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1. Introduction. There are many different definitions of the group of
circular units of a real abelian field. The aim of this paper is to study their
relations in the special case of a compositum k of real quadratic fields such
that —1 is not a square in the genus field K of k£ in the narrow sense.

The reason why fields of this type are considered is as follows. In such a
field it is possible to define a group C of units (slightly bigger than Sinnott’s
group of circular units) such that the Galois group acts on C/(C?) trivially
(see [K, Lemma 2]).

Due to this key property we can easily compare different groups of cir-
cular units (see the conclusion of this paper).

2. The group C and the Sinnott group C’. Let k be a compositum
of quadratic fields and suppose —1 is not a square in the genus field K
of k in the narrow sense. This condition can be written equivalently as
follows: either 2 does not ramify in k and k = Q(\/d1,...,/ds), where
di,...,ds with s > 1 are square-free positive integers all congruent to 1
modulo 4, or 2 ramifies in k and there is a unique = € {2, —2} such that
k=Q(/dy,...,\/ds), where di, ..., ds with s > 1 are square-free positive
integers such that d; =1 (mod 4) or d; = = (mod 8) for each i € {1,...,s}.
In the former case, let

J={pe€Z:p=1 (mod 4), |p|is a prime ramifying in k},
and, in the latter case, let
J={z}U{p€Z:p=1 (mod4), |p|is a prime ramifying in k}.
For any p € J, let

S Ip| if p is odd,
P} 718 ifpis even.

[123]
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For any S C J let (by convention, an empty product is 1)
ng = H N{p}, (s = 62”i/”5, QS _ Q(€S)7 Kg = Q(\/f) :p € S)_
peS

It is easy to see that K; = K and that n; is the conductor of k. Let us
define

1 if S =09,
Eg = %NQS/KS(l - CS) if §= {P};
NQS/KS(l —Cs) if #5 >1,
ks = kN Kg and ng = Nk /s (€s) for any S C J. It is easy to see that eg
and ng are units in K¢ and kg, respectively.
For any p € J let 0, be the non-trivial automorphism in Gal( Ky /K j\ (p})-
Then G = Gal(K;/Q) can be considered as a (multiplicative) vector space
over Fy with Fo-basis {0, : p € J}. Let

X={ec G - &(o) =1 for all o € Gal(K;/k)},

where G is the character group of G. Then X can be viewed also as the
group of all Dirichlet characters corresponding to k. For any x € X let

Sy={p€ J:x(op) = —1}.
Let C be the group generated by —1 and by
{ng:SCJ, oeG}.

Let C' be the Sinnott group of circular units of k, i.e., the group of units in
the group generated by —1 and

{Ngs/gsre(1 = ¢s)7 10 € G, S C J, 5 # 0}

(see [L]). When we speak about a basis of a group of units we always have
in mind a basis of the non-torsion part.

PROPOSITION 1. The set {ns, : x € X, x # 1} is a basis of C and

[E:C] = ( I @ [k ksx])> Q2
xE€X
x#1

where h is the class number of k and E is the full group of units in k. The
set

{ns,:x€X, #S >1}U{ns :x€X, #5, =1}
is a basis of C' and [C : C'] = 2%, where
a=#{peJ:\pek}=#{xe X :#5, =1}
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Proof. The results concerning C' were proved in [K, Theorem 1]. It was
proved in [K, Section 4] that C” is generated by

{-1}U{ns: S CJ, #S>1}U{nfp}:p€J, p>0,.p€k}

It was shown in [K, proof of Lemma 5] that for any S C J such that S # S,
for all x € X there are ar € Z satisfying

ns == [ ni"
TCS
But 7 is totally positive if #7 > 1 (it is a norm from an imaginary abelian
field to a real one) while ng}% = —1 for any p € J such that \/p € k due to

[K, Lemma 1]. Thus a(, is even for all such p and the proposition follows.

