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1. Introduction. H. Weyl showed in [6] that if p(x) is a real-valued poly-
nomial with at least one irrational coefficient other than the constant term,
then the sequence p(n),n =1,2,..., is uniformly distributed (mod1). Gen-
eralized polynomials form a natural family of functions which are obtained
from the polynomials by the use of the greatest integer function [-], addition
and multiplication. For example, [ax]B2? and [cx][Bz]y are generalized poly-
nomials. It was shown in [3] that if the coefficients of a generalized polyno-
mial g(z) are sufficiently independent, then the sequence ¢(n),n =1,2,...,
is uniformly distributed (mod 1). In this paper we show the following result.

THEOREM 1.1. For any o, ..., € R\{0}, k > 3, and for any irrational
v the sequence

q(n) = [aan][agn] ... [agn]y, n=1,2,...,
is uniformly distributed (mod1).

Note that the same is not true for £ = 1 and k = 2. When k£ = 1, the
identity
[an]f = afn — {an}F (mod 1)
implies that the sequence [an|f is uniformly distributed (mod 1) if and only

if 3 is rationally independent of 1,1/« [4, Theorem 5.1.8]. In the case k = 2
we have the following proposition [3, Proposition 5.3].

PROPOSITION 1.2. The generalized polynomial [an][Bn]y is uniformly
distributed (mod 1) if and only if one of the following conditions hold:

(i) a/B # +/c for all c € QT and v is irrational.
(ii) a/B = \/c for some c € QT and vy is rationally independent of 1,/c.

This result is part of the author’s Ph.D. thesis done under the direction of Prof.
V. Bergelson at Ohio State University.
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The identity
[BVen)[Bn]ve = —5({BVen} — ve{An})? (mod 1)

is the reason why the sequence [3y/cn][Bn]\/c fails to be uniformly dis-
tributed (mod 1). Note, however, that by Theorem 1.1, there cannot be any
such identities for £ > 3.

Our method is, as in [3], based on the following useful theorem by van
der Corput [2].

THEOREM 1.3 (van der Corput’s difference theorem). Let z,, n = 1,
2,..., be a real-valued sequence. If there is some hg € N such that for all
integers h > hqg the sequence Ty yn—xn, n =1,2,..., is uniformly distributed
(mod 1), then x,, is also uniformly distributed (mod1).

If p(n) is a usual polynomial then p”(n) = p(n+h) —p(n) is a new poly-
nomial of degree deg(p) — 1. Therefore, Weyl’s theorem for polynomials with
irrational leading coefficients follows easily by van der Corput’s difference
theorem and induction since the sequence an + 3 is uniformly distributed
(mod 1) if and only if « is irrational. See for example [4] for the complete
proof of Weyl’s theorem. The same idea will be used to prove Theorem 1.1.
However, the proof is more complicated because of the brackets in the ex-
pressions of g(n).

The special case [an]¥y of Theorem 1.1 is proved in [5, Cor. 3.5 and
the following Example| by the use of spectral theory. Uniform distribution
of [an]*~, where 1, o, ay are rationally independent, can also be proved by
ergodic theoretical methods. This follows from a modified version of [1].

2. The van der Corput method. Denote by [r] the greatest integer
less than or equal to the real number r, and by {r} the fractional part of r,
so that r = [r] + {r}.

DEFINITION 2.1. A real-valued sequence x(n), n = 1,2,3,..., is uni-
formly distributed (mod 1) if for any real numbers 0 < a <b <1,

lim %card({l <n<N|{z)}eab)}) =b—a.

N—oo

Similarly, uniform distribution (mod 1) of sequences in R, [ > 1, is de-
fined. We will need the following theorem.

TuEOREM 2.1 ([4]). Let 2(n) = (z1(n),...,z1(n)) be a sequence in R,
Then the following statements are equivalent:

(i) z(n) is uniformly distributed (mod1) in R!.

(ii) Zi:l kizi(n) is uniformly distributed (mod1) in R for all I-tuples
(k1,..., k1) #(0,...,0) of integers.
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(iii) For every Riemann integrable function f on [0,1],
) 1
i > () f ff )
DEFINITION 2.2. Define the degree of a generalized polynomial

L ks
n) = Z H azg”"'ﬁz] Yis

i=1j=1

for which
ki k-
H[Oéz‘jn + Bij] # H apn+ By ifi#E
j=1 j=1

to be
deg(q) = max{k; | 1 <i <I}.

