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In this paper we continue the investigation of Eisenstein series on the
four-dimensional hyperbolic space that was started in [Gr1]. Our main goal
is to give an explicit computation of the Fourier coefficients of the standard
Eisenstein series and to use this for the study of some new and interesting
Dirichlet series arising as Mellin transforms of the Eisenstein series and of
its pullbacks to embedded hyperbolic spaces of smaller dimension. Studying
these pullbacks seems also to be of some interest for giving explicit construc-
tions of automorphic forms on these domains and we give some examples
of square integrable forms obtained in this way (which are, however, not
eigenfunctions of the Laplacian).

In Section 1 we review basic facts and notation. In particular, we real-
ize (as usual) the four-dimensional hyperbolic space as the set of Hamilton
quaternions of positive trace on which the unitary group of the standard
split two-dimensional hermitian form over the Hamilton quaternions acts.
We consider here arithmetic subgroups given as subgroups of matrices with
entries in a maximal order R of some (fixed) definite quaternion algebra
over the rationals. The inequivalent cusps are then in bijection with the
classes of left ideals of R and we consider the Eisenstein series formed with
respect to each cusp. The computation of the Fourier coefficients of these
Eisenstein series is given in Section 2. It turns out that a weighted average
of these Eisenstein series has Fourier coefficients of a particularly simple and
interesting form: The value of the arithmetic part of the Fourier coefficient
at s is expressed in terms of values at s − 1 of Cohen–Zagier L-functions.
This should be compared with the case of Eisenstein series on 3-dimensional
hyperbolic space treated in [EGM], where there is only a divisor sum ex-
pressions. As a corollary we obtain the meromorphic continuation of this
Eisenstein series, which of course also follows from the work of Langlands.
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We get the exact form of the functional equation and an explicit calculation
of the poles and residues. As another corollary we receive asymptotics for
sums of the Fourier coefficients which give rise to asymptotic formulae for
sums of class numbers.

In Section 3 we consider the Mellin transform of the Eisenstein series
which leads to a Dirichlet series whose coefficients are products of represen-
tation numbers of ternary quadratic forms and of sums of special values of
Cohen–Zagier L-functions. By considering suitable linear combinations of
the Eisenstein series associated with different conjugacy classes of maximal
orders in the same quaternion algebra over Q we obtain similarly Dirich-
let series whose coefficients are products of Fourier coefficients of modular
forms of half integral weight and of sums of special values of Cohen–Zagier L-
functions. Since these Dirichlet series come from the Eisenstein series we can
give functional equations and meromorphic continuations for them. From
this we get again asymptotic formulae for products of the type described
above.

In the final Section 4 we restrict our Eisenstein series to embedded 2-
and 3-dimensional hyperbolic spaces. Comparing (in the 2-dimensional case)
the restrictions of Eisenstein series with respect to different maximal orders
we obtain square integrable automorphic forms with respect to congruence
subgroups of type Γ0(p) with explicitly given Fourier expansions (which
are, however, not eigenfunctions of the Laplacian). Although we have not
yet been able to obtain cusp forms by this method, it seems possible that
these might be constructed using the techniques which we develop here.
The Mellin transforms of the Eisenstein series lead to Dirichlet series with
meromorphic continuations and functional equations whose coefficients are
products of representation numbers of binary quadratic forms and sums of
values of Cohen–Zagier L-functions.

1. Basic facts and notation. Let B be a definite quaternion algebra
over Q; let H = B ⊗ R be the Hamilton quaternions. By x 7→ x we denote
the standard involution; by tr and n the reduced trace and norm in B; by
zr the “real part” 1

2 tr z of z ∈ B, we put B(0) = {x ∈ B | trx = 0}. Let G
be the unitary group of the 2-dimensional hermitian form with matrix ( 0 1

1 0 )
over B, that is,

G =
{(

a b
c d

)
∈M2(B)

∣∣∣∣
(
a b
c d

)
is inverse to

(
d b
c a

)}
.

The group GR is also called the modified symplectic group MSp(1,H); it
operates on the 4-dimensional hyperbolic space H = {z ∈ H | tr z > 0} by
fractional linear transformations, i.e., g = (a bc d ) operates by z 7→ gz =
(az + b)(cz + d)−1. If R is a maximal order in B we let ΓR ⊂ GQ be
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the set of g ∈ GQ such that g and g−1 have entries in R. This is known
to be a discrete subgroup of GR of finite covolume. From [Bo] (Prop. 7.5
and Prop. 2.7) it is clear that H has h inequivalent cusps with respect to
ΓR, where h is the number of classes of left R-ideals (this number does not
depend on the choice of R). The correspondence between equivalence classes
of cusps and ideal classes is given concretely by associating with the cusp
c = [a, b] ∈ P1(B) = B2/B× (multiplication by B× from the right) with
tr(ab) = 0 the left R-ideal Ic = Ra + Rb, whose right order is denoted by
Rc. Conversely, any left ideal I of R can be written as I = Ra + Rb with
a, b ∈ I (see [Ch]), and it is not difficult to see that a, b can be chosen
such that tr(ab) = 0 and that the equivalence class of the cusp [a, b] is then
uniquely determined by the class of the left ideal I.

For the cusp c = [a, b] let (ΓR)c denote the stabilizer of c in ΓR, let γc ∈ G
be such that γc

(1
0

)
=
(
a
b

)
and consider for s ∈ C and z ∈ H the Eisenstein

series

Ec(z, s) :=
∑

γ∈(ΓR)c\ΓR
( 1

2 tr(γ−1
c γz))s.

If γ−1
(
a
b

)
=
(
aγ
bγ

)
then γ−1

c γ = ( ∗
bγ

∗
aγ

) and hence

(γ−1
c γz)r =

zr

n(bγz + aγ)
.

Since

ΓR

(
a

b

)
=
{(

a′

b′

)
∈ B2

∣∣∣∣Ra′ +Rb′ = Ra+Rb, tr(a′b′) = 0
}

and since

γ 7→ γ−1
(
a

b

)
=
(
aγ
bγ

)

gives a bijection from (ΓR)c\ΓR onto ΓR
(
a
b

)
/R×c , we see that

Ec(z, s) = zsr
∑

(n(az + b))−s,

where the sum is over all pairs (a, b) ∈ (Ic× Ic)/R×c such that Ra+Rb = Ic
and tr(ab) = 0.

As usual in the theory of Eisenstein series it is easier to deal with the
related series

Ẽc(z, s) = zsr
∑′

n(az + b)−s

in which the sum runs over all pairs (a, b) ∈ Ic× Ic with tr(ab) = 0. In order
to give the relation between the two series we introduce some more notation;
for the underlying facts from the theory of quaternion algebras see [Vi].

Let I1 = R, I2, . . . , Ih be a set of representatives of the classes of left
R-ideals in B, and denote by Ri the right order Ri = {a ∈ B | Iia ⊂ Ii}. It
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is known that one can choose the Ii such that n(Ii)Z = Z; we will always
do so in the sequel. Let Iij (1 ≤ i, j ≤ h) be given by Iij = I−1

i Ij , where for
a left R-ideal I the inverse I−1 is the right R-ideal I−1 = {a ∈ B | Ia ⊂ R}
whose left order is the right order of I. The ideal Iij has then left order Ri
and right order Rj , and one has I1j = Ij for all j. Let

Z(Iij , s) =
∑

0 6=x∈Iij
n(x)−s = ei

∞∑
m=1

Bji(m)m−s

with Bij(m) denoting the entries of the Brandt matrix and ei = |R×i |;
the Brandt matrix series

∑∞
m=1Bij(m)m−s is also written as Bij(s). Let

c1, . . . , ch be representatives of the ΓR-equivalence classes of cusps of H,
corresponding to I1, . . . , Ih as described above; write γci = γi and Ei(z, s) :=
Eci(z, s), Ẽi(z, s) := Ẽci(z, s).

