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Different groups of circular units
of a compositum of real quadratic fields

by

Radan Kučera (Brno)

1. Introduction. There are many different definitions of the group of
circular units of a real abelian field. The aim of this paper is to study their
relations in the special case of a compositum k of real quadratic fields such
that −1 is not a square in the genus field K of k in the narrow sense.

The reason why fields of this type are considered is as follows. In such a
field it is possible to define a group C of units (slightly bigger than Sinnott’s
group of circular units) such that the Galois group acts on C/(±C2) trivially
(see [K, Lemma 2]).

Due to this key property we can easily compare different groups of cir-
cular units (see the conclusion of this paper).

2. The group C and the Sinnott group C ′. Let k be a compositum
of quadratic fields and suppose −1 is not a square in the genus field K
of k in the narrow sense. This condition can be written equivalently as
follows: either 2 does not ramify in k and k = Q(

√
d1, . . . ,

√
ds), where

d1, . . . , ds with s ≥ 1 are square-free positive integers all congruent to 1
modulo 4, or 2 ramifies in k and there is a unique x ∈ {2,−2} such that
k = Q(

√
d1, . . . ,

√
ds), where d1, . . . , ds with s ≥ 1 are square-free positive

integers such that di ≡ 1 (mod 4) or di ≡ x (mod 8) for each i ∈ {1, . . . , s}.
In the former case, let

J = {p ∈ Z : p ≡ 1 (mod 4), |p| is a prime ramifying in k},
and, in the latter case, let

J = {x} ∪ {p ∈ Z : p ≡ 1 (mod 4), |p| is a prime ramifying in k}.
For any p ∈ J , let

n{p} =
{ |p| if p is odd,

8 if p is even.

[123]
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For any S ⊆ J let (by convention, an empty product is 1)

nS =
∏

p∈S
n{p}, ζS = e2πi/nS , QS = Q(ζS), KS = Q(

√
p : p ∈ S).

It is easy to see that KJ = K and that nJ is the conductor of k. Let us
define

εS =





1 if S = ∅,
1√
pNQS/KS (1− ζS) if S = {p},

NQS/KS (1− ζS) if #S > 1,

kS = k ∩KS and ηS = NKS/kS (εS) for any S ⊆ J . It is easy to see that εS
and ηS are units in KS and kS , respectively.

For any p ∈ J let σp be the non-trivial automorphism in Gal(KJ/KJ\{p}).
Then G = Gal(KJ/Q) can be considered as a (multiplicative) vector space
over F2 with F2-basis {σp : p ∈ J}. Let

X = {ξ ∈ Ĝ : ξ(σ) = 1 for all σ ∈ Gal(KJ/k)},
where Ĝ is the character group of G. Then X can be viewed also as the
group of all Dirichlet characters corresponding to k. For any χ ∈ X let

Sχ = {p ∈ J : χ(σp) = −1}.
Let C be the group generated by −1 and by

{ησS : S ⊆ J, σ ∈ G}.
Let C ′ be the Sinnott group of circular units of k, i.e., the group of units in
the group generated by −1 and

{NQS/QS∩k(1− ζS)σ : σ ∈ G, S ⊆ J, S 6= ∅}
(see [L]). When we speak about a basis of a group of units we always have
in mind a basis of the non-torsion part.

Proposition 1. The set {ηSχ : χ ∈ X, χ 6= 1} is a basis of C and

[E : C] =
( ∏

χ∈X
χ 6=1

(2 · [k : kSχ ])
)
· [k : Q]−[k:Q]/2 · h,

where h is the class number of k and E is the full group of units in k. The
set

{ηSχ : χ ∈ X, #Sχ > 1} ∪ {η2
Sχ : χ ∈ X, #Sχ = 1}

is a basis of C ′ and [C : C ′] = 2a, where

a = #{p ∈ J :
√
p ∈ k} = #{χ ∈ X : #Sχ = 1}.
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P r o o f. The results concerning C were proved in [K, Theorem 1]. It was
proved in [K, Section 4] that C ′ is generated by

{−1} ∪ {ηS : S ⊆ J, #S > 1} ∪ {η2
{p} : p ∈ J, p > 0,

√
p ∈ k}.

It was shown in [K, proof of Lemma 5] that for any S ⊆ J such that S 6= Sχ
for all χ ∈ X there are aT ∈ Z satisfying

ηS = ±
∏

T(S
ηaTT .

But ηT is totally positive if #T > 1 (it is a norm from an imaginary abelian
field to a real one) while η1+σp

{p} = −1 for any p ∈ J such that
√
p ∈ k due to

[K, Lemma 1]. Thus a{p} is even for all such p and the proposition follows.

3. The groups defined by Hasse, Leopoldt, Gras and Gillard.
To define all groups we are interested in we shall follow Gillard’s paper
[G]. Let F be a real abelian field. Let ξ be a non-principal Q-irreducible
Q-character on Gal(F/Q) with kernel denoted by ker ξ (i.e., ξ is the sum
of all linear characters Gal(F/Q)→ C× with kernel equal to ker ξ). Let Fξ
denote the subfield of F corresponding to ker ξ, fξ the conductor of Fξ and
Gξ = Gal(Fξ/Q). It is easy to see that Gξ is a cyclic group. Let ζn = e2πi/n

for any positive integer n. Then we define

θξ =
∏
σ

(ζ2fξ − ζ−1
2fξ)

