
ACTA ARITHMETICA
LXVII.3 (1994)

General discrepancy estimates:
the Walsh function system
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Peter Hellekalek (Salzburg)

1. Introduction. In either one of the following two problems:

(A) generation of uniform pseudorandom numbers (in the normalized
domain [0, 1[),

(B) quasi-Monte Carlo methods (i.e. random samples in a Monte Carlo
method are replaced by deterministic points)

a well-chosen finite point set P = {x0,x1, . . . ,xN−1} in the s-dimensional
unit cube [0, 1[s has to be generated. To assess the quality of P, it is essential
to determine the deviation of the (empirical) distribution of P from uniform
distribution on [0, 1[s (see Niederreiter [5, Chapters 2 and 7] for a thorough
discussion). Discrepancy has turned out to be the appropriate concept to
measure this deviation. There are several notions of discrepancy. The most
important are the following.

Definition 1. Let P be a finite point set in [0, 1[s, P = {x0,x1, . . .
. . . ,xN−1}.

(i) The (extreme) discrepancy DN (P) of P is defined as

DN (P) := sup
J∈J

∣∣∣∣
A(J,N)
N

− λs(J)
∣∣∣∣.

(ii) The star discrepancy D∗N (P) of P is defined as

D∗N (P) := sup
J∈J ∗

∣∣∣∣
A(J,N)
N

− λs(J)
∣∣∣∣.
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Here J denotes the class of all subintervals of [0, 1[s of the form J =∏s
i=1[ui, vi[; A(J,N) represents the number of n, 0 ≤ n < N , for which

xn ∈ J ; λs stands for Lebesgue measure on [0, 1[s; and J ∗ denotes the
family of all subintervals of [0, 1[s of the form J =

∏s
i=1[0, vi[.

In scientific computation we have to cope with finite precision arith-
metics. Hence only rational point sets P are relevant in practice. Niederre-
iter [3] established a general upper bound for the discrepancy of such sets
P in terms of exponential sums. This result has turned out to be of funda-
mental importance in both problems, (A) and (B). In its latest version the
result is the following:

Theorem 0 (Niederreiter [5, Theorem 3.10]). Let M ≥ 2 be an integer.
Let yn ∈ Zs, 0 ≤ n < N . Let P = {x0,x1, . . . ,xN−1}, where xn := {yn/M}
is the fractional part of yn/M . Then

(1) DN (P) ≤ 1− (1− 1/M)s +
∑

h∈C∗s (M)

1
r(h,M)

∣∣∣∣
1
N

N−1∑
n=0

e2πih·xn
∣∣∣∣,

where h · xn denotes the usual inner product on Rs and furthermore,

Cs(M) : = ]−M/2,M/2]s ∩ Zs,
C∗s (M) : = Cs(M) \ {0},

r(h,M) : =
s∏

i=1

r(hi,M), h ∈ Cs(M),

and

(2) r(hi,M) :=
{

1 if hi = 0,
M sinπ|hi|/M if hi 6= 0.

In the same monograph (see [5, Theorem 3.12]) Niederreiter gave an
estimate of the star discrepancy for point sets P where the coordinates of
all points have finite digit expansion in some fixed base b. This result can
be generalized to allow different bases bi, 1 ≤ i ≤ s, in each coordinate (see
[4, Satz 2]).

In this paper we apply the theory of generalized Walsh series, sometimes
called Vilenkin–Fourier series, to present a concise treatment of discrepancy
estimates of this type. Our method yields Theorem 3.10, Corollary 3.11, and
Theorem 3.12 of [5] as well as Satz 2 of [4] as corollaries to Theorem 1 of
this paper.