If we perform the same constructions starting with the right order Rj
of the ideal Ij instead of R, then the Iji = IjIi (i = 1, . . . , h) are a set of
representatives of the classes of left Rj-ideals, and to the ideal Iji there cor-
responds the cusp cji := γ−1

j γi
(1

0

)
of ΓRj . We then get the Eisenstein series

E
(j)
ji (z, s) and Ẽ

(j)
ji (z, s) with E

(1)
1i (z, s) = Ei(z, s), Ẽ

(1)
1i (z, s) = Ẽi(z, s) and

notice:

Lemma 1.1. With notations as above one has

E
(j)
ji (z, s) = Ei(γjz, s), Ẽ

(j)
ji (z, s) = Ẽi(γjz, s).

P r o o f. We have

Ei(γjz, s) =
∑

γ∈(ΓR)ci
\ΓR

(γ−1
i γγjz)sr

=
∑

γ∈(ΓR)ci
\ΓR

(γ−1
i γjγ

−1
j γγjz)sr =

∑
γ

(γ−1
i γjγz)sr,

where the sum now is over γ ∈ γ−1
j (ΓR)ciγj\γ−1

j ΓRγj . Since γ−1
j ΓRγj = ΓRj

and

γ−1
j (ΓR)ciγj = γ−1

j ΓRγj ∩ γ−1
j γiΓ∞γ−1

i γj = (ΓRj )cji ,

the assertion for Ei(z, s) is obvious. The assertion for Ẽi can be deduced
similarly or as a consequence of the following lemma:

Lemma 1.2. The series Ẽi(z, s) and Ei(z, s) are absolutely convergent
for Re s > 3. With the notations introduced above one has, in this domain,

Ẽj(z, s) =
h∑

i=1

Z(Iij , s)Ei(z, s).
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P r o o f. The convergence assertion is obvious. The rest of the proof pro-
ceeds as in [EGM]: If (a, b) ∈ Si = {(a, b) ∈ Ii×Ii |Ra+Rb = Ii, tr(ab) = 0}
and c ∈ B× ∩ Iij then (a′, b′) = (ac, bc) ∈ Ij × Ij .

The mapping
⋃h
i=1(Si × (B× ∩ Iij)) → Ij × Ij \ {(0, 0)} given thus by

((a, b); c) 7→ (ac, bc) is surjective since for (a′, b′) ∈ Ij×Ij one has Ra′+Rb′ =
Iic for some i ∈ {1, . . . , h} and some c ∈ B× ∩ Iij , hence (a′, b′) is the image
of ((a′c−1, b′c−1); c). Since each element of Ij × Ij has ei = |R×i | preimages
under this mapping, we have for each summand n(az + b)−s in Ei and for
each m ∈ N precisely #{c ∈ Iij |n(c) = m} terms m−sn(az + b)−s in Ẽj ,
which is just our assertion.

From the works of Eichler [E] it is known that the Brandt matrix series
can be diagonalized so that the diagonal entries are

ζ(s)ζ(s− 1)
∏

p|D
(1− p1−s)

and the Hecke L-functions L(fi, s) of the normalized cuspidal eigenforms of
weight 2 and level D of all Hecke operators (here D denotes the discriminant
of the quaternion algebra B). Therefore:

Lemma 1.3. The series Ei(z, s) and Ẽi(z, s) span the same space of
functions on H for Re s > 3 and (after analytic continuation) even for
Re s > 1 with the exception of s = 2, where the residues of the Ẽi span the
same space as the Ei.

2. Computation of Fourier coefficients. We now proceed to compute
the Fourier coefficients of the series Ẽi(z, s) introduced in Section 1. By
Lemma 1.1 we may restrict our attention to expansions about infinity.

Lemma 2.1. For Re s > 3 the series Ẽi(z, s) has the Fourier expansion

Ẽi(z, s) = zsrZ(Ii, s) +
2
D

∑

u∈R̂(0)

au(zr, s)b(i)u (s) exp(2πi tr(uz)).

Here R(0) = R ∩ B(0) is the sublattice of the order R consisting of the
quaternions with trace zero and R̂(0) = {x ∈ B(0) | tr(xR(0)) ⊂ Z} is its
dual lattice,

au(zr, s) =

{
π3/2z3−s

r Γ (s− 3/2)Γ (s)−1 if u = 0,

2πsΓ (s)−1n(2u)(2s−3)/4z
3/2
r Ks−3/2(2πzr

√
n(2u)) if u 6= 0,

and

b(i)u (s) =
∑

n(c)−s exp(2πi tr(uc−1d)),
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where the summation is over c ∈ Ii, c 6= 0 and d ∈ (Ii ∩ cB(0))/cR(0) and
Ks denotes the modified Bessel function

Ks(x) =
1
2

∞∫
0

exp
(
− x

2
(t+ t−1)

)
ts−1 dt.

P r o o f. Since Ẽi is invariant under translations z 7→ z+z′ with z′ ∈ R(0)

it has a Fourier expansion

Ẽi(z, s) =
∑

u∈R̂(0)

f (i)
u (zr, s) exp(2πi tr(uz))

with

f (i)
u (zr, s) =

1
µ(B(0)/R(0))

∫
B(0)/R(0)

Ẽi(z, s) exp(−2πi tr(uz)) dµ

where B(0)/R(0) is a fundamental parallelepiped for the lattice R(0) in the
real vector space B(0)

R and dµ is the Lebesgue measure on B(0)
R . In the domain

{s | Re s > 3} of absolute convergence of the series we compute f (i)
u (zr, s)

as usual by interchanging summation and integration and get

f (i)
u (zr, s)

= zsr
∑

b∈Ii
n(b)−s +

1
µ(B(0)/R(0))

∑

0 6=a∈Ii
n(a)−s

×
∑

b∈Ii∩(aB(0)/aR(0))

∑

`∈R(0)

∫
B(0)/R(0)

zsr
n(z + a−1b+ `)s

exp(−2πi tr(uz)) dµ

= zsrZ(Ii, s) +
1

µ(B(0)/R(0))

∑

0 6=c∈Ii

n(c)−s

×
∑

d∈(cB(0)∩Ii)/cR(0)

exp(2πi tr(uc−1d))
∫

B(0)

zsr
n(z)s

exp(−2πi tr(uz)) dµ,

where the first summands appear only if u = 0. Denoting by zr, z1, z2, z3 the
coordinates of z with respect to the usual basis of the Hamilton quaternions
the last integral is

au(z, s)

:=
∫
R3

zsr
(z2
r + z2

1 + z2
2 + z2

3)s
exp(−4πi(u1z1 + u2z2 + u3z3)) dz1 dz2 dz3

which we evaluate by rotating u = (u1, u2, u3) onto the point (n(u)1/2, 0, 0).
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We then apply the well known relation
∞∫

−∞

exp(−2πiyx)
(t2 + x2)s

dx =
{

2πs|yt−1|s−1/2Γ (s)−1Ks−1/2(2π|yt|) if y 6= 0,
π1/2|t|1−2sΓ (s)−1Γ (s− 1/2) if y = 0,

Ks denoting the modified Bessel function as above.
This gives the asserted value of au(z, s) = au(zr, s). We finally notice

that the lattice R(0) in B(0)
R = R3 has discriminant D2/4 with respect to the

standard bilinear form B(x, y) =
∑3
i=1 xiyi on R3, hence µ(B(0)/R(0)) =

D/2.

