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1. Introduction and main theorems. Put

P.=pips...p, k=1,2,...,

where p; < pa < ... is the sequence of all primes in increasing order. Denote
by zj the least positive integer = such that z(z 4+ 1) = 0 (mod Py). Erdés
[E] opined that
(1) %HO and %Hoo as k — oo,
and similarly for k! instead of Py (z being defined correspondingly). In
this paper we deal with the first convergence, along with various strength-
enings and generalizations. The second convergence, which Erdds estimated
as “hopeless”, is left open.

As partial motivation to look at these questions, let us mention the
diophantine equations

(2) 2(s+1) = Py,
studied by Nelson, Penney and Pomerance [NPP], and
(3) z(z+1) =k,

posed by Erdés at one of the Western Number Theory Conferences (|G,
Problems 301-305]). It is unknown whether these equations have finitely
many solutions or not, although (3) is known to have “few” solutions [BO].
Proving the second convergence in (1) would show in particular that (2) has
only finitely many solutions.

THEOREM 1. limy_, o zx /Py = 0.

We shall actually obtain a stronger result. To state it we use the following
notation. Let (Ax) be a sequence of subsets of [0,1). Then (Ag) converges to
[0,1) (in the Hausdorff metric), and we write Ay — [0,1) as k — oo, if for
every € > 0 the sets Ay are eventually e-dense in [0,1) (i.e., intersect every
subinterval of length ).

(97]
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THEOREM 2. Let ¢1 < q2 < ... be a sequence of primes satisfying
Sy l/qp = co. Put Qr = qiq2...qx, k € N. Let Sy be the set of all
solutions of the congruence

z(z+1)=0 (mod Q)
in the interval [0, Q) — 1]. Define
Ry ={z/Qr:xz € Sp} C[0,1).
Then Ry — [0,1) as k — oo.
Now Theorem 2 admits the following (stronger) finite version.

THEOREM 2'. Given e > 0 there exists an M = M (g) having the following
property. Let Q be a positive integer factorizing as Q = q7*q5> ... q.", with
Zle q; " > M, and let S(Q) be the set of all solutions of the congruence

z(x+1) =0 (mod Q) in the interval [0,Q — 1]. Then the set
R=1{2/Q:x € 5(Q)}C0,1)
is e-dense in [0,1).

EXAMPLE 1. Theorems 2 and 2’ do not apply to obtain the analogue
of Theorem 1 when Pj is replaced by other “natural” sequences, such as

k! or even [1,2,... k]. The reason is that in these cases “too many” of the
exponents e; are greater than 1:
T e/l T g,
k!:Hpi PRI [1,2,...,k]:HpiO” ,
i=1 =1

where 7(k) denotes the number of primes not exceeding k. On the other
hand, Theorem 2’ does apply to the sequence

(k)
log lo P k+1
Or = H pg g log,,, ( )].

i=1

Theorem 3 will take care of the first two sequences, although we do not
obtain the density result of Theorem 2.

Denote by P(Q) the number of distinct prime divisors of a positive in-

teger ().

THEOREM 3. Let Qi be a sequence of positive integers satisfying P(Qk)
— o0 as k — oo. Let x be the least positive solution of the congruence

z(zx+1)=0 (mod Q).
Then xk/Qr — 0.

Again, Theorem 3 admits a finite version, which this time we can make
quantitative.
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THEOREM 3. Let QQ be a positive integer and x be the smallest positive
solution of the congruence x(x +1) =0 (mod Q). Then

Q

T < ———.

(@Q)

For Theorem 2 we have the following converse.

THEOREM 4. Given any € > 0, there exists a sequence of primes (qr)7>
such that Ry, C [0,e) U (1 —e,1) for each k, where Ry, is as in Theorem 2.

The following theorem shows in particular that Theorem 3’ is essentially
best possible.

THEOREM 5. Given any € > 0, there exists a sequence of primes (qi)7
such that, denoting by xi the least positive solution of the congruence

z(x+1)=0 (mod Q),

where Qr = q1q2 . . . qr, we have
Qx
k )
In the next section we prove some extraneous results that will serve us in
proving the main (positive) results, but seem to be of independent interest.
The proofs of Theorems 1-5 are given in Section 3.

CCkZ(l—é) k:1,2,...

I would like to express my gratitude to P. Erdés for long and interesting
discussions on these problems.