2. The Walsh functions estimate. For the theory of Walsh series the
reader is referred to the comprehensive monograph of Schipp, Wade, Simon
and Pál [6].
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Let q ≥ 2 be a fixed integer. For a nonnegative integer k, let

k =
∞∑

j=0

kjq
j , kj ∈ {0, 1, . . . , q − 1},

be the unique q-adic expansion of k in base q. Every number x ∈ [0, 1[ has
a unique q-adic expansion

x =
∞∑

j=0

xjq
−j−1, xj ∈ {0, 1, . . . , q − 1},

under the condition that xj 6= q − 1 for infinitely many j. In the following,
this uniqueness condition will be assumed without further notice. Let φ0 :
Zq → K, where Zq := {0, 1, . . . , q − 1}, the least residue system modulo q,
and K := {z ∈ C : |z| = 1}, denote the function

φ0(a) := e2πia/q (a ∈ Zq).

Definition 2. The k-th Walsh function wk, k ≥ 0, to the base q is
defined as

(3) wk(x) :=
∞∏

j=0

(φ0(xj))kj

where x = 0.x0x1 . . . is the q-adic expansion of x ∈ [0, 1[ and k =
∑∞
j=0 kjq

j .

R e m a r k s. (i) An interval of the form [aq−g, (a + 1)q−g[, 0 ≤ a < qg,
g ≥ 0, a and g integers, is called an elementary q-adic interval of length q−g.

(ii) Let b0, b1, . . . , bg−1 be arbitrary digits in {0, 1, . . . , q − 1}. Let

I(b0, b1, . . . , bg−1) := {x ∈ [0, 1[ : xj = bj , ∀j : 0 ≤ j < g}
denote the cylinder set of length q−g defined by b0, b1, . . . , bg−1. Then,
for any elementary q-adic interval I = [aq−g, (a + 1)q−g[ of length q−g,
g ∈ N, there is a unique cylinder set I(b0, b1, . . . , bg−1) such that I =
I(b0, b1, . . . , bg−1). We only have to observe that aq−g = 0.b0b1 . . . bg−1 with
suitable digits bj .

(iii) As a consequence of (ii), the Walsh functions wk, 0 ≤ k < qg, are
constant on the elementary q-adic intervals of length q−g:

x ∈ I(b0, b1, . . . , bg−1)⇒ wk(x) =
g−1∏

j=0

(φ0(bj))kj .

(iv) Let f(x) := 1I(b0,b1,...,bg−1)(x), x ∈ [0, 1[. If f̂(k) denotes the kth
Walsh coefficient of f ,

f̂(k) :=
∫

[0,1[

f(x)wk(x) dx,
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then

(4) f̂(k) = 0 ∀k ≥ qg.
To prove (4) we note that, for a given digit b,

q−1∑
a=0

(φ0(a))b =
{
q, b = 0,
0, b 6= 0.

Notation. (i) Let x ∈ [0, 1[, with q-adic expansion x = 0.x0x1 . . . , and
let k be a nonnegative integer, k =

∑∞
j=0 kjq

j . For g ∈ N we define

x(g) := 0.x0x1 . . . xg−1, k(g) :=
g−1∑

j=0

kjq
j .

Then x(g) ∈ {aq−g : 0 ≤ a < qg} and k(g) ∈ {0, 1, . . . , qg − 1}. Further, put

x(0) := 0, k(0) := 0.

(ii) If f is an integrable function on [0, 1[s and if k = (k1, . . . , ks) is an
integer vector with nonnegative coordinates, then let f̂(k) denote the kth
Walsh coefficient of f ,

f̂(k) :=
∫

[0,1[s
f(x)wk(x) dx,

with respect to the Walsh function wk on [0, 1[s,

wk(x) :=
s∏

i=1

wki(xi), x = (x1, . . . , xs) ∈ [0, 1[s.

Lemma 1. Let f(x) := 1I(x)−λ(I), where I = [0, β[, 0 < β < 1. Suppose
that qg ≤ k < qg+1, where g ≥ 0. Then:

(i) The Walsh coefficient f̂(k) of f has the following value:

f̂(k) = wk(g)(β(g))
(

1
qg+1 ·

e2πi
kg
q βg − 1

e2πi
kg
q − 1

+ e2πi
kg
q βg (β − β(g + 1))

)
.