The “arithmetical part” b(i)u (s) of the Fourier coefficients of the Ẽi(z, s)
was calculated in [Gr1] in the case of the quaternion algebra with discrimi-
nant D = 2. Professor D. Zagier found an elegant form of the main formula
for bu(s) in [Gr1] using the special L-functions defined in [Za2]. We follow
here his idea.

We need the following two elementary lemmas:

Lemma 2.2. For c ∈ B×, d ∈ B and m ∈ n(c)Z one has
∑

µ∈Z/mZ
exp(2πi tr(µc−1d)) =

{
m if c−1d ∈ 1

2Z+B(0),
0 otherwise.

If I is a left R-ideal with n(I)Z = Z and c ∈ I−1 = I with c 6= 0, u ∈ R̂∩B(0),
then ∑

d∈cB(0)∩I/cR(0)

exp(2πi tr(uc−1d))

= n(c)−1
∑

d∈I/cR
exp(2πi tr(uc−1d))

∑

µ∈Z/n(c)Z
exp(2πi tr(µc−1d)).

If u ∈ R̂(0) and u 6∈ R̂ the same equality holds with u replaced by u + 1/2
on the right hand side of the identity.

P r o o f. The first part of our assertion is obvious. From it we deduce in
the case u ∈ R̂∩B(0) that the right hand side of the second identity is equal
to ∑

d∈c( 1
2Z+B(0))∩I/cR

exp(2πi tr(uc−1d)).

Since R always contains elements of trace 1, any d satisfying the summation
condition in this sum can be changed modulo cR to an element of cB(0)∩ I.
If u ∈ R̂(0) and u 6∈ R̂, then u + 1/2 is in R̂. This is easily checked by
examining the completions at the prime 2: If B is ramified at 2, then in
the usual basis {1, i, j, k} of the Hamilton quaternions, (R̂(0))2 is the set of
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elements in B(0)
2 with half integral coordinates and R̂2 is the set of elements

in B2 with half integral coordinates whose sum of the coordinates is integral.
If B is split at 2 then R̂2 = R2 is the ring of 2 × 2 matrices over Z2 and
(R̂(0))2 consists of the matrices of trace 0 that are integral off the diagonal
and have half integral entries with integral sum on the diagonal. In either
case we see (R̂(0))2 = B(0)2 ∩ ( 1

2Z2 + R̂2). Since replacing u by u+ 1/2 does
not change the left hand side of the second identity of the lemma, we obtain
the assertion.

Lemma 2.3. Let u ∈ R̂, let I be a left R-ideal with n(I)Z = Z, and let
c ∈ I with c 6= 0. Then

∑

d∈I/cR
exp(2πi tr(uc−1d)) =

{
n(c)2 if uc−1 ∈ R̂I,
0 otherwise.

P r o o f. Clear.

We are now ready to formulate

Proposition 2.4. For u ∈ R̂(0) one has

b(i)u (s) = |R×i |
∞∑
m=1

m1−s ∑

µ∈ 1
2Z/mZ

µ2+n(u)∈D−1mZ

N(µ, Ii, u,m),

where N(µ, Ii, u,m) is the number of left R-ideals J in the class of R̂Ii with
R̂ ⊇ J ⊇ (µ+ u) and n(J) = mD−1Z.

P r o o f. From the definition of b(i)u (s) it is obvious that elements c ∈ I−1
i

generating the same left Ri-ideal give the same contribution, so

b(i)u (s) = |R×i |
∞∑
m=1

m−s
∑

Ric⊂I−1
i

n(Ric)=mZ

∑

d∈cB(0)∩I−1
i
/cR(0)

exp(2πi tr(uc−1d)).

The innermost sum is then transformed using Lemmas 2.2 and 2.3 to give
m
∑
µ∈ 1

2Z/mZ
1, where the summation runs over µ satisfying u + µ ∈ R̂,

µ − u ∈ R̂Iic. One sees that all µ in the sum have to satisfy µ2 + n(u) ∈
D−1mZ and that this condition already implies u+ µ ∈ R̂ (using again the

explicit description of R̂(0) and of R̂ in the proof of Lemma 2.2). We can
then change the order of summation to get

b(i)u (s) = |R×i |
∞∑
m=1

m1−s ∑

µ∈ 1
2Z/mZ

µ2+n(u)∈D−1mZ

N(µ, Ii, u,m)



Eisenstein series 249

as asserted, putting J(c) = J = R̂Iic for each ideal Ric in the original
sum.

The following lemma implies that we get a smoother expression if we
sum the b(i)u (s) for i = 1, . . . , h weighted with factors |R×i |−1:

Lemma 2.5. Let µ ∈ 1
2Z satisfy µ2+ n(u)∈D−1mZ, denote by σ̃(m,u, µ)

the sum of all t |m satisfying gcd(t,D) = 1, µ+u ∈ tR̂, t | (µ2 +n(u))D/m.
Then

h∑

i=1

N(µ, Ii, u,m) = σ̃(m,u, µ).

P r o o f. Upon summation of the N(µ, Ii, u,m) over i the restriction on
the class of the ideal J in their definition is omitted and it is clear that

h∑

i=1

N(µ, Ii, u,m) =
∏
p

Np(µ, u,m),

where Np(µ, u,m) is the number of left Rp-ideals Jp of norm mD−1Zp be-
tween R̂p and Rp(µ+ u). For p |D there is just one Rp-ideal of given norm
and this ideal contains all ideals whose norm is divisible by its norm, so
Np(µ, u,m) = 1 for all µ with µ2 + n(u) ∈ D−1mZ. For p -D we have
R̂p = Rp and D ∈ Z×p . If we write u + µ = prv with v ∈ Rp, v 6∈ pRp and
n(v) ∈ pκZ×p and let mZp = pνZp, then our assertion is equivalent to

Np(µ, u,m) =
∑

λ≤min(ν,κ+2r−ν,r)
pλ.

Since Np(µ, u,m) depends only on ν, κ, and r, we write Np(ν, κ, r) :=
Np(µ, u,m) and define Np,0(ν, κ, r) by Np(ν, κ, r) = Np,0(ν, κ, r) + Np(ν −
2, κ, r− 1), so that Np,0(ν, κ, r) is just the number of left Rp-ideals of norm
pνZp between Rp and Rp(µ+u) that are not divisible by p. It is well known
that the left Rp-ideals in Rp that are not divisible by p are in one-to-one cor-
respondence with the vertices in the “tree of SL2(Qp)” (i.e., the Bruhat–Tits
building of this group) [Vi], where the p-adic valuation of the norm of the
ideal is equal to the distance from the vertex Rp in that tree. From this one
sees easily that

Np,0(ν, κ, r) =




pν + pν−1 if ν ≤ r,
pr if r < ν ≤ κ+ r,
0 if ν > κ+ r,

which by induction implies our assertion.