σ̄

where the product is taken over all σ ∈ Gal(Q(ζfξ)
+/Fξ) and σ means an

extension of σ to Q(ζ2fξ). Thus θξ is well-defined up to sign and

(−1)s(ξ)θ2
χ = NQ(ζfξ )/Fξ(1− ζfξ) ∈ Fξ,

where s(ξ) = [Q(ζfξ)
+ : Fξ]. For any α ∈ Gξ fix some

√
(θ2
ε)
α and denote it

by θαξ . This definition can be extended to α ∈ Z[Gξ] by linearity.
Suppose that for any such ξ 6= 1 we have an ideal Iξ ⊆ Z[Gξ]. Then we

can consider the group
∏
ξ 6=1{±θαξ : α ∈ Iξ}. For some special choices of

Iξ we obtain the following interesting groups. The Leopoldt group of formal
cyclotomic units C(0) is obtained if Iξ is the ideal generated by

γξ =
∏

p|n
(1− σn/p),

where σ is a generator of the cyclic group Gξ of order n, and p in the product
runs through all primes dividing n. We obtain the Hasse group C(1) if Iξ
is the augmentation ideal of Z[Gξ] (i.e., Iξ is generated by σ − 1, where σ
denotes a generator of Gξ). We get the Gillard group C(2) if

Iξ = {α ∈ Z[Gξ] : θαξ is a unit in F}
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and the Gras group C(3) (for F not necessarily cyclic) if

Iξ = {α ∈ Z[Gξ] : θαξ is a unit in Fξ}.
Finally, the Leopoldt group of cyclotomic units H is the intersection E∩C(4),
where C(4) is obtained if Iξ = Z[Gξ].

Now, consider these groups for F being our field k. So we need not
distinguish between linear characters and Q-irreducible Q-characters. For
any χ ∈ X, χ 6= 1, the field Fχ is a quadratic subfield of kSχ . The conductor
of Fχ is fχ = nSχ , so ζfχ = ζSχ . Moreover, s(χ) = 1

4ϕ(fχ) is odd if and only
if Sχ = {p} and p = 2 or |p| = p ≡ 5 (mod 8) or if Sχ = {p, q} and p 6= q
are odd and negative. If Sχ = {p} then p > 0, kSχ = KSχ = Fχ = Q(

√
p)

and

(−1)s(χ)θ2
χ = NQSχ/Fχ(1− ζSχ) =

√
p · εSχ .

On the other hand, if #Sχ > 1 then

(1) (−1)s(χ)θ2
χ = NQSχ/Fχ(1− ζSχ) = NkSχ/Fχ

(ηSχ).

Fix some σχ ∈ Gal(kSχ/Q) \ Gal(kSχ/Fχ) for any χ ∈ X, χ 6= 1. Then
Gal(Fχ/Q) = {1, σχ|Fχ}. It is easy to see that C(0) = C(1) is generated by
−1 and by

{θ1−σχ
χ : χ ∈ X, χ 6= 1}

and that this set is a basis because the number of elements involved is
precisely the Z-rank. If Sχ = {p} then

(θ2
χ)1−σχ = (

√
p ε{p})1−σp =

pε2
{p}

(
√
p ε{p})1+σp

= ε2
{p} = η2

{p}

by [K, Lemma 1] and because KSχ = kSχ . Let us concentrate on the case
where #Sχ > 1. Then

(θ2
χ)1−σχ = NkSχ/Fχ

(ηSχ)1−σχ =
NkSχ/Fχ

(ηSχ)2

NkSχ/Q(ηSχ)
= NkSχ/Fχ

(ηSχ)2,

because NkSχ/Q(ηSχ) = NQSχ/Q(1− ζSχ) = 1. Therefore (recall that θχ can

be outside of kSχ and that θ1−σχ
χ is determined only up to sign in this case)

(2) θ1−σχ
χ = ±NkSχ/Fχ

(ηSχ).

Let σ ∈ Gal(kSχ/Fχ), so χ(σ)=1. Choose T ⊆ Sχ such that σ=
∏
p∈T σp|kSχ .

Then

1 = χ(σ) =
∏

p∈T
χ(σp) = (−1)#T ,



Groups of circular units 127

and

η1−σ
Sχ

= η
1−Πp∈Tσp
Sχ

=
∏

p∈T
(η1+σp
Sχ

)Πq∈T, q<p(−σq).

Of course,

η
1+σp
Sχ

= NKSχ/KSχ\{p}(ηSχ) = NkSχKSχ\{p}/KSχ\{p}(ηSχ)[KSχ :kSχKSχ\{p}]

= (±η1−Frob(|p|,kSχ\{p})
Sχ\{p} )[KSχ :kSχKSχ\{p}]

by [K, Lemma 4], because kSχ ∩KSχ\{p} = kSχ\{p}. Therefore

η1−σ
Sχ

= ±
∏

R(Sχ
η2aR
R

for suitable integers aR due to Lemma 3 of [K]. So

θ1−σχ
χ = ±NkSχ/Fχ

(ηSχ)(3)

= ±
∏

σ∈Gal(kSχ/Fχ)

ησSχ = η
[kSχ :Fχ]
Sχ

·
(
±
∏

R(Sχ
η2bR
R

)

for suitable integers bR. But {ηSχ : χ ∈ X, χ 6= 1} is a basis of C and if
some ηR is not in this basis then it can be written as a combination of ηR′ ,
where R′ ( R (see [K, Theorem 1 and the proof of Lemma 5]). We have
proved the following

Proposition 2. The set {θ1−σχ
χ : χ ∈ X, χ 6= 1} is a basis of C(0) =

C(1) ⊆ C and

[C : C(0)] =
∏

χ∈X
χ 6=1

[kSχ : Fχ] =
∏

χ∈X
χ 6=1

(
1
2 [kSχ : Q]

)
.