(ii) The following estimate holds:

|f̂(k)| ≤ 1
qg+1 sinπkg/q

.

P r o o f. To prove (i), we note that from (4) it follows that

β(g)∫
0

wk(x) dx = 0.
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Hence

f̂(k) =
β∫

β(g)

wk(x) dx.

The Walsh function wk(g) is constant on the elementary q-adic interval
[β(g), β(g) + q−g[ with value wk(g)(β(g)). This implies

f̂(k) = wk(g)(β(g))
β∫

β(g)

(φ0(xg))kg dx,

where x = 0.x0x1 . . . xgxg+1 . . . in base q. It is easily verified that

β∫
β(g)

(φ0(xg))kg dx =
1

qg+1

βg−1∑
a=0

(φ0(a))kg + (φ0(βg))kg (β − β(g + 1)).

To show (ii), we note that

|f̂(k)| = 1
qg+1

∣∣∣∣
Cβg − 1
C − 1

+ Cβgδ

∣∣∣∣,

with C := φ0(kg) and δ := qg+1(β − β(g + 1)); here C is a complex number
of modulus 1, C 6= 1, and 0 ≤ δ < 1. Hence

|f̂(k)| ≤ 1
qg+1

(∣∣∣∣
1

C − 1
+ δ

∣∣∣∣+
1

|C − 1|
)
.

Now, for every real number γ, 0 ≤ γ ≤ 1, we have the inequality∣∣∣∣
1

C − 1
+ γ

∣∣∣∣ ≤
1

|C − 1| .

The result follows easily.

Lemma 2. Let f(x) := 1I(x) − λ(I), where I = [aq−α, bq−α[, 0 ≤ a <

b ≤ qα, α ≥ 1, with integers a, b and α. Then, clearly , f̂(k) = 1̂I(k) for all
k 6= 0 and the following estimates hold :

(i) f̂(k) = 0 ∀k ≥ qα.
(ii) For all k such that qg ≤ k < qg+1, where 0 ≤ g < α,

|f̂(k)| ≤ 2
qg+1 sinπkg/q

.

(iii) In the case α = 1 and g = 0 the result of part (ii) can be improved
to

|f̂(k)| = 1
q
· |sinπ(b− a)k/q|

sinπk/q
, where 1 ≤ k < q.

P r o o f. For all k ≥ 1 we have the identity

(5) f̂(k) = 1̂[0,bq−α[(k)− 1̂[0,aq−α[(k).
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Part (i) of this lemma follows from Remark (iv). To prove (ii), we note
that, if b = qα, then the first Walsh coefficient on the right-hand side of (5)
is always zero. If a = 0, then the second Walsh coefficient in (5) is always
zero. In these two special cases, Lemma 1(ii) implies the result directly. In
the general case, we apply the triangle inequality in identity (5). The result
follows.

For (iii) we observe that in Lemma 1, with β equal to aq−1 or bq−1, we
have β − β(1) = 0 and β(0) = 0 by definition. As a consequence,

f̂(k) =
1
q
· C

b − Ca
C − 1

,

with C as above, and k0 = k.

Lemma 3. Let f(x) := 1G(x)− λs(G), where

G :=
s∏

i=1

[
ai
qα
,
bi
qα

[
, 0 ≤ ai < bi ≤ qα,

is a subinterval of [0, 1[s. Define ∆ := {k ∈ Zs : 0 ≤ ki < qα ∀i} and
∆∗ := ∆ \ {0}. Then:

(i) For all k ∈ Zs \∆∗ with nonnegative coordinates ki, 1 ≤ i ≤ s, we
have

|f̂(k)| = 0.

(ii) For all k ∈ ∆∗,
|f̂(k)| ≤ %Walsh(k),

where

%Walsh(k) :=
s∏

i=1

%Walsh(ki),

%Walsh(k) :=

{ 1 if k = 0,
2

qg+1 sinπkg/q
if qg ≤ k < qg+1, g ≥ 0 .