In what follows the crucial role is played by the Cohen–Zagier L-function
L(s,∆) (see [Za1], p. 130). For any integral ∆ the function L(s,∆) is defined
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by the equalities

(2.1)
ζ(s)L(s,∆)

ζ(2s)
=
∞∑
m=1

a(m,∆)m−s,

where

a(m,∆) = #{b mod 2m | b2 ≡ ∆ mod 4m}.
We shall enumerate some properties of L(s,∆):

L(s,∆) = 0 if ∆ is not a discriminant (∆ ≡ 2, 3 mod 4),

L(s, 1) = ζ(s), L(s, 0) = ζ(2s− 1),

L(s,∆) = L

(
s,

(
∆

∗
))

if ∆ is a fundamental discriminant,

L(s,∆) = L

(
s,

(
∆0

∗
))∑

t|f
µ(t)

(
∆0

t

)
t−sσ1−2s

(
f

t

)
if ∆ ≡ 0, 1 mod 4;

∆ = ∆0f
2 with natural f ; ∆0 is the discriminant of the quadratic field

Q(
√
∆), (∆0

∗ ) is the Kronecker symbol;

L

(
s,

(
∆0

∗
))

=
∑

m≥1

(
∆0

n

)
n−s

the associated L-series, and σν(m) =
∑
t|m t

ν . The function

(2.2) L∗(s,∆) =
{
π−s/2Γ (s/2)∆s/2L(s,∆) for ∆ > 0,
π−s/2Γ ((s+ 1)/2)|∆|s/2L(s,∆) for ∆ < 0

has a meromorphic continuation to the whole complex plane and satisfies
the functional equation

L∗(s,∆) = L∗(1− s,∆).

The function L(s,∆) has no poles if ∆ is negative.
The values of the functions L(s,−N) (N > 0) at even negative points

are rational. These are the so-called Cohen numbers (see [Co]):

L(−2k,−N) = H(2k + 1, N).

In particular, H(1, N) = H(N) is the class number of SL2-non-equivalent
binary quadratic forms of discriminant −N , calculated with multiplicity 1/2
(or 1/6, 1/4) if the discriminant of the form is less than −4 (equal to −3, −4)
(see [Za1], p. 113).
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Theorem 2.6. For u ∈ R̂(0) and u 6= 0 one has

b̃u(s) =
h∑

i=1

b
(i)
u (s)
|R×i |

= ζ(s− 1)ζ(2s− 2)−1
∏

p|D
(1 + p1−s)−1

×
∑

t|u
(t,D)=1

∑

l|Dq(2u)−1

(tl)2−sL
(
s− 1,−n(2u)D2

(tl)2

)
,

where the product is taken over all prime divisors of the discriminant D; the
sum over t runs over t ∈ N relatively prime to D satisfying u ∈ tR̂(0); q(u)
denotes the denominator of n(u) (the quaternion norm of u); the second
sum is taken over all positive divisors l of the number D/q(2u) and L(. . .)
is the L-function defined in (2.1).

For u = 0 one has

b̃0(s) = ζ(s− 1)ζ(s− 2)ζ(2s− 3)ζ(2s− 2)−1
∏

p|D

1− p4−2s

1 + p1−s .

P r o o f. For 0 6= u ∈ R̂(0) we first prove the following formula:

(2.3) b̃u(s) :=
h∑

i=1

b
(i)
u (s)
|R×i |

=
∑
t

t2−s
∞∑
m=1

m1−sa
(
Dm,

−4n(u)D2

t2

)
,

where the sum over t runs over the natural numbers t which are coprime to
D and for which u ∈ tR̂(0).

By Lemma 2.5 we have

b̃u(s) =
∞∑
m=1

m1−s∑
µ

∑
t

t

where µ runs over µ ∈ 1
2Z/mZ with µ2 + n(u) ∈ D−1mZ and t runs over

t |m with µ + u ∈ tR̂, t | (µ2 + n(u))D/m, and gcd(t,D) = 1. Collecting
all terms with the same t and replacing µ by µ/t, m by m/t, we obtain
the assertion with a(Dm,−4n(u)D2/t2) replaced by #{µ ∈ 1

2Z/mZ |µ2 +
n(u)/t2 ∈ D−1mZ}. This is obviously equal to

#{µ ∈ Z/2mZ |µ2 + 4n(u)/t2 ∈ 4D−1mZ}
= #{µ ∈ Z/2DmZ |µ2 + 4n(u)D2/t2 ∈ 4DmZ},

the last equality being obtained by replacing µ by Dµ and observing that
µ2 + 4n(u)D2/t2 ∈ 4DmZ implies D |µ. This proves formula (2.3).
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Denote the main part of the coefficient b̃u(s) by

SD(N, q; s) =
∑

m≥1

a

(
mD,−ND

2

q

)
m−s.

Lemma 2.7. Assume that D is a square-free natural number ; q is an odd
divisor of D and N is a natural number relatively prime to q. Then

SD(N, q; s) = ζ(s)ζ(2s)−1
∏

p|D
(1 + p−s)−1

∑

l
∣∣D
q

l1−sL
(
s,−ND

2

ql2

)
.

In particular , if N = 0 and q = 1 then

SD(0, 1; s) = ζ(s)ζ(2s− 1)ζ(2s)−1
∏

p|D

1 + p1−s

1 + p−s
.

P r o o f. Without loss of generality we may assume that the number
−ND2/q is a discriminant, i.e. −ND2/q ≡ 0, 1 (mod 4). We shall express
the Dirichlet series SD(N, q; s) as the product of three factors

SD(N, q; s) =
( ∑

(m,D)=1

a(mD,−q−1ND2)m−s
)

(2.4)

×
∏

p|q

(∑

δ≥0

a(pδ+1,−q−1ND2)p−δs
)

×
∏

p
∣∣D
q

(∑

δ≥0

a(pδ+1,−q−1ND2)p−δs
)
.

By definition of the L-function (2.1) and by the fact that a(D,−q−1ND2)
= 1 for the square-free D we see that the first factor in the last product is
equal to

ζ(D)(s)ζ(D)(2s)−1L(D)
(
s,−ND

2

q

)
,

where ζ(D) and L(D) are Euler products without prime divisors of D.
If we denote byD0 the discriminant of the quadratic fieldQ(

√
−q−1ND2),

then −ND2/q = D0f
2, and νp = ordp f is the p-order of f . It follows from

the properties of the function L(s,∆) that its p-local factors are of the fol-
lowing form:

Lp

(
s,−ND

2

q

)
=
(

1−
(
∆0

p

)
p−s
)−1

Fp(s, νp),

where

Fp(s, νp) = σ1−2s(pνp)−
(
∆0

p

)
p−sσ1−2s(pνp−1).
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Under the hypotheses of the lemma, q is an odd divisor of D0, so the second
factor in (2.4) is equal to

∏

p|q
ps(1 + p−s)

(
Lp

(
s,−ND

2

q

)
− 1
)

= 1.

If p is a divisor of D/q, then any local factor in the third product in (2.4) is
equal to

ps
(∑

δ≥0

a

(
pδ,−ND

2

q

)
p−δs − 1

)
=
Fp(s, νp) + p1−sFp(s, νp − 1)

(1− (∆0
p )p−s)

,

because σs(pν)− 1 = psσs(pν−1).
The terms Fp(s, νp) give us the factors Lp(s,−q−1ND2) in (2.4) and the

terms with Fp(s, νp−1) give the factors p1−sLp(s,−q−1p−2ND2). Collecting
all factors in (2.4) we get the formula of the lemma.

Now we can finish the proof of Theorem 2.6.
By the identity (2.3) and the formula of the last lemma we have

b̃u = ζ(s− 1)ζ(2s− 2)−1
∏

p|D
(1 + p1−s)−1

×
∑

t|u
(t,D)=1

∑

l
∣∣ D
q(2ut−1)

(tl)2−sL
(
s− 1,−n(2u)D2

(tl)2

)
,

where q is the denominator of the norm of the quaternion 2ut−1. From the
description of the 2-adic completions in the proof of Lemma 2.2 we see that
the denominator q of the norm of 2u, where u is a quaternion from the lattice
R̂(0), is an odd number. Since obviously q(2ut−1) = q(2u) for any natural

t coprime to D with u ∈ tR̂(0), we obtain the formula of Theorem 2.6 for
u 6= 0. If u = 0, then the summation in (2.3) is taken over all natural t
coprime to D, q(u) = 1 and L(s− 1, 0) = ζ(2s− 3). Theorem 2.6 is proved.