3. The groups defined by Hasse, Leopoldt, Gras and Gillard.
To define all groups we are interested in we shall follow Gillard’s paper
[G]. Let F' be a real abelian field. Let £ be a non-principal Q-irreducible
Q-character on Gal(F/Q) with kernel denoted by ker& (i.e., £ is the sum
of all linear characters Gal(F/Q) — C* with kernel equal to ker§). Let F¢
denote the subfield of F' corresponding to ker, fe the conductor of F¢ and
G¢ = Gal(F¢/Q). It is easy to see that G¢ is a cyclic group. Let ¢, = ¢>™¥/"
for any positive integer n. Then we define

O = [ [(Core — G10)°
where the product is taken over all o € Gal(Q((y,)"/F¢) and & means an
extension of o to Q((ay, ). Thus 0 is well-defined up to sign and

(_1)8(5)0?( - NQ(Cfg)/Fﬁ(]' = (o) € Fe,

where s(¢) = [Q(Cs, )" : Fe]. For any a € G fix some v/(02)* and denote it
by 0. This definition can be extended to a € Z[G¢] by linearity.

Suppose that for any such £ # 1 we have an ideal I¢ C Z[G¢|. Then we
can consider the group [, {+0¢ : @ € I¢}. For some special choices of
I we obtain the following interesting groups. The Leopoldt group of formal
cyclotomic units C(©) is obtained if I¢ is the ideal generated by

Ve = H(l - Un/p)’
pln
where o is a generator of the cyclic group G¢ of order n, and p in the product
runs through all primes dividing n. We obtain the Hasse group C'V) if I
is the augmentation ideal of Z[G¢] (i.e., I¢ is generated by o — 1, where o
denotes a generator of G¢). We get the Gillard group c® if

I = {a € Z|G¢] : 0¢ is a unit in F'}
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and the Gras group C® (for F not necessarily cyclic) if

I = {a € Z|G¢] : 0¢ is a unit in Fg}.
Finally, the Leopoldt group of cyclotomic units H is the intersection ENC¥
where CY) is obtained if Iy = Z[G¢].

Now, consider these groups for F' being our field k. So we need not
distinguish between linear characters and Q-irreducible Q-characters. For
any x € X, x # 1, the field F is a quadratic subfield of kg, . The conductor
of F\ is fy = ns,,so (. = (s, . Moreover, s(x) = igo(fx) is odd if and only
if Sy ={p}andp=2or|p|=p=5 (mod 8) or if S, = {p,q} and p # ¢
are odd and negative. If S, = {p} then p > 0, ks, = Ks5_= Fy = Q(\/p)
and

(—=1)*X62 = Ngsy (1= Cs,) = /D €s, -
On the other hand, if #S, > 1 then

(1) (—1)*02 = Ngsx/r, (1 = (s,) = Nig_/r, (ns,)-

Fix some o, € Gal(ks, /Q) \ Gal(ks, /Fy) for any x € X, x # 1. Then
Gal(Fy/Q) = {1,04|r }. It is easy to see that C(©) = C) is generated by
—1 and by

{0, :x e X, x#1}
and that this set is a basis because the number of elements involved is
precisely the Z-rank. If S, = {p} then

2
pe
2\1—0y _ l—op _ {r} _ 2,2
(0%) "7 = (Vpegy) " = (Vpegy)itor =T

by [K, Lemma 1] and because Ks_ = kg . Let us concentrate on the case
where #S, > 1. Then
Nis, /5 (05,)°

92 1—0oy =N ns l1—0oy —
( X) k?sX/FX( x) NkSX/Q(nSX)

= NkSX/FX (nsx)Qv

because Ny /q(ns,) = Ngsy jg(1 — (s, ) = 1. Therefore (recall that 6, can

be outside of kg, and that 0,1(_0" is determined only up to sign in this case)

(2) 0,7 = £Ny, s, (1s,)-

Let o € Gal(ks, /Fy),s0 x(0)=1. Choose T C Sy such that =[] 7 op|s, -
Then

1=x(0) = [] x(op) = (-1)*7,

peT
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and
1—o _ 1-Tperop _ H 1+op Hger, g<p(—0q)
Ns, = Ms, = (nsx ) .
peT
Of course,
ltop _ — [Ks, ks, Ks \{p}]
sy = Nks, /Koy (152) = N, Ko gy /K (18,) XTI

1—Frob(|pl|,k ) .
— (:l:’l’}sx\{p} SX\{P} )[KSX kSXKSX\{p}]

by [K, Lemma 4], because ks, N Kg \(p} = kg \{p}- Therefore

l—oc __ 2ap
ns,” =+ [ &
RCS,,

for suitable integers ar due to Lemma 3 of [K]. So
(3) 0, 7 = +Nis /p, (03,)

o ks, :Fy]
oeGal(ks, /Fy) RCSy

for suitable integers br. But {ns, : x € X, x # 1} is a basis of C' and if
some 7g is not in this basis then it can be written as a combination of ng:,
where R C R (see [K, Theorem 1 and the proof of Lemma 5]). We have
proved the following