For studying C(2) and C(3) we need to know when θχ ∈ k and θχ ∈ Fχ,
respectively. We shall suppose that #Sχ > 1, because θχ is not a unit if
#Sχ = 1. If s(χ) is odd then −θ2

χ = NQSχ/Fχ(1 − ζSχ) > 0, so θχ is pure
imaginary and θχ 6∈ k. Suppose now that s(χ) is even. Recall that χ can
be considered as an even Dirichlet character modulo fχ = nSχ . We need to
distinguish two cases.

First, suppose that nSχ is odd. Let q = minSχ and write |q| − 1 = 2b · c
with c odd. Let ψ be a Dirichlet character modulo |q| of order 2b, so ψ(−1) =
−1, and let

A = {a ∈ Z : 1 ≤ a ≤ fχ, χ(a) = 1, (ψ(a) = 1 or Imψ(a) > 0)}.
It is easy to see that for any σ ∈ Gal((QSχ)+/Fχ) there is precisely one
a ∈ A such that σ is the restriction to (QSχ)+ of the automorphism of QSχ
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sending ζSχ to ζaSχ . Therefore

θχ =
∏

a∈A
(ξa − ξ−a),

where ξ = ζ
(1+fχ)/2
Sχ

. We want to prove that θχ ∈ Fχ. Choose any σ ∈
Gal(QSχ/Fχ). If y is determined by σ(ζSχ) = ζySχ then we define

A1 = {a ∈ A : ψ(ay) = 1 or Imψ(ay) > 0},
A2 = {a ∈ A : ψ(ay) = −1 or Imψ(ay) < 0}.

Because χ(y) = 1 and χ(−1) = 1, the mapping f : A → A defined by
f(a) ≡ ay (mod fχ) if a ∈ A1, and f(a) ≡ −ay (mod fχ) if a ∈ A2, is a
permutation. Therefore

σ(θχ) =
∏

a∈A
(ξay − ξ−ay)

=
( ∏

a∈A1

(ξf(a) − ξ−f(a))
)( ∏

a∈A2

(−1)(ξf(a) − ξ−f(a))
)

= (−1)#A2 · θχ.
It is easy to see that #A = 1

4ϕ(fχ) = s(χ) and that #{a ∈ A : ψ(a) =
ψ(a0)} = 21−bs(χ) for any fixed a0 ∈ A. But A2 is a disjoint union of such
sets involving some a0, so 21−bs(χ) | (#A2). If q < 0 then |q| ≡ 3 (mod 4), so
b = 1, s(χ) | (#A2) and #A2 is even. If q > 0 then also q′ = min(Sχ \{q}) >
q > 0 (recall #Sχ > 1) and q′ ≡ 1 (mod 4). Thus

21−bs(χ) = 2−1−bϕ(fχ) = c
q′ − 1

2

∏

p∈Sχ\{q,q′}
ϕ(p) ≡ 0 (mod 2)

and #A2 is again even. We have proved that θχ ∈ Fχ if nSχ is odd and
either #Sχ > 2 or Sχ = {p, q} with p > 0 and q > 0.

Now, suppose that nSχ is even. Then nSχ = 8n for some odd n > 1 and
s(χ) = ϕ(n). Directly from the definition we have

(4) θχ =
∏
a

(ζa16n − ζ−a16n),

where the product is taken over all integers a satisfying 0 < a < 16n and
χ(a) = 1 which are congruent to 1 or to 5 modulo 16. It is easy to see that
there is y ≡ 5 (mod 16) such that χ(y) = 1. Let σ ∈ Gal(Q(ζ16n)/Q) be
determined by ζσ16n = ζy16n. Then σ ∈ Gal(Q(ζ16n)/Fχ) and

θσ−1
χ =

( ∏
0<a<16n
χ(a)=1

a≡5,9 (mod 16)

(ζa16n − ζ−a16n)
)( ∏

0<a<16n
χ(a)=1

a≡1,5 (mod 16)

(ζa16n − ζ−a16n)
)−1

.



Groups of circular units 129

Of course, a ≡ 9 (mod 16) if and only if a± 8n ≡ 1 (mod 16), so

θσ−1
χ = (−1)#{a∈Z:0<a<16n, χ(a)=1, a≡9 (mod 16)} = (−1)ϕ(n)/2.

Consider any automorphism τ ∈ Gal(Q(ζ16n)/Fχ) and let x ∈ Z be such
that ζτ16n = ζx16n, so χ(x) = 1. If x ≡ 1 (mod 4) then there is j ∈ {1, . . . , 4}
satisfying 5jx ≡ 1 (mod 16), so yjx ≡ 1 (mod 16) and σjτ acts on θχ
identically, because it only permutes the terms in the product (4). Thus in
this case

θτ−1
χ = θσ

jτ−1
χ

(
θσ−1
χ

)−(σj−1+...+1)τ
= (−1)jϕ(n)/2.

On the other hand, if x ≡ −1 (mod 4) then we can consider τ ′ ∈
Gal(Q(ζ16n)/Fχ) satisfying ζτ

′
16n = ζ−x16n (recall that χ(−1) = 1 because

Fχ is real). Because

(ζa16n − ζ−a16n)τ = −(ζa16n − ζ−a16n)τ
′

and there is an even number of terms in the product (4), we have θτχ = θτ
′
χ .