This way the degree of g(n) = [a1n]... [agn]y is k. Theorem 1.1 will be
proved by induction on deg(q). By van der Corput’s difference theorem, it
suffices to prove that ¢"(n) = g(n+ h) — g(n) is uniformly distributed (mod
1) for all but finitely many h’s. However, the degree of ¢"(n) is the same
as that of ¢(n) and not lower as in the polynomial case. Therefore we need

to find a new generalized polynomial Vj,q(n) from ¢"(n) which has degree
deg(q) — 1 and which can be used instead of ¢"(n). For now, let

i

(1) atn) =" (H ] ) i

=1 j=1
Since
[a(n + h)] = [an] + [ah] + 14 (an, ah),
where A = {(x,y) € [0,1)? | x + y > 1} such that

1 if {an}+{ah} > 1,
La(an, ah) = {O if {an} + {ah} <1,

q"(n) = i [airh] ( H[O‘m )'Yz +s(n) + Z Lo, (*

i=1r=1 j#r
where s(n) and t;(n) are all of the form

z:aZ (ﬁ [vir,m )’y,, li <k;—1, a;(h) € Q.

=1 Jj=1
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The components of the argument (*) of the indicator function 1¢,, where
C; C [0,1)% for some s;, are constants and linear polynomials whose coef-
ficients can be written as linear combinations over Q of some rationally
independent numbers 1, 31, ..., ;. Let

ki

Viha(n i Z airh (H a,jn])%.

i=1r=1 J#T

To prove that ¢"(n) is uniformly distributed (mod1) it is enough by
Theorem 2.1 to prove that

(th +Zel i(n), Bin, . ..,Bln)

is uniformly distributed (mod 1) in Rl“ for any ¢; € {0, 1}, or equivalently,
that

l
g (n) = Vig(n +Ze ti(n) + > biBin
i=1

is uniformly distributed (mod 1) for any ¢; € {0,1} and any b; € Q. There-
fore, g(n) is uniformly distributed (mod 1) by van der Corput’s difference
theorem if ¢(%-=")(n) is uniformly distributed (mod 1) for any b, ;, h > ho
for some hy € N. Note that the degree of ¢(:¥")(n) is deg(q) — 1. By re-
peating this process deg(q) — 2 times we obtain generalized polynomials of
degree two whose terms of degree two are all coming from Vj,¢(n). It follows
from [3] that if a generalized polynomial ¢; (n) is uniformly distributed (mod
1) and deg(q1) = 2, then g;(n) 4 go(n) is also uniformly distributed (mod 1)
for any generalized polynomial gg(n) of degree one. Therefore, the following
proposition applies to these new generalized polynomials of degree two when
the identity

(2) [a]b + [bla = ab + [a][b] — {a}{b}
is used.
PROPOSITION 2.2 ([3]). Let 1, a1, . .., ay be rationally independent. Then
k
q(n) = Z[am]ﬂm + agn?
i=1

is uniformly distributed (mod 1) if and only if one of the following conditions
holds:
(i) There exists i such that 3; is rationally independent of 1,1, ..., ak.
(ii) B; = aio+zgﬁ:1 a0, ai; € Qi =1,...,k, and there exist i, j such
that Qij 75 Aji-
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(iii) B; = aio + ijl a;jag, ai; € Qi =1,...,k, a;; = aj; for all i,j
and
k i—1

ZZama aj + = Zama +ag € Q.

=1 j=1
If g(n) can be shown to be uniformly distributed (mod 1) by this process
we will say that g(n) is uniformly distributed (mod 1) by the van der Corput
method.

Notation. We will say that ¢1(n) ~ g2(n) if there exist a Riemann inte-
grable periodic mod 1 function g on R, generalized polynomials vg(n),. ..,
vi(n), each of the form (1) and so that deg(v;) < min{deg(q1),deg(q2)},
i=0,...,k, and rationally independent numbers 1, 31, ..., By such that

q1(n) — g2(n +Zlc n) + g(Bin, ..., Bmn) (mod 1)

where the components of the arguments (%) are linear combinations of con-
stants and 3;n’s.
Note that ¢"(n) ~ Vi,q(n) and that we have the following lemma.