(iii) (Special case) Let all ai be zero, i.e. G =
∏s
i=1[0, biq−α[, 0 < bi ≤ qα.

Then, for all k ∈ ∆∗,
|f̂(k)| ≤ %∗Walsh(k),

where

%∗Walsh(k) :=
s∏

i=1

%∗Walsh(ki),

%∗Walsh(k) :=

{ 1 if k = 0,
1

qg+1 sinπkg/q
if qg ≤ k < qg+1, g ≥ 0 .
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P r o o f. For all k 6= 0 we have the identity f̂(k) = 1̂G(k) and f̂(0) = 0.
But 1̂G(k) =

∏s
i=1 1̂Gi(ki), where k = (k1, . . . , ks) and Gi := [aiq−α, biq−α[.

The results (i) and (ii) above follow directly from Lemma 2 if we let I = Gi.
To prove (iii), we apply Lemma 1(ii).

R e m a r k. The reader should note that in the case where α = 1 (hence
1 ≤ ki < q for all i), we have a better estimate for 1̂Gi(ki) than the
number %Walsh(ki), respectively %∗Walsh(ki). This is a direct consequence of
Lemma 2(iii):

(6) |1̂Gi(ki)| =
1
q
· |sinπ(bi − ai)ki/q|

sinπki/q
.

This sharper estimate will be useful in Corollaries 1 and 2.

Theorem 1. Let P = {x0,x1, . . . ,xN−1} be a finite point set in [0, 1[s,
with xn of the form xn = {yn/M}, yn ∈ Zs. Suppose that M = qα, where
α and q are positive integers, q ≥ 2. Then the following estimates hold :

(i) For the extreme discrepancy DN (P),

(7) DN (P) ≤ 1− (1− 1/M)s +
∑

k∈∆∗
%Walsh(k)|SN (wk)|.

(ii) For the star discrepancy D∗N (P),

(8) D∗N (P) ≤ 1− (1− 1/M)s +
∑

k∈∆∗
%∗Walsh(k)|SN (wk)|,

where

(9) SN (wk) :=
1
N

N−1∑
n=0

wk(xn),

wk the k-th Walsh function on [0, 1[s.

P r o o f. For an arbitrary Borel subset E of [0, 1[s we define

RN (E) :=
1
N

N−1∑
n=0

(1E(xn)− λs(E))
(

=
A(E,N)

N
− λs(E)

)
.

Let J =
∏s
i=1[ui, vi[ be an arbitrary rectangle in [0, 1[s. Let

Γ :=
1
M
Zs mod 1.

We consider two cases, following an idea of Niederreiter (see [5, p. 34]).

C a s e 1: J ∩ Γ = ∅. In this (trivial) case, there is a coordinate i,
1 ≤ i ≤ s, such that vi − ui < 1/M . This implies the estimate

|RN (J)| = λs(J) <
1
M
≤ 1−

(
1− 1

M

)s
.
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C a s e 2 : J ∩ Γ 6= ∅. In this case, define

ai := min{a ∈ {0, 1, . . . ,M − 1} : ui ≤ a/M},
bi := min{a ∈ {1, . . . ,M} : vi ≤ a/M}

and

G :=
s∏

i=1

[
ai
M
,
bi
M

[
.

Then

|RN (J)| ≤ |RN (J)−RN (G)|+ |RN (G)|.
We observe that (see Definition 1 for the notation)

A(J,N) = A(G,N)

and, due to Lemma 3.9 in [5],

|λs(J)− λs(G)| ≤ 1−
(

1− 1
M

)s
.

Hence the discretization error |RN (J)−RN (G)| is bounded by the number
1− (1− 1/M)s. From Lemma 3(i) it follows that the function

f(x) := 1G(x)− λs(G)

is a Walsh polynomial, i.e. it has a finite Walsh series. We have

(10) f(x) =
∑

k∈∆∗
1̂G(k)wk(x) ∀x ∈ [0, 1[s.