We have proved that θχ ∈ Fχ if and only if ϕ(n) is divisible by 4. If
#Sχ > 2 then there are at least two different primes dividing n and 4 |ϕ(n).
If Sχ = {2, p} then

√
2p ∈ k, so p > 0 and n = p ≡ 1 (mod 4), hence again

4 |ϕ(n). Finally, if Sχ = {−2, p} then
√−2p ∈ k, so p < 0 and n = −p ≡ 3

(mod 4), in which case 4 does not divide ϕ(n). We shall prove that in the
last case even θχ 6∈ k. Indeed, if τ ∈ Gal(Q(ζ16n)/Fχ(

√
2)) and if x ∈ Z

satisfies ζτ16n = ζx16n then x ≡ ±1 (mod 8) and θτ−1
χ = 1 by the previous

computation. But this means that θχ ∈ Fχ(
√

2). So
√

2 ∈ Fχ(θχ) ⊆ KJ(θχ)
but
√

2 6∈ KJ , because
√−1 6∈ KJ and

√−2 ∈ KJ in this case. Thus
KJ 6= KJ(θχ), which implies θχ 6∈ k ⊆ KJ .

Proposition 3. Let J+ = {p ∈ J : p > 0} and J− = {p ∈ J : p < 0}.
Then the set

{θχ : χ ∈ X, #Sχ ≥ 2, Sχ ⊆ J+ if #Sχ = 2}
∪ {θ1−σχ

χ : χ ∈ X, #Sχ = 1 or 2, Sχ ⊆ J− if #Sχ = 2}

is a basis of C(2) = C(3). The set

{θχ : χ ∈ X, [kSχ : Q] > 2} ∪ {θ1−σχ
χ : χ ∈ X, [kSχ : Q] = 2}

is a basis of C(2)∩C. Moreover , [C(2) : C(0)] = 2b and [C(2) : C(2)∩C] = 2c,
where

b = #{χ ∈ X : #Sχ ≥ 2, Sχ ⊆ J+ if #Sχ = 2},
c = #{χ ∈ X : #Sχ ≥ 2, [kSχ : Q] = 2, Sχ ⊆ J+ if #Sχ = 2}.



130 R. Kučera

P r o o f. Let χ ∈ X, χ 6= 1. We have shown in the previous computation
that θχ ∈ k if and only if θχ ∈ Fχ, and that this is the case if and only if
#Sχ > 1 and Sχ ⊆ J+ if #Sχ = 2. Thus C(2) = C(3). If #Sχ > 1 then
θ2
χ = ±θ1−σχ

χ by (1) and (2), so a basis of C(2) can have the above described
form.

If kSχ = Fχ, then θ
1−σχ
χ = ±ηSχ by (2). If kSχ 6= Fχ then #Sχ > 1 and

(5) θχ = ±η[kSχ :Fχ]/2
Sχ

·
∏

R(Sχ
ηbRR

for suitable bR ∈ Z by (3). But {ηSχ : χ ∈ X, χ 6= 1} is a basis of C by
Proposition 1, hence

{θχ : χ ∈ X, #Sχ ≥ 2, kSχ 6= Fχ, Sχ ⊆ J+ if #Sχ = 2}
∪ {θ1−σχ

χ : χ ∈ X, χ 6= 1, (kSχ = Fχ or #Sχ = 1

or (#Sχ = 2 and Sχ ⊆ J−))}
is a basis of C(2) ∩ C, because if χ ∈ X satisfies kSχ = Fχ, then Sχ′ 6⊆ Sχ
for any χ′ ∈ X such that 1 6= χ′ 6= χ. Of course, if #Sχ = 1 then kSχ = Fχ.
If #Sχ = 2 and Sχ ⊆ J−, then again kSχ = Fχ. It is clear that kSχ = Fχ
if and only if [kSχ : Q] = 2. Hence this basis is of the stated form and the
proposition follows.

Let us study Leopoldt’s group H now. We have seen that θχ ∈ E for any
χ ∈ X such that #Sχ > 2 or such that #Sχ = 2 and Sχ ⊆ J+. Moreover, if
Sχ = {p} then θχ has non-zero |p|-adic valuation. Therefore H is generated
by −1 and

{θχ : χ ∈ X, #Sχ ≥ 2, Sχ ⊆ J+ if #Sχ = 2}
∪ {θ1−σχ

χ : χ ∈ X, #Sχ = 1} ∪
{ ∏

χ∈X1

θaχχ ∈ k : aχ ∈ Z
}
,

where X1 = {χ ∈ X : #Sχ = 2, Sχ ⊆ J−}, because θ1+σχ
χ is a root of unity

for χ ∈ X1. Thus we need to find when
∏
χ∈X1

θ
aχ
χ ∈ k for aχ ∈ Z.

First, suppose that χ ∈ X1 and that Sχ = {p, q} with p and q odd. Then

θχ =
∏

1≤a≤pq
( a
|p| )=( a

|q| )=1

(ξa − ξ−a) ∈ K{p,q},

where ξ = ζ
(1+pq)/2
{p,q} . The complex conjugation on K{p,q} is σpσq, so

θσpσqχ =
∏

1≤a≤pq
( a
|p| )=( a

|q| )=1

(ξ−a − ξa) = −θχ,
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because |p| ≡ |q| ≡ 3 (mod 4). Hence if σ =
∏
p∈S σp ∈ Gal(KJ/k) for some

S ⊆ J , then

θσχ =
{
θχ if Sχ ∩ S = ∅,
−θχ if Sχ ⊆ S

(it is clear that #(Sχ ∩ S) = 1 is not possible because Q(
√
pq) = Fχ ⊆ k).