PROPOSITION 2. The set {Gi_ax cx € X, x # 1} is a basis of C0) =
cM C C and

[C:CO= T ks, : Bl = [] (3lks, : Q).
xeX x€X
x#1 x#1
For studying C® and C'® we need to know when 0y € k and 0, € F,,
respectively. We shall suppose that #S5, > 1, because 6, is not a unit if
#S, = 1. If s(x) is odd then —62 = Ngsy g (1 = Cs,) > 0, so 6 is pure
imaginary and 6, ¢ k. Suppose now that s(x) is even. Recall that x can
be considered as an even Dirichlet character modulo f, = ngs, . We need to
distinguish two cases.
First, suppose that ng,_is odd. Let ¢ = min S, and write |¢| — 1 = 20. ¢
with c odd. Let 9 be a Dirichlet character modulo |g| of order 2°, so ¥ (—1) =
—1, and let

A={aecZ:1<a<fy, x(a)=1, (¢(a) =1o0r Imyp(a) > 0)}.

It is easy to see that for any o € Gal((Q%)*/F,) there is precisely one
a € A such that o is the restriction to (Q°x)* of the automorphism of Q“x
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sending (g, to ng. Therefore
o= [J —¢),
acA

where ¢ = Cétff’()ﬂ. We want to prove that 0, € F,. Choose any o €

Gal(Q% /F,). If y is determined by o((s, ) = ng then we define
Ay ={a€ A:¢Y(ay) =1 or Ime(ay) > 0},
Ay ={a € A:¢Y(ay) =—1 or Ime(ay) < 0}.

Because x(y) = 1 and x(—1) = 1, the mapping f : A — A defined by
f(a) = ay (mod f,) if a € Ay, and f(a) = —ay (mod f,) if a € Ay, is a

permutation. Therefore

o(6y) = [J (v &)

acA
- ( G 5*}“(@))) ( I ISGRE gf(a)))
a€A; a€As
= (_1)#A2 'GX'

It is easy to see that #4 = 2o(fy) = s(x) and that #{a € A : ¥(a) =
P(ag)} = 2170s(x) for any fixed ag € A. But A, is a disjoint union of such
sets involving some ag, so 21 7%s(x) | (#A42). If ¢ < 0 then |g| = 3 (mod 4), so
b=1, s(x) | (#Az2) and #A; is even. If ¢ > 0 then also ¢’ = min(S, \ {¢}) >
q > 0 (recall #S5, > 1) and ¢ =1 (mod 4). Thus

_ . qg -1
217s(x) = 27 "p(fi) = e Il #® =0 (mod2)
pES\{a,a’}

and # Az is again even. We have proved that 0, € F, if ng_is odd and
either #S5, > 2 or Sy, = {p, ¢} with p > 0 and ¢ > 0.

Now, suppose that ng, is even. Then ng_= 8n for some odd n > 1 and
s(x) = ¢(n). Directly from the definition we have

(4) 0y = [ [(Chon — Giem)s

a

where the product is taken over all integers a satisfying 0 < a < 16n and
Xx(a) = 1 which are congruent to 1 or to 5 modulo 16. It is easy to see that
there is y = 5 (mod 16) such that x(y) = 1. Let 0 € Gal(Q((16n)/Q) be
determined by ({5, = (Vg,- Then o € Gal(Q(C16,)/Fy) and

—1
o—1 a —a a —a
ex = ( H (<16n - ClGn)) ( H (<16n - ClGn)) :
0<a<16n 0<a<16n
x(a)=1 x(a)=1
a=5,9 (mod 16) a=1,5(mod 16)
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Of course, a =9 (mod 16) if and only if a +=8n =1 (mod 16), so

0;71 _ (_1)#{a€Z:O<a<16n,X(a):LaEQ(mod 16)} _ (_l)ap(n)/2.