We shall now add an additional factor to the Eisenstein series so that it
satisfies a functional equation. Let us define the series

E∗R(z, s) = π−3s/2+1DsΓ (s/2)Γ (s)ζ(2s− 2)ζ(s− 1)−1
∏

p|D
(1+p1−s)ẼR(z, s),

where the product is taken over all prime divisors of the discriminant D and

ẼR(z, s) =
h∑

i=1

1
|R×i |

Ẽi(z, s).

As a corollary of Theorem 2.6 we can prove the following
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Theorem 2.8. The Eisenstein series E∗R(z, s) has the following Fourier
expansion at infinity :

E∗R(z, s) = zsrf
(D)
0 (s) + z3−s

r f
(D)
0 (3− s)

+ 4
√
π
∑

u∈R̂(0)

u 6=0

n(2u)−1/4
∑

t|u
(t,D)=1

∑

l
∣∣ D
q(2u)

tlL∗
(
s− 1,−n(2u)D2

t2l2

)

× z3/2
r Ks−3/2(2πzr

√
n(2u)) exp(2πi tr(uz)),

where

f
(D)
0 (s) = (s− 1)Ds

∏

p|D
(1− p2−2s)ζ∗(s)ζ∗(2s− 2),

the function L∗ is defined in (2.1), (2.2) and , as is customary , ζ∗(s) =
π−s/2Γ (s/2)ζ(s).

R e m a r k 2.9. One should also get nice formulae for Fourier coefficients
of other linear combinations of the Eisenstein series Ẽi(z, s), in particu-
lar for linear combinations

∑h
i=1

αi
|R×
i
| Ẽi(z, s) whose coefficients αi are the

values of an eigenfunction of all Hecke operators on the adelization B×A
(see [BS]). We plan to come back to such linear combinations of Eisenstein
series as part of a more general investigation into the theta correspondence
between the unitary groups of (skew-) hermitian forms over quaternion al-
gebras.

The next result is a generalization of the theorem proved in [Gr1] for
D = 2 (see also [Gr2], Lemma 3.2).

Corollary 2.10. The Eisenstein series E∗R(z, s) has a meromorphic
continuation to the whole plane and satisfies the functional equation

E∗R(z, s) = E∗R(z, 3− s).
It is entire except for simple poles at s = 0, 3, with the residue

ζ(3)
2π

∏

p|D
(p2 − 1)

at the point s = 3.

P r o o f. We only have to recall that

Ks(y) = K−s(y), L∗(s− 1,∆) = L∗(2− s,∆)

and that the L-function L(s,∆) has no poles when ∆ < 0.
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P r o o f o f T h e o r e m 2.8. According to Lemma 2.1 and Theorem 2.6
the zeroth Fourier coefficient of the series E∗R(z, s) is equal to

(2.5) F (s)
(
zsr
∑

i

Z(Ii, s)
|R×i |

+
2
D
z3−s
r π3/2Γ (s− 3

2 )Γ (s)−1 ζ(s− 1)ζ(s− 2)ζ(2s− 3)
ζ(2s− 2)

∏

p|D

1− p4−2s

1 + p1−s

)
,

where

F (s) = π−3s/2+1DsΓ (s/2)Γ (s)ζ(2s− 2)ζ(s− 1)−1
∏

p|D
(1 + p1−s)

is the factor of holomorphy of the Eisenstein series. The first summand in
(2.5) is equal to zsrf

(D)
0 (s), because

∑

i

Z(Ii, s)
|R×i |

= ζ(s)ζ(s− 1)
∏

p|D
(1− p1−s).

(The left hand side is
∑
mAmm

−s, where Am is the number of left R-ideals
of reduced norm m. The asserted identity therefore follows from the results
of [L], see also [Vi], III.2.)

The second summand in (2.5) is equal to

z3−s
r (s− 2)ζ∗(s− 2)ζ∗(2s− 3)Ds−1

∏

p|D
(1− p4−2s) = z3−s

r f
(D)
0 (3− s),

since D has an odd number of prime divisors. The theorem is proved.

Example 2.11. Let us take the quaternion algebra with discriminant
D = 2 and the unique type of maximal order R in it:

B =
(−1,−1

Q

)
= Q⊕Qi⊕Qj ⊕Qk,

R =
{
a+ bi+ cj + dk

2

∣∣∣∣ a ≡ b ≡ c ≡ d mod 2
}
,

where i2 = j2 = k2 = −1. By Theorem 2.8,

E∗R(z, s) = zsrf
(2)
0 (s) + z3−s

r f
(2)
0 (3− s)

+ 4
√
π

∑

u=(a,b,c) 6=0
a,b,c∈Z

n(u)−1/4

×
∑

t|(a,b,c)
(t,2)=1

(
tL∗
(
s− 1,−4n(u)

t2

)
+ 2tL∗

(
s− 1,−n(u)

t2

))

× z3/2
r Ks−3/2(2π

√
n(u)zr) exp(2πi(az1 + bz2 + cz3)),



256 V. A. Gritsenko and R. Schulze-Pil lot

where

z = zr + z1i+ z2j + z3k, f
(2)
0 (s) = (s− 1)2s(1− 22−2s)ζ∗(s)ζ∗(2s− 2).

If we restrict the Eisenstein series to the positive axis zr > 0, then we
get the following asymptotics for the sum of the Fourier coefficients:

Corollary 2.12. As zr → 0 with s 6= 0, 3 we have

4
√
π
∑

u∈R̂(0)

u 6=0

n(2u)−1/4
∑

t|u
(t,D)=1

∑

l
∣∣ D
q(2u)

tlL∗
(
s+

1
2
,−n(2u)D2

t2l2

)
Ks(2πzr

√
n(2u))

= z−s−3
r f

(D)
0 (3

2 + s) + z−s+3
r f

(D)
0 ( 3

2 − s) +O(zsr) +O(z−sr ).

In accordance with the Tauberian theorem we have the following result
for s = 1/2:

∑

u∈R̂(0)

0<n(2u)≤X

∑

t|u
(t,D)=1

∑

l
∣∣ D
q(2u)

tlH

(
n(2u)D2

t2l2

)

√
n(2u)

∼ X3/2π
4

54

∏

p|D
(p2 − 1).

In particular, in the case of Example 2.11 we have

∑

n≤X

∑

a,b,c∈Z
a2+b2+c2=n

∑

t|(a,b,c)
(t,2)=1

tH(4n/t2) + 2tH(n/t2)√
n

=
∑

1≤N≤X
oddsqu(N,X)

r3(N)(H(4N) + 2H(N))√
N

∼ X3/2π
4

18
,

where

oddsqu(N,X) = d 1
2b
√
X/Nce

is the number of odd squares less than or equal to X/N .
We note that the class number H(N) and the number of representations

of N as a sum of three squares are connected by the classical formulae

r3(N) =





12H(N) if N ≡ 1, 2 mod 4,
24H(N) if N ≡ 3 mod 8,
0 if N ≡ 7 mod 8,

r3(4N) = r3(N).

3. Mellin transform. Our next aim is to calculate the Mellin transform
of the restriction of the Eisenstein series E∗(s, t) to the positive real axis.