LEMMA 2.3. If g1(n) ~ g2(n) then g1 (n) is uniformly distributed (mod 1)
by the van der Corput method if and only if g2(n) is uniformly distributed
(mod 1) by the van der Corput method.

LEMMA 2.4 ([3]). Let Ao, A1,...,Ax be rationally independent and let
R CR. Then Zfzo[)\ih]ei is rationally independent of R for all but finitely
many h if and only if there exists j, 0 < j < k, such that 0; is rationally
independent of R.

LEMMA 2.5. If Ai,..., A\ are rationally independent and qn(n) =
Zizl[Aih]ui(n), where each u;(n) is of the form (1) and deg(u;) = deg(qn) >
2, then qn(n) is uniformly distributed (mod 1) for all but finitely many h if
some u;(n) is uniformly distributed (mod 1) by the van der Corput method.

Remark. This may fail if deg(gn) = 1. Indeed, let 1, A1, A2 and 1, a7, o
be rationally independent, and let

qn(n) = [Arh][aan] B + [Aah][aan]Be
= [Alh]alﬁln + [)\Qh]azﬁzn — [)qh]{oqn}ﬁl — [)\Qh]{agn}ﬁz.

If g = 181 and a1 = a2, then both [ayn]|B; and [aen]fBs are uniformly
distributed (mod 1), but

qgn(n) = ([Mh] = [A2h]B2){azn} + ([A2h] — [A1h]B1){can}
is not uniformly distributed (mod 1).



18 I. J. Haland

Proof of Lemma 2.5. Suppose deg(gy) = 2. Since by (2),
[ain][aan]y ~ [agn|asyn + [agn]ayn — arasyn?

we may write each u;(n) in the form };[a;n]B;n + aon?. Furthermore, by

using the relations [an]fn ~ afn? — [Bn]an and [an]an ~ 1a’n? we can

reduce any u;(n) which is not uniformly distributed (mod1) to a polyno-
mial an? a € Q. Therefore we may assume that each u;(n) is uniformly
distributed (mod 1). Also, if not all the u;(n)’s are polynomials, let k£ > 1 be
the smallest integer such that there exist rationally independent numbers
1,a1,...,0 with

k
Z ﬁz]n + ﬂzon

Jj=1

for some (;; € R. Then there exists some (;; rationally independent of
1,1,...,a. Hence, by Lemma 2.4, there exists at least one j so that
> i—1lAih]Bi; is rationally independent of 1,aq,...,ay for all but finitely
many h. Now,

I
MN
Mw

qan(n) [Ai h]( [ajn]Bin + ﬁion2>

@
Il
_
.
-~ |
_

[
Ma-

[ ](Z[)\ BBy )n+ Z [\ih]Bion?.

=1

<.
Il
—_

So if gn(n) is not a polynomial, it follows from Proposition 2.2 that g (n)
is uniformly distributed (mod1) for all but finitely many h. If g,(n) is a
polynomial, then the coefficient 25:1 [Aih]Bio is irrational for all but finitely
many h by Lemma 2.4. This proves the degree two case.

We prove the general statement by induction on deg(gs). Assume it is
true if deg(gp) < d and let deg(qp) = d > 2. We have

l l

ai(n) = an(n+k) —an(n) = Y _[NihJul (n) ~ Y [Nih]Vius(n)

=1 =1

where deg(Viu;) = deg(u;) — 1. Since at least one w;(n) is uniformly dis-
tributed (mod 1) by the van der Corput method, there is some u¥(n) and
hence Vju;(n) by Lemma 2.3, which is uniformly distributed (mod1) for
all but finitely many k. So by the induction hypothesis ¢f(n) is uniformly
distributed (mod1) for all but finitely many k£ and h. Hence, by van der
Corput’s difference theorem, g, (n) is uniformly distributed (mod 1) for all
but finitely many h. =
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Remark. When the coefficients ag, ..., ax of a generalized polynomial
g(n) are rationally dependent, say

k—1

T
o = —oy, Ty, 8; € 4,
k Z s; % iy 9%
=1
we will in the proofs assume that s; =1,¢=1,...,k — 1. Then the general

case, when s; # 1, follows by writing n = md—+b, 0 < b < d, in the expression
for g(n), where d is the least common multiple of the s;’s. See the proof of
[3, Prop. 5.2] for more details.