This relation implies

(11) RN (G) =
∑

k∈∆∗
1̂G(k)SN (wk).

An application of Lemma 3 ends the proof.

Corollary 1. Theorem 1(i) implies the fundamental Theorem 0 of
Niederreiter (see [5, Theorem 3.10]).

This is easily seen. Let M = q. Then ∆∗ = C∗s (M) mod M . From (6) it
follows that

|1̂Gi(ki)| ≤
1

r(ki,M)
for all ki, 0 ≤ ki < M,

where r(ki,M) has been defined in Theorem 0. Hence |1̂G(k)| ≤ 1/r(k,M).
This proves Theorem 0.

Corollary 2. Theorem 1(i) implies Corollary 3.11 of Niederreiter [5].

This corollary is fundamental to assess the quality of pseudorandom
number generators. For the proof, let M = q. From identity (11) and the
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remark following the proof of Lemma 3 (see (6)) we deduce that

|RN (G)| ≤ B
s∏

i=1

(
1 +

1
M

M−1∑

ki=1

|sinπ(bi − ai)ki/q|
sinπki/q

)
,

where B is some positive constant with |SN (wk)| ≤ B for all k ∈ ∆∗. We
apply the well-known estimate of Cochrane [1] to complete the proof.

Corollary 3. Theorem 1(ii) implies Theorem 3.12 of [5] and its gen-
eralization, Satz 2 of [4].

The proof is straightforward. In every coordinate i, 1 ≤ i ≤ s, we have a
finite qi-adic expansion to the base qi ≥ 2 of length αi. Lemma 1(ii) implies
the estimate

|1̂Gi(ki)| ≤
1

qgi+1
i sinπk(gi)

i /qi
,

for every ki, where qgii ≤ ki < qgi+1
i . Here ki has the qi-adic expansion

ki =
αi−1∑

j=0

k
(j)
i qji , k

(j)
i ∈ {0, 1, . . . , qi − 1}.

Identity (11) then yields the result. It is interesting to compare the above
estimate, in our terminology it is the number %∗Walsh(ki), to Niederreiter’s
corresponding expression (see [5, (3.17), page 37] and [4, p. 113]), which is

1

qgi+1
i

(
1

sinπk(gi)
i /qi

+ δi

)
,

where δi ∈ {0, 1}, δi := 1 if gi < αi − 1 and δi := 0 if gi = αi − 1.

Corollary 4. Let P and M be as in Theorem 1. Suppose that B is
such that

|SN (wk)| ≤ B ∀k ∈ ∆∗.
Then

DN (P) ≤ 1−
(

1− 1
M

)s
+B(2.43 logM + 1)s,

D∗N (P) ≤ 1−
(

1− 1
M

)s
+B(1.22 logM + 1)s.

This is seen as follows. From identity (11) in the proof of Theorem 1 we
deduce

|RN (G)| ≤ B
s∏

i=1

(
|1̂Gi(0)|+

qα−1∑

k=1

|1̂Gi(k)|
)
.
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We then change summation:
qα−1∑

k=1

=
α−1∑
g=0

q−1∑
a=1

(a+1)qg−1∑

k=aqg
.

If k is in the range aqg ≤ k < (a + 1)qg, then the digit kg is equal to a. In
this case, Lemma 2(ii) implies

|1̂Gi(k)| ≤ 2
qg+1 sinπa/q

.

This yields

|RN (G)| ≤ B
(

1 +
2α
q

q−1∑
a=1

1
sinπa/q

)s
.

From Niederreiter [2, p. 574, inequality (5)] it follows that
q−1∑
a=1

1
sinπa/q

<
2
π
q log q +

2
5
q.

A short calculation gives the result. The case of the star discrepancy is
completely analogous.
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