Eisenstein series 257

Theorem 3.1. Define the Dirichlet series

DD(s, t) =
∑
m>0
Dm∈N

r
R̂(0)

(m)
∑
l
∣∣ D
q(m)

lL∗(s,−mD2/l2)

mt
,

where
r
R̂(0)

(m) = #{u ∈ R̂(0) | n(2u) = m}
is the number of representations of m as a norm of an element 2u with
u ∈ R̂(0), q(m) is the denominator of m, L(s,∆) is the Cohen–Zagier L-
function defined in (2.1) and

ζ(D)(s) =
∏

(p,D)=1

(1− p−s)−1

is the zeta-function without D-part for the discriminant D of the quaternion
algebra. The Dirichlet series

D∗D(s, t) = π−2t+1Γ

(
t+

s− 1
2

)
Γ

(
t− s

2

)
ζ(D)(2t− 1)DD(s, t)

has a meromorphic continuation to the whole complex s- and t-planes. It is
invariant with respect to the substitution

t→ 2− t, s→ 1− s
and could have simple poles with respect to t only for

t =
s

2
, t =

1− s
2

, t =
s+ 3

2
, t =

4− s
2

.

Moreover ,

D∗D(s, t) +
f

(D)
0 (s+ 1)
s+ 2t− 1

+
f

(D)
0 (s+ 1)
s− 2t+ 3

+
f

(D)
0 (2− s)

2t− s +
f

(D)
0 (2− s)
4− s− 2t

is an entire function on the whole complex plane.

R e m a r k 3.2. Mellin transforms of automorphic forms of hyperbolic
type were constructed by Maass in [Ma]. Using his method it is possible to
add a spherical function of a ternary quadratic form to the Dirichlet series
D(s, t).

R e m a r k 3.3. The only term in the Dirichlet series DD(s, t, R) from The-
orem 3.1 that depends on the choice of the maximal order R in B is the repre-
sentation number r

R̂(0)
(m) = #{u ∈ R̂(0) |n(2u) = m}, which obviously de-

pends only on the type ofR. Furthermore, ifD is odd we know from the proof
of Lemma 2.2 that the 2-adic completion of R̂(0) is that of B(0) ∩ (Z 1

2 +R),
and it is well known that for the odd primes p |D the p-adic completion of

R̂(0) is {u ∈ B(0)
p |n(u) ∈ p−1Zp} and that of R(0) is {u ∈ B(0)

p |n(u) ∈ Zp}.
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Hence, putting L = (Z1 + 2R) ∩B(0) we have

r
R̂(0)

(m) = r(L,D2m),

where D is odd. We let R run through the orders Ri (i = 1, . . . , h) and put
Li = (Z1 + 2Ri) ∩ B(0). The theta series of the Li have been discussed at
some length in [BS]. In particular, we recall from this article that suitable
linear combinations of the theta series ϑ(Li, τ) yield the cuspidal newforms
g(τ) =

∑∞
n=1 bn exp(2πinτ) of weight 3/2 and level D in Kohnen’s space

having bn = 0 for all n with (−np ) = 1 for some p |D, which correspond
under Shimura’s correspondence to normalized newforms f of weight 2 with
L(f, 1) 6= 0. The same linear combinations of the DD(s, t, Ri) give there-
fore Dirichlet series in t whose coefficients are formed from such cusp form
coefficients and the values at s of Cohen–Zagier’s L-functions.

P r o o f o f T h e o r e m 3.1. The following formula is well known:
∞∫

0

Kν(ay)yt−1dy = a−t2t−2Γ

(
t− ν

2

)
Γ

(
t+ ν

2

)
for Re t > |Re ν|.

Let us take the Mellin transformation for Re t > Re s > 3,

M(s, t) =
∞∫

0

[E∗(zr, s)− f (D)
0 (s)zsr − f (D)

0 (3− s)z3−s
r ]zt−1

r dzr,

and sum firstly over the divisors d in the Dirichlet series. This gives us

π−t−1Γ

(
t+ s

2

)
Γ

(
t− s+ 3

2

)
ζ(D)(t+ 1)

×
∑

u∈R̂(0)

u 6=0

n(2u)(t+2)/2
∑

l
∣∣ D
q(u)

L∗
(
s− 1,−n(2u)D2

l2

)
,

where the last Dirichlet series is absolutely convergent for Re t > Re s > 3.
On the other side we can decompose the Mellin integral into a sum of

three terms

M(s, t) =
∞∫

1

[E∗(zr, s)− f (D)
0 (s)zsr − f (D)

0 (3− s)z3−s
r ]zt−1

r dzr

+
1∫

0

[E∗(zr, s)− f (D)
0 (s)z−sr − f (D)

0 (3− s)zs−3
r ]zt−1

r dzr

+
1∫

0

[f (D)
0 (s)z−sr − f (D)

0 (3− s)zs−3
r − f (D)

0 (s)zsr
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−f (D)
0 (3− s)z3−s

r ]zt−1
r dzr.

The series E∗(zr, s) is invariant with respect to the transformation zr → z−1
r .

After obvious calculations we see that the Mellin transform is equal to
∞∫

1

[E∗(zr, s)− f (D)
0 (s)zsr − f (D)

0 (3− s)z3−s
r ]zt−1

r dzr

+
∞∫

1

[E∗(zr, s)− f (D)
0 (s)zsr − f (D)

0 (3− s)z3−s
r ]z−t−1

r dzr

− f
(D)
0 (s)
s+ t

− f
(D)
0 (s)
s− t −

f
(D)
0 (3− s)
3 + t− s −

f
(D)
0 (3− s)
3− s− t .

The function [E∗(zr, s) − f (D)
0 (s)zsr − f (D)

0 (3 − s)z3−s
r ] has no poles and it

decreases exponentially at infinity so the last two integrals exist for any
complex t. This gives us a meromorphic continuation of the Mellin integral
to the whole complex plane. Let us change the variables s → s + 1 and
t→ 2t− 2. We then see that the Dirichlet series

π−2t+1Γ

(
t+

s− 1
2

)
Γ

(
t− s

2

)
ζ(D)(2t− 1)

×
∑

u∈R̂(0)

u 6=0

n(2u)−t
∑

l
∣∣ D
q(u)

L∗
(
s,−n(2u)D2

l2

)

+
f

(D)
0 (s+ 1)
s+ 2t− 1

+
f

(D)
0 (s+ 1)
s− 2t+ 3

+
f

(D)
0 (2− s)

2t− s +
f

(D)
0 (2− s)
4− s− 2t

is invariant with respect to transformations indicated in the theorem and
has no poles. In order to finish the proof of Theorem 3.1 we have to collect
together those terms in which the quaternions 2u have the same norm.

Example 3.4. For the quaternion algebra with D = 2 (see example
above) we have the Dirichlet series

D2(s, t) =
∑

N≥1

r3(N)(L∗(s,−4N) + 2L∗(s,−N))
N t

,

where r3(N) denotes the number of representations of N as a sum of three
squares. In accordance with Theorem 3.1 the series

D∗2(s, t) = π−2t+1Γ

(
t+

s− 1
2

)
Γ

(
t− s

2

)
(1− 21−2t)ζ(2t− 1)D2(s, t)

is invariant with respect to t → 2− t. For the special values s = 2k + 1 we
get the Dirichlet series with Cohen’s numbers H(2k + 1, N) instead of the
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L-functions. The theorem tells us that

Rest=k+2

∑

N≥1

r3(N)(H(2k + 1, 4N) + 22k+1H(2k + 1, N))
N t+k

= Ck
ζ(2k + 2)ζ(4k + 2)

ζ(2k + 3)
,

where

Ck =
(−1)k8(2k)!(24k+2 − 1)

π2k(22k+3 − 1)
.

In particular, we have for k = 0,

Rest=2

∑

N≥1

r3(N)(H(4N) + 2H(N))
N t

=
2π4

21ζ(3)
.