3. Some preliminary results

PROPOSITION 3.1. Let Ay, Ay be rationally independent numbers, v an
irrational number and by, b1,b2 € Q. A generalized polynomial

Q(TL) = bo[)\ln]27 + b1 [)\177,] [Agn]’}/ + bg [Agn]z}/

is uniformly distributed (mod 1) unless there ezist a,c, ki, kg € Q, ¢ > 0,
and b € {+1,—1} such that Aa/A\1 = a+ by/c, v = ko + ki\/c and

bo + bra + ba(a® — ¢) = 0.
Proof. By the identity (2), we have
Q(n) ~ 2bg[A1n]A1yn — boAZyn? + by [Ain]doyn + by [Aan] A iyn
— bid i Aayn? + 2ba[Aan] Agyn — baA3yn?
= [A1n](2bo A1y + b1A2y)n + [Aan](b1 A1y + 2b2A27)n
— (boATY 4 bidr Ay + baA3y)n?
= [Min]An + [Aon]Bn — (M A + A B)n?
where
(3) A =2boA\1y + b1 Aoy, B =bi A1y + 2ba\on.

Suppose first that 1, A{, Ay are rationally independent. Then by Propo-
sition 2.2, Q(n) fails to be uniformly distributed (mod 1) if and only if there
exist a; € Q such that A = ag + a1 1 + agAs, B = a4 + as A1 + agle and
%al)\% + ag Ao + %a3)\% — %()\1A+ )\2B) = —%(ao)\l + a4)\2) € Q, in which
case ag = a4 = 0. So Q(n) is not uniformly distributed (mod 1) if and only if

(4) A=aiA +az)2 and B =as\ +azle for some aj,az,a3 € Q.

Now, if A\; = d € Q, then Q(n) ~ [Aan]Bn — £(AoB — dA)n®. Therefore,
Q(n) is not uniformly distributed (mod 1) if and only if there exist a;, € Q
such that B = asd+asAz and as\3— (g (agd+azle)—dA) = dA—axd)y € Q.
So also in this case Q(n) is not uniformly distributed (mod 1) if and only if
A and B satisfy the condition (4).
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Suppose (4) is true and that Ay is rationally independent of 1, A;. Then
by (3) and (4) we have

5) 200A17 + b1 A2y = a1 A1 + az)a,
biAd1y + 20227 = azA1 + agAz,

which implies that both A1y and A7y are rationally dependent of A1, Ao, say

(6) A1y = 1AL + 22, Aoy = diA1 +da g,

where ¢1, ¢a,dy, da are given by (5). Note that ¢ # 0,d; # 0. This gives the
equation

(7) 2b002 + bl (dg - Cl) - 2b2d1 =0.
It follows from (6) that
(8) CoA3 + (c1 — do) M Ay — di A3 = 0.

So if (8) is possible, then Ay = (a + by/c)A1, where a = (d2 — ¢1)/2c¢2,
c=a%+di/cy and b € {+1,—1}. By dividing (7) by 2ca we have

(9) bo + aby + (a2 — C)bg =0.

So if Ay is rationally independent of 1, A1, then Q(n) fails to be uniformly
distributed (mod 1) if and only if there exist a, ¢ € Q satisfying (9) and such
that for some b € {+1,—1}, we have Ao = (a + b\/c)\; and v = ko + k1+/c
for some ko, k1 € Q.

If s is rationally dependent of 1, A1, say A1 = di +da A2 for some dq,ds €
Q\ {0}, then

Q(n) ~ bo(din + ds [)\gn])zv + b1 (din + da[Aan])[Aan]y + be [Agn]zv
= bodin?y + (bydy + 2bodyds)[Aen]nry 4 (b2 + bidy + bod3)[Nan)y.
By the above result, @Q(n) is not uniformly distributed (mod1) if and

only if there exist a, ¢, b, ko, k1 € Q such that Ay = a + b\/c, v = ko + k1+/c
and

0 = bod? + dy(by + 2boda)a + (by + byds + bod2)(a® — ¢)
= bo(d} + 2adyds + (a® — ¢)d3) + by (ady + (a* — ¢)dz) + ba(a® — c).