Consider any automorphism 7 € Gal(Q(Ci6,)/Fy) and let 2 € Z be such
that ({g,, = (Tons 0 X(x) = 1. If 2 =1 (mod 4) then there is j € {1,...,4}
satisfying 57z = 1 (mod 16), so ¥’z = 1 (mod 16) and o/7 acts on 6,
identically, because it only permutes the terms in the product (4). Thus in
this case
1 _ poir—1(po—1\— (@ 4. 417 jo(n)/2

ot = oy ) _ (1
On the other hand, if + = —1 (mod 4) then we can consider 7/ €
Gal(Q(Ci6n)/Fy) satistfying ({5, = Cig, (recall that x(—1) = 1 because
F, is real). Because

(Cisn = Cien)™ = —(Cln — C1et)™

and there is an even number of terms in the product (4), we have 67 = 9;/.

We have proved that 6, € F, if and only if ¢(n) is divisible by 4. If
#S, > 2 then there are at least two different primes dividing n and 4| ¢(n).
If S, ={2,p} then \/2p € k, sop >0 and n =p =1 (mod 4), hence again
4|¢(n). Finally, if S, = {—2,p} then /—2p € k,sop<Oandn=—-p=3
(mod 4), in which case 4 does not divide ¢(n). We shall prove that in the
last case even 0, ¢ k. Indeed, if 7 € Gal(Q(Ci6n)/Fy(V2)) and if z € Z
satisfies (fg, = ({5, then z = +1 (mod 8) and 67" = 1 by the previous
computation. But this means that 6, € F,(v/2). So v/2 € F,(6,) C K (6,)
but v2 ¢ Ky, because v—1 ¢ K; and v/—2 € K in this case. Thus
Ky # K;(0,), which implies 0, ¢ k C K.

PROPOSITION 3. Let J* ={pe J:p>0}and J- ={pe J:p<O0}.
Then the set

{0, :x€X, #5,>2, 8, CJV if #5, =2}
U{Hi_”X:XeX, #Sy=1o0r2 5, CJ if #S, =2}
is a basis of C? = C®). The set
{0y :x € X, [ksx :Q]>2}U{0>1<_”X:XeX, [ksx:(@]:2}

is a basis of CPNC. Moreover, [C? : C0] = 2 and [C?) : CP)N(C] = 2,
where
b:#{XEX:#Sx227 ngj+ if #Sx:2}’
c=#{x€X : #5, 22 [ks, : Q=25 CJif #5,=2}
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Proof. Let x € X, x # 1. We have shown in the previous computation
that 6, € k if and only if 6, € F,, and that this is the case if and only if
#S, > L and S, C JT if #5, = 2. Thus C® = CO). If #3, > 1 then
0% = i&}("x by (1) and (2), so a basis of C?) can have the above described
form.

If ks, = F), then 6 7% = +ns_by (2). If ks, # F\ then #S, > 1 and

ks, :Fy]/2
(5) 0, = 02T

RGCS,,
for suitable br € Z by (3). But {ns, : x € X, x # 1} is a basis of C' by
Proposition 1, hence
{0 :x € X, #Sy >2, ks # Fy, Sy CJTif #5, =2}
U{Hifox x€X, x#1, (ks, = Fy or #S, =1

or (#Sy =2and Sy, CJ7))}
is a basis of C® N C, because if Y € X satisfies ks, = Fy, then S\, € Sy
for any x’ € X such that 1 # x’ # x. Of course, if #S, = 1 then kg_= F,.
If #5¢ =2 and S, C J7, then again kg = F\. It is clear that ks = F)
if and only if [ks, : Q] = 2. Hence this basis is of the stated form and the
proposition follows.

Let us study Leopoldt’s group H now. We have seen that 6, € E for any
X € X such that #S, > 2 or such that #S, = 2 and S, C J*. Moreover, if
Sy = {p} then 6, has non-zero |p|-adic valuation. Therefore H is generated
by —1 and

{0, :x € X, #S, >2, S, CJTif #S, =2}

U{Oi_gx ix € X, #szl}u{ H 0% Ek‘:aXEZ},
XEX1
where X7 = {x € X : #5, =2, S, C J~}, because 0>1<+UX is a root of unity
for x € X;. Thus we need to find when [ ., 03 € k for a, € Z.
First, suppose that x € X; and that Sy = {p, ¢} with p and q odd. Then

ex = | | (§* =& € K{p,q}’
1<a<pq
(=(p)=1

where £ = CE;Z};@/Q- The complex conjugation on Ky, 41 is 0,04, SO
o= T (€ -e)=—by,

1<a<pq
)

(12)=(i2p)=1
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because |p| = |¢| =3 (mod 4). Hence if 0 = []
S C J, then

pes Op € Gal(K ;/k) for some

0o — {9x if S, NS =0,
X -0, ifS, CS

(it is clear that #(Sy NS) = 1 is not possible because Q(,/pq) = F C k).