Using the Tauberian theorem we have
∑

N≤X
r3(N)(H(2k + 1, 4N) + 22k+1H(2k + 1, N))

∼ X2k+2Ck
ζ(2k + 2)ζ(4k + 2)
(k + 2)ζ(2k + 3)

,

∑

N≤X
r3(N)(H(4N) + 2H(N)) ∼ X2 π4

21ζ(3)
.

Example 3.5. Let us take the quaternion algebra with discriminant
D = 3:

B =
(−1,−3

Q

)
= Q⊕Qi⊕Qj ⊕Qk, where i2 = −1, j2 = k2 = −3,

and the unique type of maximal order R in it

R = Z
1 + j

2
⊕ Z i+ k

2
⊕ Zj ⊕ Zk

with

R̂(0) =
{
a
i+ k

2
+ b

j

6
+ c

k

3

∣∣∣∣ a, b, c ∈ Z
}
.

For any u in R̂(0),

n(2u) =
12a2 + 12ac+ 4c2 + b2

3
.

The series in Theorem 3.1 is equal to

D3(s, t) =
∑

N≥1

(
rF (N)L∗(s,−3N)

(N/3)t
+

3rF (3N)L∗(s,−N)
N t

)
,
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where rF (N) = r(12a2 +12ac+4c2 +b2;N) is the number of representations
of N by the ternary quadratic form.

4. Pullback. Let ` be any quaternion without real part, i.e., ` = −`. Let
us define the following two-dimensional subspace H` of the four-dimensional
hyperbolic space H:

H` = {z = y + `x | y > 0}
and a subgroup

G` =
{
g̃ =

(
a `b

`−1c d

)
∈ G

∣∣∣∣ a, b, c, d ∈ R
}

of the group G.

Lemma 4.1. H` is invariant with respect to the action of G`.
P r o o f. We can realize the usual two-dimensional upper half plane H+

in the form

H+
` =

{
τ̃ = x+

√
n(`)
`

y

∣∣∣∣ y > 0
}
.

The isomorphism φ` between H+ and H+
` ,

φ` : τ = x+
√−1y → τ̃ = x+

√
n(`)
`

y,

commutes with the action of SL2:

φ`(g〈τ〉) = g〈φ`(τ)〉, g ∈ SL2(R).

The domain H` is obtained from H+
` by multiplication with the quaternion

`: H` = ` ·H+
` .

It is easy to see that

if g =
(
a b
c d

)
∈ SL2(R), then g̃ =

(
a `b

`−1c d

)
∈ G`.

By definition of the actions of the groups on the homogeneous domains
we have g̃〈`τ̃〉 = `g〈τ̃〉 for τ̃ ∈ H+

` and g̃ ∈ G`. The lemma is proved.

Now we shall define a function E(z, s) on the two-dimensional upper half
plane H+ to be the restriction of the Eisenstein series E∗R(z, s) to H`. More
exactly,

E`(τ, s) = E∗R(`φ`(τ), s) = E∗R(`x+
√
n(`)y, s),

where τ = x+
√−1y ∈ H+.

Theorem 4.2. Let ` be a primitive quaternion with trace zero. Then the
real analytic function E`(τ, s) defined above is invariant with respect to the
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subgroup Γ0(n(`)):

E`(g〈τ〉, s) = E`(τ, s) for g =
(
a b
c d

)
∈ SL2(Z), c ≡ 0 (mod n(`)),

and is invariant with respect to the involution

Jn(`) =
(

0 −1
n(`) 0

)
.

The function E`(τ, s) has the following Fourier expansion at infinity :

E`(τ, s) = ysn(`)sf (D)
0 (s) + y3−sn(`)3−sf (D)

0 (3− s)

+ 4
√
π
∑

u∈R̂(0)

u 6=0

n(2u)−1/4
∑

t|u
(t,D)=1

∑

l
∣∣ D
q(2u)

tlL∗
(
s− 1,−n(2u)D2

t2l2

)

× (y
√
n(`))3/2Ks−3/2(2π

√
n(2u`)y) exp(2πix tr(u`)),

where f (D)
0 (s), L∗(. . .) and the indices of summations are as defined in The-

orem 2.8.

P r o o f. For an integral matrix g we see that

g =
(
a b
c d

)
∈ Γ0(n(`)) is equivalent to g̃ =

(
a `b

`−1c d

)
∈ ΓR.

According to the formulae obtained above

E`(g〈τ〉, s) = E∗(`(g̃〈τ〉), s) = E∗(`(g〈τ̃〉), s)
= E∗(g̃〈`τ̃〉, s) = E∗(`τ̃ , s) = E`(τ, s),

where τ̃ = φ`(τ) for τ ∈ H+. It is easy to see that

`φ`

(
− 1
n(`)τ

)
= (`φ`(τ))−1.

This proves the second statement of the theorem. The form of the Fourier
expansion follows from Theorem 2.8.

R e m a r k 4.3. The terms with ys and y3−s in the Fourier expansions
depend only on the discriminant of the quaternion algebra B and the norm
of quaternion `, but do not depend on ` itself or on the maximal order R.
This gives us a series of examples of functions in L2(Γ0(n(`))\H+). Take two
quaternions `1 ∈ R1, `2 ∈ R2 of the same norm n(`1) = n(`2) = p, where
p is a prime number and R1 and R2 are maximal orders of the quaternion
algebra H. The difference

ER1
`1

(τ, s)− ER2
`2

(τ, s)

belongs to the space L2(Γ0(n(`)) \H+). The restriction of this function to
the axis y > 0 is not zero if the Mellin transformations of the Eisenstein
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series ER1 and ER2 , constructed in Theorem 3.1, are not equal. The last
fact is easy to check.

Example 4.4. Let us take the case of the quaternion algebra with dis-
criminant two. We have the real analytic function Ei(τ, s) (i2 = −1) with
the following Fourier expansion at infinity:

Ei(τ, s) = ysf
(2)
0 (s) + y3−sf (2)

0 (3− s)

+ 4
√
π

∑

u=ni+bj+ck
u 6=0

n(u)−1/4
∑

d|(n,b,c)
(d,2)=1

d

(
L∗
(
s− 1,−4n(u)

d2

)

+ 2L∗
(
s− 1,−n(u)

d2

))
y3/2Ks−3/2(2π

√
n(u)y) exp(2πinx),

where

f
(2)
0 (s) = (s− 1)2s(1− 22−2s)ζ∗(s)ζ∗(2s− 2) and n(u) = n2 + b2 + c2.

It is SL2(Z)-invariant, i.e. Ei(g〈τ〉, s) = Ei(τ, s) for g ∈ SL2(Z). After resum-
mation we have

Ei(τ, s) = a0(y, s) +
∑

n6=0

an(y, s) exp(2πinx),

with

a0(y, s) = ysf
(2)
0 (s) + y3−sf (2)

0 (3− s)
+ 8
√
π

∑

m≥1
d≥1,(2,d)=1

d1/2m−1/4r2(m)

× (L∗(s− 1,−4m) + 2L∗(s− 1,−m))y3/2Ks−3/2(2πd
√
my)

and

an(y, s) = 4
√
π
∑

d|n
(2,d)=1

d1/2
∑

m≥1

m−1/4r2

(
m− n2

d2

)

× (L∗(s− 1,−4m) + 2L∗(s− 1,−m))y3/2Ks−3/2(2πd
√
my),

where

r2(m) = #{(b, c) | b2 + c2 = m}
is the number of representations of the natural m as a sum of two squares.

