only if the following two conditions
hold :

(i) either ord2 l = ord2m or |Gk′′′ | ≡ 0 mod 2 or aj ≡ −1 mod 2ν for
some j,

(ii) |Gk′ | ≡ 0 mod l.

P r o o f. Sufficiency of (i) and (ii) follows immediately from Lemma 5.
Assume that S ≡ 0 mod m. We shall show that (i) and (ii) are satisfied. If
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(i) does not hold then m ≡ 0 mod 4 and we have

(11) l ≡ 0 mod 2, a|Gk′ |+ l/2 ≡ 1 mod 2.

Indeed, if l ≡ 0 mod 4 then κ = 0, a ≡ 1 mod 2, |Gk′ | ≡ 1 mod 2 and
(11) follows. If l ≡ 2 mod 4 then (11) follows from Lemma 2. By Lemma 5,
a|Gk′ | + l/2 ≡ 0 mod l, contrary to (11). Thus (i) holds. By Lemma 5,
|Gk′ | ≡ 0 mod l. Thus (ii) holds.

3. Proof of Theorem 1. Let α ∈ Ok \ {0} and p be a typical prime
ideal of Ok prime to mα. Since

(
α |K
A

)

m

=
(
α | km
A

)[K:km]

m

for any ideal A of Ok prime to mα in virtue of the multiplicativity of the
power residue symbol it is enough to prove that

(12)
(
α | km

p

)

m

=





(α|k
p

)b[km:km′′ ]
n

if ord2 n = ord2m

or [km : km′′2µ ] ≡ 0 mod 2
or the field k ∩ P2ν is real,(α|k

p

)b[km:km′′ ]+n/2
n

otherwise.

Then (3) holds.
Put G = Gal(km/k) = Gal(Pm/k ∩ Pm). Then G can be viewed as a

subgroup of the multiplicative group of residue classes mod m. We have the
following decomposition in km:

(13) p =
g∏

i=1

P σti

where σti(ζm) = ζtim for some ti with ti ∈ G, and P is a prime ideal of Okm .
We have

(14) NmP = (Np)f

where f is the degree of the ideal P with respect to the field k. Then f
is also the smallest positive integer such that (Np)f ≡ 1 mod m. Further,
NmP ≡ 1 mod m and Np ≡ 1 mod n.

Put aij = ti(Np)j (i = 1, . . . , g; j = 0, 1, . . . , f − 1). It is known that
G = {aij}i,j . Let l, S, l′, k′, k′′, k′′′, κ, a be as in Lemma 1. We have

(15) S =
∑

i,j

aij =
g∑

i=1

f−1∑

j=0

ti(Np)j =
(Np)f − 1
Np− 1

g∑

i=1

ti.

Further, l = ({aij − 1}i,j ,m). By Galois theory, l = n. Hence

(16) l′ = n′, k′ = m′, k′′ = m′′, k′′′ = m′′′, κ = µ, a ≡ b mod n.
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By Lemma 5, Sn/m ∈ Z and

(17) S
n

m
≡





b|Gm′ | mod n if ord2 n = ord2m
or |Gm′′′ | ≡ 0 mod 2
or aij ≡ −1 mod 2ν for some i and j,

b|Gm′ |+ n
2 mod n otherwise.

By (13)–(15) and Euler’s criterion,
(
α | km

p

)

m

=
g∏

i=1

(
α | km
P σti

)

m

=
g∏

i=1

(
α | km
P

)σti
m

=
g∏

i=1

(
α | km
P

)ti
m

=
(
α | km
P

)Σg
i=1ti

m

≡ α (Np)f−1
m Σg

i=1ti

= α
Np−1
n S n

m ≡
(
α | km

p

)S n
m

n

mod P.

Since P is prime to m, we obtain

(18)
(
α | km

p

)

m

=
(
α | k
p

)S n
m

n

.

By Galois theory, |Gm′ | = [km : km′′ ], |Gm′′′ | = [km : km′′2µ ], the
field k ∩ P2ν is real if and only if the group G contains a residue class
modm congruent to −1 mod 2ν . Now (12) follows immediately from (18)
and (17).

4. Proof of Theorem 2. If conditions (i) and (ii) are satisfied then (4)
holds by Theorem 1. Assume that (4) holds. Let p be a prime ideal of Ok
prime to m and α be a number in Ok such that

(19)
(
α | k
p

)

n

= ζn.

We shall show that conditions (i) and (ii) are satisfied. If (i) is not satisfied
then m ≡ 0 mod 4 and

(20) n ≡ 0 mod 2, b[K : km′′ ] + n/2 ≡ 1 mod 2.

Indeed, if n ≡ 0 mod 4 then µ = 0, b ≡ 1 mod 2, [K : km′′ ] ≡ 1 mod 2
and (20) follows. If n ≡ 2 mod 4 then by Lemma 2 and (16), [K : km′′ ] =
[K : km]|Gm′ | ≡ 0 mod 2 and (20) follows again.

By Theorem 1 with A = p, (19) and (20) we have
(α|K

p

)
m
6= 1, contrary

to the assumption. Thus (i) holds. By (4) for A = p, Theorem 1 and (19)
we obtain (ii).

5. Proof of Corollary. Put k = Q in Theorem 2. The condition (i)
is satisfied. Assume that m 6= 2 or the field K is of an even degree. By
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Theorem 2 it is enough to prove that (ii) is satisfied. If m ≡ 1 mod 2 then
n = 1 and obviously (ii) holds. If m ≡ 0 mod 2 then n = 2; m′′ = 2 if
m ≡ 2 mod 4, m′′ = 1 if m ≡ 0 mod 4. Hence km′′ = Q. If m > 2 then
[K : Q] = [K : Pm][Pm : Q] = [K : Pm]ϕ(m) ≡ 0 mod 2. Thus (ii) holds. If
m = 2 then [K : Q] ≡ 0 mod 2. Thus (ii) holds again.

R e m a r k 2. The Corollary may be proved without using Theorem 2. For
this purpose it is enough to use the equality

∑ϕ(m)
i=1 ri = 1

2mϕ(m), where
r1, . . . , rϕ(m) are all residues mod m prime to m contained between 0 and m.
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