So
ady + (a® — ¢)dy a?—c
10) bo+b b =0.
(10) bo +bs & § 2adids + (@ — OB P&+ 2adids 1 (2 — &
Now,
Ay a+ by/c —dla+(a2_e)d2+d1bﬁ5a’+b\/a

AN di+dy(a+bye)  d+2adydy + (a2 — ¢)d2
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Also,

o, (dia+(a® —c)dy)* —dic a?—c
~ (d? +2adyds + (a2 — ¢)d3)?  d? + 2adyds + (a2 — c)d3’
Hence, equation (10) is by +bia’ +by(a’? — ') = 0, where Ay = (a’ +bV/c) Ay,
y=kb+ KV m

LEMMA 3.2. Let

A1 By 0 0 e 0

Cl A2 B3 0 R 0

0 Cy, Ay B, ... 0
M = .

0 R 0 Ck_g Ak_g Br_1

o ... 0 0 Cr_o Ar—

where Aj, B;,C; € Q\ {0} such that C;Bj1 = dAjAjq, d = $(1 —c/a?),
c,a €Q, c>0, c#a? Then det(M) # 0.
Proof. Define a sequence c¢; inductively by ¢ = ¢; = 1 and ¢; =

cj—1 —dcj_o for j > 2. We will show that ¢; >0 forall j =1,...,k—1, and
that det(M) = A1 NN Ak_lck_l.

Let
Aj Bj+1 0 ce 0
C; Ay 0O ... 0
Mj = . )
0 0 Ap_» Bp_1
0 0 Cr_o Ap_

j=1,...,k—1, and let M} = (1) and Mj4, = (0). It follows by induction
on j that
(11) det(M) = A1 PN A]'(Cj det(Mj+1) — de_lAj+1 det(Mj+2))

for j = 1,...,k — 1. By letting j = k — 1 in (11), we have det(M) =
Ai...Ap_q1¢,_1. Since d = %(1 — ¢/a?) and c/a? > 0, either d < 0 or
0<d<1/4.1f d <0 then ¢; > 0 for all j by the definition of the sequence
c;. f 0 <d < 1/4, let b; = ¢j/cj—1 for all j such that ¢;_; # 0. It follows
by induction on j that 1/2 < b; < 1. Hence ¢; > 0 for all j. m

LEMMA 3.3. Let k be even and let bs,...,br € Q. Define o1 =1 and
g = Z bil---bij,la j:2,...,k}—1.
3<ii<... <1<k
Then it is impossible to have

(12) o2 =0 and o941 >0 forallj=1,...,(k—2)/2.
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Proof. Suppose (12) is true. First we show by induction on j that
(13)  op_3 < —b} > biy - biy ;0 — b3 ba. . b,
4<in<...<ip—(j4a) <k
j=2,4,...,k —4, where we treat a sum over the empty set as 1. Since

0; = Z bi1"'bij_1

3<in<...<ij_1<k

= b3 Z bi1 -"bij_z + Z bil "'bij—l

4§i1<...<’i]’,2§k 4§i1<...<i]‘,1§k

and o2; = 0 and 02541 > 0, we have

(14) > biy - biy, , = —bs > biy - biy,

4<is<..<igj_1<k 4<is <. .<izj_2<k
and
— E bil -"bizj < bs E bil ...binil,
4<ii <. <ig; <k 4<i1<...<ig; 1<k

j=1,...,(k—2)/2. Hence,
15) = > by by, < b3 3 biy . bis, -
4<i1<...<ig; <k 4<i1<...<igj_2<k
By setting 7 = (k —2)/2 in (14) we have Z4§i1<...<ik,4§k bi, ...bi,_, =
~b3 'y ... b, so that
Ok—3 :_bg Z bil"’bikfﬁ —b§1b4...bk,
4<i1<...<ip—6¢<k

which shows (13) for j = 2.
Suppose that (13) is true for j. Then by the induction hypothesis
and (15),

J } : ) -1
O'k_gg—bzs bi1"'b2k7(j+4) —b3 b4bk
4<in<...<ip_(j+4) <k
<—b§ E bi1"'bik7(j+6) —b3 by...bg,