Now, suppose that x € X; and that S, = {—2,¢}. Then 6, ¢ K; but
0, € K;(v/2). It is clear that K;(v/2) = K;(y/—1) in this case. So we need
to extend our automorphisms o, to K;(v/—1): for any p € J let o, be the
non-trivial automorphism in Gal(K;(v/—1)/K 1 (v/—1)), and let o_; be
the non-trivial automorphism in Gal(K ;(v/—1)/K ). Then

C{iz} = C{f2}> C{__§} = C}?_z} and Cg__;} = C?_Q}a

s0 072 =07 = —0,, while 05" = 0y, due to the computations preceding
Proposition 3.
Suppose that o = [[ g0, € Gal(K;/k) for some S C J. Then we have

two extensions of o to K ;(v/—1), namely ¢’ and o’c_1, where ¢/ = [Les0p
and
(H gix)a — <_1)2x€X1,SX§S‘lX H 04,
(6) xE€X1 3 xE€EX1
(H 9;x> T (1) Sxexanx IT ¢z,
xX€X1 XEX1

where Xo = {x € X;: -2€5,}.
Consider the equivalence relation on J~ defined by

p~q if and only if /pq € k.
Let us show that if p # ¢ then p ~ ¢ if and only if there is x € X such that
Sy = {p,q}. Indeed, if x € X; and S, = {p,q}, then Q(/pq) = Fy C k,
so p ~ q. On the other hand, if \/pq € k for p,q € J=, p # ¢, then x € G
defined by

_ -1 ifte{p.q},

xlox) = {1 ift € J\ {p.q},
satisfies x(o) = 1 for any o € Gal(K;/Q(\/pq)), hence x € X and S, =
{p,q}. It is easy to see that if

o =[] op € Gal(K,/k),
peES

then for any class T € J~ /~either T C Sor TNS=0.1f Xo ={x € X1 :
—2 € S, } is not empty, fix xo € Xo. Then (6) implies that 6,6, € k for any
X € Xo. For any class T' € (J~ \ {—2})/~ satisfying #7T > 1, fix xr € X;
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such that S,, C 7. Then (6) implies that 6,0, € k for any x € X;, where
T e (J7 \ {—2})/~ satisfies S, C T. Hence we need only find when

11 057 €k,
Te(J \{-2})/~
#T>1

where ar € Z.

Let Jyp be the union of all T € (J~ \ {—2})/~ such that #T" > 1. If
Jo =0 then X; = X5, #X5, <1 and H = C®. Suppose that Jy # 0. Then
~ can be considered as an equivalence relation on Jy and ¢, € K, for any
X € X1\ Xs2. So (6) implies that

H 057 € k if and only if Z ar =0 (mod 2)

TEJy/~ TeJo/~
TCS

for all S C Jy such that H op € Gal(Ky, /ky,)-
p€eS
Choose S1,...,5; C Jy such that the restrictions of
T = H Ops ooy T = Hap
PESL PES:

form a basis of the (multiplicative) vector space Gal(K ,/kj,) over Fy. We
shall prove that the equations

(7) Y oar=0, i=1,...,1

over Fy are linearly independent. Indeed, suppose that thereis L C {1,...,1}
such that

#{ieL:TCS;} =0 (mod 2)
for all T € Jy/~. Now, for any p € Jy there is T' € Jy/~ such that p € T
But for any ¢ € {1,...,l}, we have p € S; if and only if T C S;. Therefore
#{ie€ L:peS;}iseven for all p € Jy. Thus

€L pEJo

But this means that L = () because 71,...,7; is a basis. The equations in
(7) are then linearly independent. So there are [ classes C1,...,C; € Jy/~
such that (7) is equivalent to

(8) o, = Z bT,ixT, 1= 1, ‘e ,l,
TeR

for suitable elements br; € Fa, where R = (Jy/~) \ {Ci,...,C;}. Thus
HTEJO/N 037 with ap € Z is in k if and only if 7 = ar + 2Z is a solution
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of (8), where we have identified Fy = Z/27Z. Therefore
{6, :x€X, #S,>2,5, CJ"if #3, =2}
U {0;7% ix €X, #S, =1} U{6,0,, : x € Xo}
U{0,0y, :x € X0\ Xo, T € (J-\{—-2})/~ with S, CT, x # xr}

l
u{eXTHev;g; :TeR}U{Gf{CZ_ i=1,...,0)
1=1

is a basis of H, where each element by ; € Fs, used in (8), is understood as
the integer 0 or 1.