Now, suppose that χ ∈ X1 and that Sχ = {−2, q}. Then θχ 6∈ KJ but
θχ ∈ KJ(

√
2). It is clear that KJ(

√
2) = KJ(

√−1) in this case. So we need
to extend our automorphisms σp to KJ(

√−1): for any p ∈ J let σ′p be the
non-trivial automorphism in Gal(KJ(

√−1)/KJ\{p}(
√−1)), and let σ−1 be

the non-trivial automorphism in Gal(KJ (
√−1)/KJ). Then

ζ
σ′q
{−2} = ζ{−2}, ζ

σ′−2

{−2} = ζ5
{−2} and ζ

σ−1

{−2} = ζ3
{−2},

so θ
σ′−2
χ = θ

σ−1
χ = −θχ, while θ

σ′q
χ = θχ, due to the computations preceding

Proposition 3.
Suppose that σ =

∏
p∈S σp ∈ Gal(KJ/k) for some S ⊆ J . Then we have

two extensions of σ to KJ(
√−1), namely σ′ and σ′σ−1, where σ′ =

∏
p∈S σ

′
p,

and

(6)

( ∏

χ∈X1

θaχχ

)σ′
= (−1)Σχ∈X1, Sχ⊆Saχ

∏

χ∈X1

θaχχ ,

( ∏

χ∈X1

θaχχ

)σ−1

= (−1)Σχ∈X2aχ
∏

χ∈X1

θaχχ ,

where X2 = {χ ∈ X1 : −2 ∈ Sχ}.
Consider the equivalence relation on J− defined by

p ∼ q if and only if
√
pq ∈ k.

Let us show that if p 6= q then p ∼ q if and only if there is χ ∈ X1 such that
Sχ = {p, q}. Indeed, if χ ∈ X1 and Sχ = {p, q}, then Q(

√
pq) = Fχ ⊆ k,

so p ∼ q. On the other hand, if
√
pq ∈ k for p, q ∈ J−, p 6= q, then χ ∈ Ĝ

defined by

χ(σt) =
{−1 if t ∈ {p, q},

1 if t ∈ J \ {p, q},
satisfies χ(σ) = 1 for any σ ∈ Gal(KJ/Q(

√
pq)), hence χ ∈ X and Sχ =

{p, q}. It is easy to see that if

σ =
∏

p∈S
σp ∈ Gal(KJ/k),

then for any class T ∈ J−/∼ either T ⊆ S or T ∩ S = ∅. If X2 = {χ ∈ X1 :
−2 ∈ Sχ} is not empty, fix χ0 ∈ X2. Then (6) implies that θχθχ0 ∈ k for any
χ ∈ X2. For any class T ∈ (J− \ {−2})/∼ satisfying #T > 1, fix χT ∈ X1
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such that SχT ⊆ T . Then (6) implies that θχθχT ∈ k for any χ ∈ X1, where
T ∈ (J− \ {−2})/∼ satisfies Sχ ⊆ T . Hence we need only find when

∏

T∈(J−\{−2})/∼
#T>1

θaTχT ∈ k,

where aT ∈ Z.
Let J0 be the union of all T ∈ (J− \ {−2})/∼ such that #T > 1. If

J0 = ∅ then X1 = X2, #X2 ≤ 1 and H = C(2). Suppose that J0 6= ∅. Then
∼ can be considered as an equivalence relation on J0 and θχ ∈ KJ0 for any
χ ∈ X1 \X2. So (6) implies that

∏

T∈J0/∼
θaTχT ∈ k if and only if

∑

T∈J0/∼
T⊆S

aT ≡ 0 (mod 2)

for all S ⊆ J0 such that
∏

p∈S
σp ∈ Gal(KJ0/kJ0).

Choose S1, . . . , Sl ⊆ J0 such that the restrictions of

τ1 =
∏

p∈S1

σp, . . . , τl =
∏

p∈Sl
σp

form a basis of the (multiplicative) vector space Gal(KJ0/kJ0) over F2. We
shall prove that the equations

(7)
∑

T∈J0/∼
T⊆Si

xT = 0, i = 1, . . . , l,

over F2 are linearly independent. Indeed, suppose that there is L ⊆ {1, . . . , l}
such that

#{i ∈ L : T ⊆ Si} ≡ 0 (mod 2)
for all T ∈ J0/∼. Now, for any p ∈ J0 there is T ∈ J0/∼ such that p ∈ T .
But for any i ∈ {1, . . . , l}, we have p ∈ Si if and only if T ⊆ Si. Therefore
#{i ∈ L : p ∈ Si} is even for all p ∈ J0. Thus

∏

i∈L
τi =

∏

p∈J0

σ#{i∈L:p∈Si}
p = 1.

But this means that L = ∅ because τ1, . . . , τl is a basis. The equations in
(7) are then linearly independent. So there are l classes C1, . . . , Cl ∈ J0/∼
such that (7) is equivalent to

(8) xCi =
∑

T∈R
bT,ixT , i = 1, . . . , l,

for suitable elements bT,i ∈ F2, where R = (J0/∼) \ {C1, . . . , Cl}. Thus∏
T∈J0/∼ θ

aT
χT with aT ∈ Z is in k if and only if xT = aT + 2Z is a solution
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of (8), where we have identified F2 = Z/2Z. Therefore

{θχ : χ ∈ X, #Sχ ≥ 2, Sχ ⊆ J+ if #Sχ = 2}
∪ {θ1−σχ

χ : χ ∈ X, #Sχ = 1} ∪ {θχθχ0 : χ ∈ X2}
∪ {θχθχT : χ ∈ X1 \X2, T ∈ (J− \ {−2})/∼ with Sχ ⊆ T, χ 6= χT }

∪
{
θχT

l∏

i=1

θbT,iχCi
: T ∈ R

}
∪ {θ2

χCi
: i = 1, . . . , l}

is a basis of H, where each element bT,i ∈ F2, used in (8), is understood as
the integer 0 or 1.