2. Dense parallelepipeds on the circle. Given a (finite or infinite)
sequence («;,) in some additive semigroup, the parallelepiped based on (o)
is denoted by IP-(«,) and defined as the algebraic sum of the sets {0, a, }:

IP-(ay,) ={0,00} + {0, 0} + ...
={on, Fon, +...Fap, 1720, 1<n; <ny <...<nj}

(Our notation derives from the concept of an IP-set; see [B, Def. 2.3].) The
parallelepiped is d-dimensional if the sequence (v, ) is of finite length d, and
infinite-dimensional if the sequence is infinite. (Thus, for example, the set
{0} may be considered as a parallelepiped of any finite dimension or even
of infinite dimension.)

We shall be interested in finite parallelepipeds in the circle group T =
R/Z. It will be convenient to identify T with the interval [0, 1). Denote by ||z||
the distance of z € R (or « € T) from the nearest integer. In [B, Prop. 2.1(1)]
the following condition was shown to be sufficient for an infinite-dimensional
parallelepiped IP-(cv,)22 ; to be dense in T:

o)
D llhom|| =00, h=1,2,...
n=1
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Our main result in this section (Proposition 2) consists of an analogue for
finite-dimensional parallelepipeds, namely a sufficient condition for such par-
allelepipeds to be e-dense. First we present

PROPOSITION 1. A d-dimensional parallelepiped in T contains a non-
trivial point x with ||z|| < 1/(d+1).

Here a point z € IP-(a,)2_; is non-trivial if it is a sum of a non-zero
number of generators a,. (Note that we may well have x = 0.)

Proof. Consider the following d 4+ 1 points:

iniOzn, 1=0,1,...,d.
n=0

Obviously, we can find two of them, say y; and y;, 0 < i < j < d, with
ly; — will < 1/(d + 1). But then

gt

n=1+1

1
< Y
—d+1

which proves the proposition.

Remark 1. As a d-dimensional parallelepiped contains 2¢ — 1 non-
trivial points, one could expect to have in it usually a point whose distance
from 0 is of the same order of magnitude as 2~¢. In general, however, the
proposition cannot be improved, as the simple example oy = ay = ... =
ag = 1/(d+ 1) shows. Moreover, taking a small perturbation of these a;,’s
we obtain basically the same example, with the parallelepiped containing 2¢
distinct points.

PROPOSITION 2. For any € > 0 there ezists a B = B(e) € N such that
for every sequence (ay,)%_, in T satisfying

d
> llhon|| > B, h=1,2,...,B,
n=1

the parallelepiped I P-(c,)2_; is e-dense.

Proof. Suppose, to the contrary, that there exists some € > 0 such that
for every B € N there exists a finite sequence ap = (« Bn)ﬁi , with

dp
> llhapnl > B, h=1.2,...,B,
n=1

the dp-dimensional parallelepiped Py; = I P-ap being not e-dense.
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Call a point z € T a multi-limit point of (ap)F_, if for every € > 0
and positive integer N there exists a B such that the interval (x —e,x +¢)
contains at least N points of aup. Denote by L the set of all multi-limit
points of (ap). Clearly, since dg — oo as B — oo, the set L is non-empty.

Take a point € L. Taking a B for which aep contains sufficiently many
points very close to x, one sees that the corresponding Pp contains mod-
ulo 1 a small perturbation of the set {nz : 1 < n < N}, where N can
be made arbitrarily large by choosing B appropriately. Now the closure of
the set {nz : n € N} is a subgroup of T, which is T itself if x is irra-
tional, and {0,1/¢,2/g,...,(g —1)/g} if x is rational with denominator g
(in reduced form). Hence our assumption implies that £ is a finite set of
rationals, say £ = {0,1/g,2/g,...,(g —1)/g}. Split each ap into 2g sub-
sequences ag), 1 < j < g, placing in ag) those elements of ap belonging
to [(j —1)/(29),7/(2g)). For each B select jo = jo(B) as the j for which
Zmeag> lgx|| is maximal. Passing to a subsequence of (ap)¥_, we may as-

sume jo(B) to be constant. Denote the sequence agO) by Bp = (ﬁBn)iil.
d/
Define v = (Yzn)h2{ * by

g
YBn :Z/BB,(gfl)YH»iu n= 1727-"7[ /B/g]
i=1
Passing to a subsequence again, we may assume that ||yp,| < € for every
B and n. Our construction guarantees that ) |vgn| > 1 for sufficiently

large B, so that I P-vg is e-dense in T. Since I P-aug 2 I P-7yg, the original
parallelepiped is e-dense as well. This completes the proof.

3. Proofs. Proof of Theorem 2. Take a positive integer QQ =

q7'q5? ... q;F . Tt will be slightly more convenient to consider, instead of S,
the set S" = S(Q) + 1, consisting of all solutions of
(4) z(z—1)=0 (mod Q).