4<ir <...<ip_(jre)<k

which shows (13) for j + 2. Hence (13) is proved.
Let j = k — 4. Then

Oh3 < — (b5 + b3 by .. by) <O

since k — 4 is even and bz...by = or_1 > 0. However, this contradicts
oi—3 > 0. Hence, (12) is impossible. m
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4. Proof of Theorem 1.1. Let [ be the dimension of the vector space
over Q spanned by aq, ..., ai. By possibly reordering the «;’s, we may take
a1, ...,q; as basis of this vector space so that

l
%:Z%% ai; €Q, i=1+1,... k.
j=1

If | = 1, then either ¢(n) ~ c¢yn*, ¢ € Q, which is uniformly distributed
(mod 1) since cyn® is a polynomial with irrational coefficient, or g(n) ~
clan]®y, ¢ € Q, « irrational. Since c[an]?y is uniformly distributed (mod 1)
by Proposition 1.2 and ¢"(n) ~ ck[an]k~17, it follows by induction and van
der Corput’s difference theorem that ¢(n) = c[an]*y is uniformly distributed

(mod 1).
If I = 2, then
k k—1
q(n) ~ [aan][oon] [ [ (air[oan] + aizfagn])y = ailarn]* " [aan]’y
=3 =1
where
k
a; = H 51,
i=3
k
az = Z(H ajl)am
(16) =3 ji

k
Q-1 = H ;2.
i=3

Note that since g(n) # 0 there exists ¢, 1 <i <k — 1 so that a; # 0.
Let ag = ar = 0 so that we can write

k
q(n) ~ Z a; [aln]k_i[agn]i'y.
i=0

By van der Corput’s difference theorem, ¢(n) is uniformly distributed
(mod 1) if

k

¢"(n) ~ fonh] (D ailk = Darn]* = azn]' )

i=0

+ [th]( alz[aln]k—i[a2n]i—17>

-

I
=)

)
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is uniformly distributed (mod1), and by Lemma 2.5, ¢"(n) is uniformly
distributed (mod 1) if either

or
k
va(n) = Z aifarn]*agn] 1y
i=1

is uniformly distributed (mod 1). The same argument can be repeated for
v1(n) and va(n). Note that v1(n) and ve(n) can be seen as the partial deriva-
tives of the polynomial function

k
flo,y) = 'y
1=0

on R?, evaluated at ([a1n], [aan]). So by using induction it follows from van
der Corput’s difference theorem and Lemma 2.5 that ¢(n) is uniformly dis-
tributed (mod 1) if at least one of the (k —2)th partial derivatives evaluated
at ([arn], [agn]),

8k—2f
Qj(n) = m([aln]» [aon]), j=0,1,...,k—2,
is uniformly distributed (mod1). Now,
ok=2f E—j). , ,
m(xa y) = aj (2!)1!9027 +ajp1(k — 7 — DG+ Dlzyy
. i +2)!
+aja(k —j — 2)!(]2,)92%
so that
(k=) , . .
Qj(n) = —5=dlajloan]™y + (k = j = DG + Dlajir[arn][azn]y
)  +2)!
+ (k=37 —2)! G+2) aj2[aon]®y,

2!
j=0,...,k—2.If none of the Q;(n)’s is uniformly distributed (mod 1), by
Proposition 3.1 there exist a,c € Q, ¢ > 0, ¢ # a2, such that

kE—j). . .
(17) ( 51 ) Jlaj +alk—7—DIj+1)!aj4
. +2)! .
+(02—C)(k/‘—j—2)!(32!)a]’+2:0, ]:0,,k—2
We will show that this leads to a contradiction. Now, use the fact that
ag = ar = 0, and let ay,...,a;r_1 be the unknowns in the system (17) of

k — 1 equations.
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If a # 0, the system (17) has the unique solution (0, ...,0) if the matrix

Ay By 0 0 0

Ci Ay Bs 0 0

0 02 A3 B4 0

M = .

0 Ce 0 Ck,;g Ak,Q Bi_1

o ... 0 0 Cr—2 A1
is non-singular, where

Ny \J! (k—j)!.
Aj = (k—j)jla, Bj:(k:—])!a(cf—c), C; = 51 gl
Since
2
— 1
B]' = uAJ and Cj = 714],’

2a 2a
it follows that C;Bj11 = dA;A;j 11, where d = 1(1—c/a?). So by Lemma 3.2,
det(M) # 0. Therefore g(n) = 0, a contradiction.
If @ = 0, then (17) gives
(7 +2)!

k—i). . .
(18> ( 2| )]‘aj_c(k_j_Q)'waJ+27 jzovak_z

Since ag = ap = 0, we have ag; = 0 for all j. If k is odd, then we also have
azj+1 = 0 for all j such that ¢(n) = 0, a contradiction.