PROPOSITION 4. Let J~- ={pe J:p <0}, Jo={pe J \{-2}:
VPq € k for some q € J7\ {—=2} with q # p} and d = #{x € X : #Sy =
2, Sy € J7}. Let dy =1 if there is an odd p € J~ such that /—2p € k,
and dy = 0 otherwise. Then
2d7do

[H:C(2)]:7[KJ T

Moreover, HNC = C@ N C.

Proof. The former equality can be obtained directly by comparing the
basis of C?) (see Proposition 3) with the basis of H described above. To
prove the latter equality, let us compare the basis of H with the basis of C
(see Proposition 1). If #5, = 1 then 9;70’( = +ns,, which is an element
(up to sign) of both bases. So we need to find when

€= H H;XEk:

XEX
#Sy>1

with ¢, € Z is an element of C. We shall prove that ¢ € C if and only if
cylks, : Fy] is even for all x € X with #S5, > 1.
Fix some linear ordering < on X such that
Sy ESy = x <9

for any x,1 € X. As we mentioned in the proof of Proposition 1, for any
S C J such that S # S, for all x € X, there are ar € Z satisfying

ns ==+ [ ni"
TCS
Therefore (3) implies that for any x € X such that #S, > 1,

ks, :Fy] 2b
SRR |

peX\{1}
h=<x
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for suitable integers b, . Thus, with respect to the basis of C, 2 has the
following form:

H g2ex = & H (cx[ksx H ngszx,w)_

x€X xeX peX\{1}
#SX>1 #SX>1 PY<x

It is easy to see that ¢ € C if and only if the exponent of ng, in this
expression is even for each ¢ € X \ {1}. This exponent is

Z 2¢y by o1 k‘sd Z 2¢y by

xX€X x€X
Y=<x P=<x

depending on whether #S, = 1 or #Sy > 1. Hence € € C' if and only if
cylks, : Fy] is even for all x € X with #S5, > 1.

Now we can use the basis of H described before the proposition to obtain
the following basis of H N C"

{0y :x€X, #5y > 2, kg, #FJU{, 7 :x e X, #5, =1}
U{6:x €X, #S >2, ks =F},

because ks = F, for any x € X;. But that is (maybe, up to some signs)
the basis of C®) N C given in Proposition 3.

4. Sinnott’s group of square roots and Washington’s group. Let
C1 be the group defined in [S, p. 209], namely

Ci={e€cE: e
Similarly, define
Ci={c€cE:?cC}.

Finally, let C” be the group of cyclotomic units defined in [W, p. 143],
namely the intersection of E' and the group of cyclotomic units in the small-
est cyclotomic field containing k.

ProposITION 5. C; = (.

Proof. Because C' C C, we have C] C C directly from the definitions.
Suppose that € € C1. Then ¢ € E and €2 € C. By comparing the bases of
C’ and C in Proposition 1, we see that there are ¢’ € C' and S C {p € J:

/P € k} such that
82 =¢ H N{p}-

peES

But C’ is generated by —1 and norms from imaginary abelian fields to real
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ones, so £’ is totally positive or totally negative. If ¢ € S then

l1—0oy4 .
(H 77{17}> - n%q} '= _n%q} <0
peS

by Lemma 1 of [K]. Of course, €2 is totally positive. Therefore S = () and

g2 =¢' € (. So € € C] and the proposition follows.

LEMMA. Let S C J. If #5 =1 then ng is a cyclotomic unit in the ng-th
cyclotomic field. If #S > 1 then ng or —ng is the square of a cyclotomic
unit in the ng-th cyclotomic field and \/ng is in the mazimal real subfield

of Ks(v—1).

Proof. We shall distinguish two cases depending on the parity of ng.
First, suppose that ng is odd. Let £ = Cngns)/z; then

o = NQS/K;:(l - CS) = NQS/K;(_g)NQS/K;(g - 5_1) = NQS/Kg(ﬁ — f_l),

where we have used the fact that Ngs / o+ (=€) is a totally positive root of
S
unity. First, let S = {p}. Then

+1  if pék,
ns—{\}ﬁa if \/p € k.