Example 4.5. Let us take the algebra with discriminant equal to 3. We
keep the notations of Example 3.5. For the quaternion j we have

n(j) = 3, R̂
(0)
j =

{
a
i+ k

2
+ c

k

3

∣∣∣∣ a, c ∈ Z
}
.
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The coefficients of the Fourier expansion

Ej(τ, s) = a0(y, s) +
∑

n6=0

an(y, s) exp(2πinx),

are the following:

a0(y, s) = ysf
(3)
0 (s) + y3−sf (3)

0 (3− s)
+ 8
√
π

∑

d≥1,(3,d)=1

d1/2

×
(

3
∑
m>0

(3,m)=1

m−1/4rf (m)L∗(s− 1,−3m)y3/2Ks−3/2(2πd
√
my)

+ 33/4
∑
m>0

m−1/4rf (3m)

× (L∗(s− 1,−9m) + 3L∗(s− 1,−3m))y3/2Ks−3/2(2πd
√

3my)
)

and

an(y, s) = 4
√
π
∑

d|n
(3,d)=1

d1/2
(

3
∑
m>0

(3,m)=1

m−1/4rf

(
m− n2

d2

)

× L∗(s− 1,−3m)y3/2Ks−3/2(2πd
√
my)

+ 33/4
∑
m>0

m−1/4rf

(
3m− n2

d2

)

× (L∗(s− 1,−9m) + 3L∗(s− 1,−3m))y3/2Ks−3/2(2πd
√

3my)
)
,

where

rf (m) = r(12a2 + 12ac+ 4c2,m)

is the number of representations of the natural number m by the binary
quadratic form f(a, b) = 12a2 + 12ac+ 4c2.

We have calculated above the Mellin transform of the Eisenstein series.
Now we shall calculate the Mellin transform of the constant term of the
function E`(τ, s) using Zagier’s theorem (see [Za2]). Let us take for simplicity
the case of the full modular group with n(`) = 1. By the main theorem of
[Za2] the Rankin–Selberg transform of E`(τ, s) (s 6= 0, 3, 3/2) is defined by

R`(s, t) =
∞∫

0

(a0(y, s)− φ(y, s))yt−2 dy

where a0(y, s) is the constant term of the function E`(τ, s) and φ(y, s) =
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ysf
(D)
0 (s)+y3−sf (D)

0 (3−s) (the integral converges for Re t sufficiently large).
R`(s, t) can be meromorphically continued to all complex t, the only possible
poles being at

t = 0, 1, s, 1− s, 3− s, 2− s and %/2

(% is any non-trivial zero of the Riemann zeta-function) and satisfies a func-
tional equation

R∗` (s, t) = R∗` (s, 1− t), where R∗` (s, t) = ζ∗(2t)R`(s, t).
By direct calculations we see that the integral R(E`, t) is equal to

π−tΓ
(
t− s

2
+ 1
)
Γ

(
t+ s− 1

2

)
ζ(D)(t)

×
∑

u∈R̂`(0)
u 6=0

n(2u)−(t+1)/2
∑

l
∣∣ D
q(2u)

lL∗
(
s− 1,−n(2u)D2

l2

)
,

where R̂(0)
` is the orthogonal complement to the quaternion ` in the lattice

R̂(0) with respect to the product tr(uv). As a corollary we have the following

Theorem 4.6. Let ` be a quaternion unit in the lattice R̂(0). The follow-
ing Dirichlet series (s 6= 0, 3) has a meromorphic continuation to the whole
complex s- and t-planes:

R∗` (s, t) = π−tΓ
(
t− s

2
+ 1
)
Γ

(
t+ s− 1

2

)
ζ(D)(t)ζ∗(2t)

×
∑

m>0,Dm∈Z

r
R̂

(0)
`

(m)
∑
l
∣∣ D
q(m)

lL∗(s− 1,−mD2/l2)

m(t+1)/2
,

where q(m) is the denominator of the rational number m, and

r
R̂

(0)
`

(m) = #{u ∈ R̂(0) | n(2u) = m, tr(u`) = 0}

is the number of representations of the rational number m as the norm of

an element 2u in the orthogonal complement R̂(0)
` . The series is invariant

with respect to the substitution

t→ 1− t, s→ 3− s,
and could have poles with respect to t only for

t = 0, 1, s, 1− s, 3− s, s− 2.
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Moreover , for s 6= 0, 3, 3/2,

R∗` (s, t) = f
(D)
0 (s)

(
ζ∗(2t)

1− s− t +
ζ∗(2t− 1)
t− s

)

+ f
(D)
0 (3− s)

(
ζ∗(2t)
s− t− 2

+
ζ∗(2t− 1)
t+ s− 3

)

+
entire function of t

t(t− 1)
.

R e m a r k 4.7. It is possible to describe the pole at s = 3/2. For that we
need a variant of Kronecker’s summation formula for the Eisenstein series
E∗R(z, s) with a logarithmic term in it. See [Kr] where such a formula was
constructed in the case of the quaternion algebra with D = 2. The general
case is analogous.

Example 4.8. We have the following particular formulae for the Rankin–
Selberg transforms. In the case of the algebra with discriminant two,

R∗i (s, t) = π−tΓ
(
t− s

2
+ 1
)
Γ

(
t− s+ 1

2

)
ζ(2)(t)ζ∗(2t)

×
∑
m>0

r(a2 + b2,m)(L∗(s− 1,−4m) + 2L∗(s− 1,−m))
m(t+1)/2

.

For the algebra with discriminant 3 (see Example 3.4) and ` = i we have

R∗j (s, t) = π−tΓ
(
t− s

2
+ 1
)
Γ

(
t− s+ 1

2

)
ζ(3)(t)ζ∗(2t)

×
( ∑

m>0
(m,3)=1

r(4a2 + b2,m)L∗(s− 1,−3m)
(m/3)(t+1)/2

+
∑
m>0

r(4a2 + b2, 3m)(L∗(s− 1,−9m) + 3L∗(s− 1,−m))
m(t+1)/2

)
.

Analogously to Lemma 4.1, for any two orthogonal quaternions without
real parts (tr ` = trm = tr `m = 0) it is possible to construct the embedding
of the three-dimensional hyperbolic plane H3 = {(r, w) | r > 0, w ∈ C} in
the four-dimensional plane H.

The restriction of the Eisenstein series to the subspace H3 is an invariant
function with respect to a congruence subgroup of the group SL2(O), where
O is the ring of integers in the quadratic field Q(`). In this paper we give
only one example.

Example 4.9. Take the quaternion algebra with D = 2, ` = i and m = j.
The restriction of E∗(z, s) is the following:
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Ei,j((r, w), s)

= rsf
(2)
0 (s) + r3−sf (2)

0 (3− s)
+ 4
√
π

∑

a∈Z,α∈Z[i]
(a,α) 6=0

(a2 + αα)−1/4

×
∑

t|(a,α)
(t,2)=1

(
tL∗
(
s− 1,−4

a2 + αα

t2

)
+ 2tL∗

(
s− 1,−a

2 + αα

t2

))

× r3/2Ks−3/2(2πr
√
a2 + αα) exp(πi tr(αw)).

This function is invariant with respect to the group SL2(Z[i]). Its zeroth
Fourier coefficient is equal to

rsf
(2)
0 (s) + r3−sf (2)

0 (3− s)

+ 8
√
π
∑
a>0

a−1/2
∑

t|a
(t,2)=1

t

(
L∗
(
s− 1,−4a2

t2

)

+ 2L∗
(
s− 1,−a

2

t2

))
r3/2Ks−3/2(2πar).

Acknowledgments. This research was begun while both authors were
at SFB 343 at Universität Bielefeld. We wish to thank Mathematisches Insti-
tut der Georg-August-Universität and Fakultat für Mathematik der Univer-
sität Bielefeld for their hospitality. We are also indebted to Prof. J. Mennicke
and Prof. U. Christian for useful conversations and interest in this paper.

References
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