Proposition 4. Let J− = {p ∈ J : p < 0}, J0 = {p ∈ J− \ {−2} :√
pq ∈ k for some q ∈ J− \ {−2} with q 6= p} and d = #{χ ∈ X : #Sχ =

2, Sχ ⊆ J−}. Let d0 = 1 if there is an odd p ∈ J− such that
√−2p ∈ k,

and d0 = 0 otherwise. Then

[H : C(2)] =
2d−d0

[KJ0 : kJ0 ]
.

Moreover , H ∩ C = C(2) ∩ C.

P r o o f. The former equality can be obtained directly by comparing the
basis of C(2) (see Proposition 3) with the basis of H described above. To
prove the latter equality, let us compare the basis of H with the basis of C
(see Proposition 1). If #Sχ = 1 then θ

1−σχ
χ = ±ηSχ , which is an element

(up to sign) of both bases. So we need to find when

ε =
∏

χ∈X
#Sχ>1

θcχχ ∈ k

with cχ ∈ Z is an element of C. We shall prove that ε ∈ C if and only if
cχ[kSχ : Fχ] is even for all χ ∈ X with #Sχ > 1.

Fix some linear ordering ≺ on X such that

Sχ ⊆ Sψ ⇒ χ ≺ ψ
for any χ, ψ ∈ X. As we mentioned in the proof of Proposition 1, for any
S ⊆ J such that S 6= Sχ for all χ ∈ X, there are aT ∈ Z satisfying

ηS = ±
∏

T(S
ηaTT .

Therefore (3) implies that for any χ ∈ X such that #Sχ > 1,

θ2
χ = ±η[kSχ :Fχ]

Sχ
·

∏

ψ∈X\{1}
ψ≺χ

η
2bχ,ψ
Sψ
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for suitable integers bχ,ψ. Thus, with respect to the basis of C, ε2 has the
following form:

ε2 =
∏

χ∈X
#Sχ>1

θ2cχ
χ = ±

∏

χ∈X
#Sχ>1

(
η
cχ[kSχ :Fχ]
Sχ

·
∏

ψ∈X\{1}
ψ≺χ

η
2cχbχ,ψ
Sψ

)
.

It is easy to see that ε ∈ C if and only if the exponent of ηSψ in this
expression is even for each ψ ∈ X \ {1}. This exponent is

∑

χ∈X
ψ≺χ

2cχbχ,ψ or cψ[kSψ : Fψ] +
∑

χ∈X
ψ≺χ

2cχbχ,ψ

depending on whether #Sψ = 1 or #Sψ > 1. Hence ε ∈ C if and only if
cχ[kSχ : Fχ] is even for all χ ∈ X with #Sχ > 1.

Now we can use the basis of H described before the proposition to obtain
the following basis of H ∩ C:

{θχ : χ ∈ X, #Sχ ≥ 2, kSχ 6= Fχ} ∪ {θ1−σχ
χ : χ ∈ X, #Sχ = 1}

∪ {θ2
χ : χ ∈ X, #Sχ ≥ 2, kSχ = Fχ},

because kSχ = Fχ for any χ ∈ X1. But that is (maybe, up to some signs)
the basis of C(2) ∩ C given in Proposition 3.

4. Sinnott’s group of square roots and Washington’s group. Let
C ′1 be the group defined in [S, p. 209], namely

C ′1 = {ε ∈ E : ε2 ∈ C ′}.
Similarly, define

C1 = {ε ∈ E : ε2 ∈ C}.
Finally, let C ′′ be the group of cyclotomic units defined in [W, p. 143],
namely the intersection of E and the group of cyclotomic units in the small-
est cyclotomic field containing k.

Proposition 5. C1 = C ′1.

P r o o f. Because C ′ ⊆ C, we have C ′1 ⊆ C1 directly from the definitions.
Suppose that ε ∈ C1. Then ε ∈ E and ε2 ∈ C. By comparing the bases of
C ′ and C in Proposition 1, we see that there are ε′ ∈ C ′ and S ⊆ {p ∈ J :√
p ∈ k} such that

ε2 = ε′
∏

p∈S
η{p}.

But C ′ is generated by −1 and norms from imaginary abelian fields to real
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ones, so ε′ is totally positive or totally negative. If q ∈ S then
(∏

p∈S
η{p}

)1−σq
= η

1−σq
{q} = −η2

{q} < 0

by Lemma 1 of [K]. Of course, ε2 is totally positive. Therefore S = ∅ and
ε2 = ε′ ∈ C ′. So ε ∈ C ′1 and the proposition follows.

Lemma. Let S ⊆ J . If #S = 1 then ηS is a cyclotomic unit in the nS-th
cyclotomic field. If #S > 1 then ηS or −ηS is the square of a cyclotomic
unit in the nS-th cyclotomic field and

√
ηS is in the maximal real subfield

of KS(
√−1).

P r o o f. We shall distinguish two cases depending on the parity of nS .
First, suppose that nS is odd. Let ξ = ζ

(1+nS)/2
S ; then

α = NQS/K+
S

(1− ζS) = NQS/K+
S

(−ξ)NQS/K+
S

(ξ − ξ−1) = NQS/K+
S

(ξ − ξ−1),

where we have used the fact that NQS/K+
S

(−ξ) is a totally positive root of
unity. First, let S = {p}. Then

ηS =
{±1 if

√
p 6∈ k,

1√
pα if

√
p ∈ k.