Of course, p > 0 in the latter case, so p = 1 (mod 4), a'™» = p (by
Lemma 1 of [K]) and

p—1 . (p—1)/2 2
g =a =T @ = (] € -e9P),
a=1 a=1

which is the square of a cyclotomic unit in the pth cyclotomic field.
Now, suppose that #5 > 1 and that Kg is imaginary. Then

o= NKS/K; (Nos ks (€ — )
= (1)@ KsINgs e (6 — €712

Let 79,...,7 be a basis of the (multiplicative) vector space Gal(Kg/kg)
over o, where 1y is the complex conjugation. Let L be the subfield of Kg
whose Galois group is generated by 71,..., 7. Then

s = Nyt g (@) = Nig /() = (_1)[QS:L]NQS/L(£ -2

Therefore \/ns € L(v/—1) C Kg(v/—1). Moreover, ng is totally positive, so
V/Ns is real. The lemma follows in this case because Ngs ,1,(§ — ¢ Hisa
cyclotomic unit in the ngth cyclotomic field.
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Now, suppose that #S > 1 and that Kg is real. Then all p € S are
positive and

a= [ —¢),

acA
where

A:{aGZ:lgagns, (%)zlforallpGS}.

Choose ¢ € S and write ¢ — 1 = 2° . ¢ with ¢ odd. Let 1 be a Dirichlet
character modulo ¢ of order 2%, so 1)(—1) = —1, and let

B={a€ A:¢(a)=1o0r Imy(a) > 0}.

Then A= BU{ng —a:a € B} is a disjoint union, so

a= (D[] -

a€eB
Of course,
1 Clpp-1
#3—5(#14)—51_[7
peS
is even. Let
p=1JE -¢.

a€B
We shall show that 8 € Kg, which means

B = H (€W — &) for any y € A.
a€EB

Fix y € A and define the mapping g : B — B by the following congruence
modulo ng: for any a € B,

g(a) = {ay if Y(ay) =1 or Im¢(ay) > 0,
| —ay ifY(ay) = —1 or Imey(ay) < 0.

It is easy to see that g is a permutation and that

[L =& = (0" JL (e —¢o@) = (-1)*F'p,

acB a€B
where B’ = {a € B: g(a) = —ay (mod ng)}. We have

#{a € A:(a) = v(ag)} = 2" (#4)
for any fixed ag € A. But B’ is a disjoint union of such sets involving some

ag, so #B’ is divisible by

_ -1
2! b(#A):C H pT’

pe€S\{q}
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which is even. Thus f € Kg and ns = Ny, (@) = N, s (8)?. The
lemma is proved if ng is odd because (§ is a cyclotomic unit in the ngth
cyclotomic field.

Now, let us deal with the case of ng being even. If S = {—2} then ng = 1.
If S = {2} then ng = —1 + /2 or 5 = —1 depending on whether v/2 € k
or not. It is easy to check that

14 V2= —(p(1 = Cay) (1 = (o)™
is a cyclotomic unit in the eighth cyclotomic field.
Now, suppose that #S5 > 1. Then

es = [[(1 ¢,

where the product is taken over all positive integers a < ng satisfying (ﬁ

1 for all odd p € S such that a = £1 (mod 8) if 2 € S or a = 1,3 (mod 8)
if =2 € 8. Let £ = e™/™s_ g0 €2 = (s.

First, suppose that Kg is imaginary. Let 7 be the complex conjugation
on Q(§). Because ng =8 (mod 16), we have

es =[] -¢a - =T -9,

a a

where the products are taken over all positive integers a < 2ng satisfying
(ﬁ) =1 for all odd p € S such that a = +1 (mod 16) if 2€ Sora=1,3

(mod 16) if —2 € S. The number of terms in these products is even, so
};” = 32, where