Let k be even. If a; = 0 then a; = 0 for all 7. So we may assume that
a; # 0. It follows from (18) that ag;y1/a; > 0 for all j. Recall that the a;’s
satisfy the equations (16). Let b; = a;2/a;1. Then it follows from (16) and
(18) that

22 _ 3 biv by, =0, j=1,... (k—2)/2
a1 3<i1 <. <ig 1<k

and
BAEL_NT by by, >0, =0, (k- 2)/2,

a
1 3<ir<...<in; <k

which by Lemma 3.3 is impossible. This ends the proof for the case [ = 2.
Let I > 2. We will show by induction on k that

(19) q(n) ~ (ﬁ[am]) ﬁ (i aij[ajn])v

i=1 i=l+1 j=1

is uniformly distributed (mod 1) for any [ < k.
If k=3 and | = 3 then g, as, a3 are rationally independent and

¢"(n) ~ [arh)[azn][asn]y + [azh][arn]lasn]y + [ash][ain][azn]y.
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By Lemma 2.5, it is enough that some [a;n][a;n]y is uniformly distributed
(mod 1), ¢ # j, 4,7 € {1,2,3}. If all of them fail to be uniformly distributed
(mod 1), then by Proposition 1.2,
ﬁ:az‘j\@ and 7:]4:0\/6’ ivj:1)2)3) a’tjvkoe(@\{o}
Qj

If this is the case then a3 = aj2\/cas = aj3+/cas, which contradicts oy, as,
ag being rationally independent. So ¢(n) is uniformly distributed (mod 1) if
k= 3.

Let k > 3 and suppose ¢(n) is uniformly distributed (mod 1) if deg(q) <
k. By rewriting the expressions (19) for ¢(n), we have

k—1 l

a(n) ~ Y loan] (T in])
r=0 i=2
X Z ( H aj1> ﬁ(zl:aijs[asn])
1<i1 <. <ip <k jFi1,00min j=1 s=2
Let l1,...,l,, 0 <m < k—1, be all the indices ¢ for which a;; = 0. Then
(20) q(n) ~ kz_:l[aln]k_lﬂ_r (ﬁ[am]) Z ( H aﬂ)
r=m i=2 1<i1<...<ip <k i1, ir
X r (Zl:aijs[asn])’
j=1 s=2
and if
1 1
qi(n) = (H[am]) Z ( H ajl) H(Z aijs[asn]>,
i=2 1<i1 <. <im <k G#i1,0mim j=1 s=2
then
! m 1
am) = ([Tlen) ( TT  an) TT(C aylanl),
i= Gl j=1 s=2

which is a non-zero generalized polynomial of the form (Hf;l [Ain])y where
kit=m+I1l—-1<k—-14+1—1=k—1and!l; =1— 1. By the induction
hypothesis, g1(n) is uniformly distributed (mod1) if m # 0 or m = 0 and
>3

If we see ¢(n) as a polynomial function f on R! evaluated at ([ayn], [an],
.., [ayn]), we deduce similarly to the case [ = 2 that ¢(n) is uniformly
distributed (mod 1) if one of the generalized polynomials

o'f

m([aln],[O[Q'n],...,[o[ln]), il + ... +Zl :'i, 'ZS k— 1,
1 e 1
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is uniformly distributed (mod 1), and especially if

k—l4+1-m
W([aln], s, . [oun])
is uniformly distributed (mod 1). From (20) we see that
akflJrlfmf
([ean], [aon], ..., [aun]) = (kK =14+ 1 —m)lq(n),

k—l+1—m
Oxy

which we have shown is uniformly distributed (mod 1) if m # 0 or m = 0 and
[ > 3. Note that if m =0 and | = 3, then (k — 2)!¢1(n) = alayn|[azn]y, a €
Q, which may fail to be uniformly distributed (mod 1). Since there was noth-
ing special about a;, we could use as or ag instead of ;. If the correspond-
ing mo # 0 or mg3 # 0, then ¢(n) is uniformly distributed (mod 1) as above.
However, if m; = mo = mg = 0, then the problem is reduced to showing
that one of [a1n][aan]y, [aan][asn]y or [a1n][asn]y is uniformly distributed
(mod 1), which was proved under the case k = [ = 3. This completes the
proof that ¢(n) is uniformly distributed (mod1). m
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