Of course, p > 0 in the latter case, so p ≡ 1 (mod 4), α1+σp = p (by
Lemma 1 of [K]) and

η2
S = α1−σp =

p−1∏
a=1

(ξa − ξ−a)( ap ) =
( (p−1)/2∏

a=1

(ξa − ξ−a)( ap )
)2
,

which is the square of a cyclotomic unit in the pth cyclotomic field.
Now, suppose that #S > 1 and that KS is imaginary. Then

α = NKS/K
+
S

(NQS/KS (ξ − ξ−1))

= (−1)[QS :KS ]NQS/KS (ξ − ξ−1)2.

Let τ0, . . . , τl be a basis of the (multiplicative) vector space Gal(KS/kS)
over F2, where τ0 is the complex conjugation. Let L be the subfield of KS

whose Galois group is generated by τ1, . . . , τl. Then

ηS = NK+
S
/kS

(α) = NKS/L(α) = (−1)[QS :L]NQS/L(ξ − ξ−1)2.

Therefore
√
ηS ∈ L(

√−1) ⊆ KS(
√−1). Moreover, ηS is totally positive, so√

ηS is real. The lemma follows in this case because NQS/L(ξ − ξ−1) is a
cyclotomic unit in the nSth cyclotomic field.
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Now, suppose that #S > 1 and that KS is real. Then all p ∈ S are
positive and

α =
∏

a∈A
(ξa − ξ−a),

where

A =
{
a ∈ Z : 1 ≤ a ≤ nS ,

(
a
p

)
= 1 for all p ∈ S}.

Choose q ∈ S and write q − 1 = 2b · c with c odd. Let ψ be a Dirichlet
character modulo q of order 2b, so ψ(−1) = −1, and let

B = {a ∈ A : ψ(a) = 1 or Imψ(a) > 0}.
Then A = B ∪ {nS − a : a ∈ B} is a disjoint union, so

α = (−1)#B
∏

a∈B
(ξa − ξ−a)2.

Of course,

#B =
1
2

(#A) =
1
2

∏

p∈S

p− 1
2

is even. Let

β =
∏

a∈B
(ξa − ξ−a).

We shall show that β ∈ KS , which means

β =
∏

a∈B
(ξay − ξ−ay) for any y ∈ A.

Fix y ∈ A and define the mapping g : B → B by the following congruence
modulo nS : for any a ∈ B,

g(a) ≡
{
ay if ψ(ay) = 1 or Imψ(ay) > 0,
−ay if ψ(ay) = −1 or Imψ(ay) < 0.

It is easy to see that g is a permutation and that
∏

a∈B
(ξay − ξ−ay) = (−1)#B′

∏

a∈B
(ξg(a) − ξ−g(a)) = (−1)#B′β,

where B′ = {a ∈ B : g(a) ≡ −ay (mod nS)}. We have

#{a ∈ A : ψ(a) = ψ(a0)} = 21−b(#A)

for any fixed a0 ∈ A. But B′ is a disjoint union of such sets involving some
a0, so #B′ is divisible by

21−b(#A) = c
∏

p∈S\{q}

p− 1
2

,
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which is even. Thus β ∈ KS and ηS = NKS/kS (α) = NKS/kS (β)2. The
lemma is proved if nS is odd because β is a cyclotomic unit in the nSth
cyclotomic field.

Now, let us deal with the case of nS being even. If S = {−2} then ηS = 1.
If S = {2} then ηS = −1 +

√
2 or ηS = −1 depending on whether

√
2 ∈ k

or not. It is easy to check that

−1 +
√

2 = −ζ{2}(1− ζ{2})(1− ζ3
{2})

−1

is a cyclotomic unit in the eighth cyclotomic field.
Now, suppose that #S > 1. Then

εS =
∏
a

(1− ζaS),

where the product is taken over all positive integers a < nS satisfying
(
a
|p|
)

=
1 for all odd p ∈ S such that a ≡ ±1 (mod 8) if 2 ∈ S or a ≡ 1, 3 (mod 8)
if −2 ∈ S. Let ξ = eπi/nS , so ξ2 = ζS .

First, suppose that KS is imaginary. Let τ be the complex conjugation
on Q(ξ). Because nS ≡ 8 (mod 16), we have

ε1+τ
S =

∏
a

(1− ζaS)(1− ζ−aS ) =
∏
a

(−(ξa − ξ−a)2),

where the products are taken over all positive integers a < 2nS satisfying(
a
|p|
)

= 1 for all odd p ∈ S such that a ≡ ±1 (mod 16) if 2 ∈ S or a ≡ 1, 3
(mod 16) if −2 ∈ S. The number of terms in these products is even, so
ε1+τ
S = β2, where

(9) β =
∏
a

(ξa − ξ−a),

with a running through the same set as above. We need to prove that
β ∈ (KS(

√−1))+. For any σ ∈ Gal(Q(ξ)/KS(
√−1)) there is an integer

y satisfying y ≡ 1 (mod 8) and
(
y
p

)
= 1 for all odd p ∈ S such that ξσ = ξy.