9) p=]JE —¢,

with a running through the same set as above. We need to prove that
B € (Ks(v/—1))T. For any o € Gal(Q(£)/Kgs(v/—1)) there is an integer
y satisfying y = 1 (mod 8) and (%) =1 for all odd p € S such that £7 = &Y.
It is clear that if y = 1 (mod 16) then o only permutes the terms in the
product (9), so 7 = [ in this case. If y =9 (mod 16) then ¢ = y+ng =1
(mod 16) and ¢¥' = —¢¥. Moreover, (%) =1forallodd pe S, so

o7 =l - =[I(- -y =5

a a
in this case, too. It is easy to see that 3 is real, so 8 € (Ks(v/—1))*. It is
clear that 3 is a cyclotomic unit in the ngth cyclotomic field and the lemma
is proved in this case, since ng = NKg/ks (3?).
Finally, suppose that Kg is real. Then all p € S are positive and

es=[[0 - -G =TlE -

a a



138 R. Kucera

with the products taken over all positive integers a < ng such that a =1
(mod 8) and (%) = 1 for all odd p € S. The number of terms in these
products is even, so eg = (32, where

(10) =1 -¢),

where a in the product runs through all integers satisfying 0 < a < 2ng
and ¢ = 1 (mod 16) such that (%) = 1 for all odd p € S. Let us show
that 0 € Kg. For any o0 € Gal(Q(£)/Kg) there is an integer y satisfying
€% = &Y such that y = £1 (mod 8) and (%) = 1for all odd p € S. It is
clear that if y =1 (mod 16) then o only permutes the terms in the product
(10). If y =9 (mod 16) then o also changes the sign of each term in (10).
But the number of terms in the product (10) is even, so 32 = [ in both
previous cases. If y = —1 (mod 8) then we have proved that 577 = 3, where
7 is the complex conjugation on Q(&). But (3 is real, so 8 € Kg. It is clear
that (8 is a cyclotomic unit in the ngth cyclotomic field and the lemma is
proved.

PROPOSITION 6. Let 29 = [C' : {1,—1} x (C})?]. Then H C C} C C”
and
(€} ) = 2lk:W=1-g,
Moreover, 29 is a divisor of [Kj : k.

Proof. The fact that [C" : {1,—1} x (C})?] is a power of 2 follows
from the inclusion " C Cf. By (1) and (2) we have 67 = +0, " for any
X € X such that #S5, > 1. The form of the basis of H before Proposition
4 gives H C (', because 0)1(_03‘ € C by Proposition 2. But C; = C] by
Proposition 5.

Let ¢ € C}]. Then € € E and €2 € C'. The Lemma gives that any element
of the basis of C” given in Proposition 1 is (up to sign) the square of a
cyclotomic unit in the njth cyclotomic field. Thus € is a cyclotomic unit in
this field and € € C”.

The formula follows from

29 [CY : C'] = [C] : {1, =1} x (C4)?] = 2lQ-1,

It remains to show that 29 is a divisor of [K; : k]. Let C{ be the group of
totally positive elements of C’. Proposition 1 gives that

{ns, 1 x € X, #SX>1}U{77?;X:><€X, #S, =1}

generates C. The Lemma implies that \/z € (K;(v/—1))" for any € € CJ.
Of course,

(C)2=1{ceCl: Veek)
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Because C’ = {1,—1} x C{, we have
29 = [C = (C?] | [(Ks(V=1)" : k] = [Ky : K].

The proposition is proved.

5. Conclusion. Let us put together all the propositions. We have shown
that the groups of cyclotomic units we are interested in form the following
ordered set with respect to inclusion.

E

C//

c® =B | ¢

c?Pnc=HnC

o0 — o)

a=#{x € X :#S5x =1},

b=#{x € X : #Sy > 2, S, C JT if #5, =2},
c=#{x € X :#Sx > 2, ks, :Q =2, Sy CJTif #Sy =2},
d=#{xeX #Sx=2, SxCJ },

soa+b+d=[k:Q] -1,

JT={peJ:p>0},

J ={peJ:p<0},

Jo={p€J :podd, \/pq € k for some odd q € J~ with ¢ # p},

do — { 1 if there is an odd p € J~ such that v/—2p € k,
0 0 otherwise,

gEZ, 0<g<b+d, 27|[K;: k]
meca) =2 ([ @ tsks D) ks @2,

xXEX
x#1
[C1:C) =209,
[C:C' =27
(O H) = 29791y, kg ) T 3+ ks, QD).
X€X
x#1

(H:CP) =2t K, k7!,
c®.c®nc)=2°,

@ nc.c0) =2t
c:c®ncp=20" H (3 - ks, - Q)).

xEX
x#1
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