Define integers y;, 1 < i < k, in the range [0, Q — 1] by the requirements
yZE]- (mOd qi&;)’ yZEO (mOd QEj)7 1S]§k7 j#l

View the set {0,1,...,Q — 1} as the additive group Z/QZ. It is readily
verified that

S/ = {Ovyl} + {07y2} +...+ {ank}
Put r; = y;/Q, 1 <i < k. Note that r; is (in reduced form) a rational with
denominator ¢;* for each i. Putting

R ={z/Q" :x € S} C|0,1),
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and viewing [0, 1) again as the circle group T, we obtain
R = {0,’/“1} + {0,7’2} + ...+ {O,T‘k}.

We have to show that, if Zle q; © is sufficiently large, then R’ is e-dense

in T. In fact, take B as in Proposition 2 and suppose that Zle q; >
B +log B+ 1. Then for 1 < h < B we have

k
Dollbrill= Y b= Y 6
i=1

irq; >h iq i >h
k B
Zqu—_e" — Zn_l >(B+logB+1)—(logB+1) > B.
=1 n=1

By Proposition 2, this proves the theorem.

Proof of Theorem 3’. We proceed as in the proof of Theorem 2’. It
has to be shown that (4) has a solution in the range [2,Q/P(Q) + 1]. Let

Sl = {07y1} + {anQ} +...+ {O)ykfl} C Sly
Ry ={0,71} +{0,r2} +...+{0,r,_1} C R.

By Proposition 1, Ry contains a point r = >, ;r; (0 #1 C{1,2,...,k—1})
with ||| < 1/k.If r € [0,1/k], then consider the number s = rQ = . _; ¥;
(mod Q). Clearly, s solves (4) and |s| < Q/k = Q/P(Q). Since I # () we
have r # 0, so that s # 0. Since I # {1,2,...,k} we have s # 1. Therefore,
in this case s furnishes a solution of (4) as desired. If r € [1 — 1/k, 1), then
take J = {1,2,...,k} =T and " = ), ; ;. Then

S R (1 1+1]
Q QQ k]
Hence the corresponding solution of (4), namely s’ = r'Q = > . v, is
again in the required range. This completes the proof.

Proof of Theorem 4. Choose g1 arbitrarily. Assume that q1,¢qo, . ..
.., qx—1 have been chosen. The system of congruences

(5)  @g..-¢-1qi+1---gg—1r =1 (mod ¢;), i=1,2,....k—1,
clearly has a solution x modulo ¢1¢>...qx—1 = Qr_1. Any such solution is
relatively prime to Q1. By Dirichlet’s theorem on the existence of primes
in arithmetic progressions there exist infinitely many primes in the progres-
sion x + Qr_1N. Take one of these as gz.

For each k, define integers (depending on k) y;, 1 < i < k, in the range
[0, @k — 1] by the requirements

(©) y; =1 (mod ¢;),

Yy =0 (mod ¢;), 1<j<k, j#i
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Our construction guarantees that

Yi =4q1492 . - - q;—14;+1 - - - Gk, i:1,2,...,k§—1,

k—1
Y =Qr+1— Zyj (mod Q).

j=1
Putting
we consequently have
1
ri=—, =12 ...)k—1,
q;
1 9
re=14+—— — (mod 1).
Qk ; qj

Hence, setting Rj, = {0,71} +{0,r2} + ...+ {0,r,}, we obtain
— 1 1 K1
mep oot T o)
and therefore
] -1y -1
Rk:R;—@ C [O;q} U [1—;%,1)

Since, by our construction, the sequence ¢ may clearly be chosen with
> req 1/qx arbitrarily small, this concludes the proof.

Proof of Theorem 5. Basically, the idea is to get close to the situa-
tion of the example given in Remark 1. We start as in the proof of Theorem 4,
but instead of (5) require upon selecting each g that it satisfies the system

4

qqu...qil[k—‘qu...qul (mod qi), i:1,2,...,]{7—1.

Defining y; and r;, 1 < i < k, by (6) and (7), we obtain

di )
f‘/i:%%w-%‘1[];—‘%#1“-%7 i=1,2,..., k-1,

k—1
Yk = Qr +1— Zyj (mod Qy),

Jj=1
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and therefore

r, = s ’L:].,Q,. ,k_17
qi
k—1
1 [qi /K]
Qk ; qj
It follows that
1 1 )
ri—— | <—, i=12,...,k—1,
k Qi
whence
k—1
I 1 1
Z”ﬂ'"k‘ <N L Ic{L2.. k)
icl Jj=1 4 F

(where |I| denotes the cardinality of I). Consequently, if s # 0,1 is any
solution of (4), then s = >, v;, with

k-1
I 1 1
(L L),

Pl 7RO

Again, the sequence g; may clearly be chosen with >~ 1/gj arbitrarily
small, whence the theorem follows.
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