It is clear that if y ≡ 1 (mod 16) then σ only permutes the terms in the
product (9), so βσ = β in this case. If y ≡ 9 (mod 16) then y′ = y+nS ≡ 1
(mod 16) and ξy

′
= −ξy. Moreover,

(
y′

p

)
= 1 for all odd p ∈ S, so

βσ =
∏
a

(ξay − ξ−ay) =
∏
a

(−(ξay
′ − ξ−ay′)) = β

in this case, too. It is easy to see that β is real, so β ∈ (KS(
√−1))+. It is

clear that β is a cyclotomic unit in the nSth cyclotomic field and the lemma
is proved in this case, since ηS = NK+

S
/kS

(β2).
Finally, suppose that KS is real. Then all p ∈ S are positive and

εS =
∏
a

(1− ζaS)(1− ζ−aS ) =
∏
a

(−(ξa − ξ−a)2)
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with the products taken over all positive integers a < nS such that a ≡ 1
(mod 8) and

(
a
p

)
= 1 for all odd p ∈ S. The number of terms in these

products is even, so εS = β2, where

(10) β =
∏
a

(ξa − ξ−a),

where a in the product runs through all integers satisfying 0 < a < 2nS
and a ≡ 1 (mod 16) such that

(
a
p

)
= 1 for all odd p ∈ S. Let us show

that β ∈ KS . For any σ ∈ Gal(Q(ξ)/KS) there is an integer y satisfying
ξσ = ξy such that y ≡ ±1 (mod 8) and

(
y
p

)
= 1 for all odd p ∈ S. It is

clear that if y ≡ 1 (mod 16) then σ only permutes the terms in the product
(10). If y ≡ 9 (mod 16) then σ also changes the sign of each term in (10).
But the number of terms in the product (10) is even, so βσ = β in both
previous cases. If y ≡ −1 (mod 8) then we have proved that βτσ = β, where
τ is the complex conjugation on Q(ξ). But β is real, so β ∈ KS . It is clear
that β is a cyclotomic unit in the nSth cyclotomic field and the lemma is
proved.

Proposition 6. Let 2g = [C ′ : {1,−1} × (C ′1)2]. Then H ⊆ C ′1 ⊆ C ′′

and

[C ′1 : C ′] = 2[k:Q]−1−g.

Moreover , 2g is a divisor of [KJ : k].

P r o o f. The fact that [C ′ : {1,−1} × (C ′1)2] is a power of 2 follows
from the inclusion C ′ ⊆ C ′1. By (1) and (2) we have θ2

χ = ±θ1−σχ
χ for any

χ ∈ X such that #Sχ > 1. The form of the basis of H before Proposition
4 gives H ⊆ C1, because θ1−σχ

χ ∈ C by Proposition 2. But C1 = C ′1 by
Proposition 5.

Let ε ∈ C ′1. Then ε ∈ E and ε2 ∈ C ′. The Lemma gives that any element
of the basis of C ′ given in Proposition 1 is (up to sign) the square of a
cyclotomic unit in the nJ th cyclotomic field. Thus ε is a cyclotomic unit in
this field and ε ∈ C ′′.

The formula follows from

2g · [C ′1 : C ′] = [C ′1 : {1,−1} × (C ′1)2] = 2[k:Q]−1.

It remains to show that 2g is a divisor of [KJ : k]. Let C ′0 be the group of
totally positive elements of C ′. Proposition 1 gives that

{ηSχ : χ ∈ X, #Sχ > 1} ∪ {η2
Sχ : χ ∈ X, #Sχ = 1}

generates C ′0. The Lemma implies that
√
ε ∈ (KJ(

√−1))+ for any ε ∈ C ′0.
Of course,

(C ′1)2 = {ε ∈ C ′0 :
√
ε ∈ k}.
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Because C ′ = {1,−1} × C ′0 we have

2g = [C ′0 : (C ′1)2] | [(KJ(
√−1))+ : k] = [KJ : k].

The proposition is proved.

5. Conclusion. Let us put together all the propositions. We have shown
that the groups of cyclotomic units we are interested in form the following
ordered set with respect to inclusion.

E∣∣∣∣∣∣
C′′∣∣∣∣∣∣

C1 = C′1
£

£
£

£

B
B
B
B

H C∣∣∣∣∣∣
¦
¦
¦
¦
¦
¦
¦
¦
¦

∣∣∣∣∣∣
C(2) = C(3) C′

B
B
B
B

C(2) ∩ C = H ∩ C∣∣∣∣∣∣
C(0) = C(1)

a = #{χ ∈ X : #Sχ = 1},
b = #{χ ∈ X : #Sχ ≥ 2, Sχ ⊆ J+ if #Sχ = 2},
c = #{χ ∈ X : #Sχ ≥ 2, [kSχ : Q] = 2, Sχ ⊆ J+ if #Sχ = 2},
d = #{χ ∈ X : #Sχ = 2, Sχ ⊆ J−},
so a+ b+ d = [k : Q]− 1;

J+ = {p ∈ J : p > 0},
J− = {p ∈ J : p < 0},
J0 = {p ∈ J− : p odd,

√
pq ∈ k for some odd q ∈ J− with q 6= p},

d0 =
{

1 if there is an odd p ∈ J− such that
√−2p ∈ k,

0 otherwise,

g ∈ Z, 0 ≤ g ≤ b+ d, 2g | [KJ : k];

[E : C1] = 2g−b−d
( ∏
χ∈X
χ6=1

(2 · [k : kSχ ])
)
· [k : Q]−[k:Q]/2 · h,

[C1 : C] = 2b+d−g ,

[C : C′] = 2a,

[C1 : H] = 2d0−g [KJ0 : kJ0 ]
∏
χ∈X
χ 6=1

( 1
2 · [kSχ : Q]),

[H : C(2)] = 2d−d0 [KJ0 : kJ0 ]−1,

[C(2) : C(2) ∩ C] = 2c,

[C(2) ∩ C : C(0)] = 2b−c,

[C : C(2) ∩ C] = 2c−b
∏
χ∈X
χ6=1

( 1
2 · [kSχ : Q]).
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