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1. Introduction. Discrepancy is the central quantitative concept of the
theory of uniform distribution of sequences modulo one. It measures how
well the empirical distribution of a set P = {x0,x1, . . . ,xN−1} in [0, 1[s,
s ≥ 1, approximates uniform distribution on the s-dimensional unit cube
(see [3]). The most important notion is the rectangle discrepancy.

Definition 1. Let P be a finite point set in [0, 1[s, P = {x0,x1, . . .
. . . ,xN−1}. The (extreme) rectangle discrepancy DN (P) of P is defined as

DN (P) := sup
J∈J

∣∣∣∣
A(J,N)
N

− λs(J)
∣∣∣∣.

Here J denotes the class of all subintervals of [0, 1[s of the form J =∏s
i=1[ui, vi[; A(J,N) represents the number of n, 0 ≤ n < N , for which

xn ∈ J ; and λs stands for Lebesgue measure on [0, 1[s.

Discrepancy is a numerical quantity that has found numerous interest-
ing applications. The latter range from the assessment of pseudorandom
number generators to error bounds for integration methods in higher di-
mensions. For a comprehensive exposition of the current state of research in
these fields of numerical analysis, the reader is referred to the monograph
of Niederreiter [8].

In applications we are restricted to finite rational point sets P: when
using computers we have to cope with finite precision arithmetics. Nieder-
reiter [4, 8] proved a general theorem to estimate the rectangle discrepancy
for this kind of point sets. This estimate is the very basis of the serial test, the
most important theoretical criterion in pseudorandom number generation.
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The surveys of Eichenauer-Herrmann [1] and of Niederreiter [6, 7] contain
extensive references. In Niederreiter’s theorem, the rectangle discrepancy
DN (P) is estimated by exponential sums. In [2], we have presented a new
approach to this result. The method is based on the Walsh function system.

In this paper, we shall obtain estimates for the rectangle discrepancy
in terms of Haar functions. These functions constitute one of the most im-
portant orthonormal systems of harmonic analysis. Their use in the quan-
titative theory of uniform distribution of sequences modulo one is not new.
The monograph of Sobol’ [10] contains a thorough discussion of quasi-Monte
Carlo integration with the Haar function system.

We have based our technique on Fourier analysis with respect to the
Haar system. The interested reader will find an outline of our approach in
the proof of Theorem 1. The method is interesting in itself. It is open to
generalizations.

2. Dyadic expansions and Haar functions. The Haar system is best
presented in the terminology of dyadic expansions of real numbers. For a
nonnegative integer k, let

k =
∞∑

j=0

kj 2j , kj ∈ {0, 1},

be the unique dyadic expansion of k in base 2. Every number x ∈ [0, 1[ has
a unique dyadic expansion

x =
∞∑

j=0

xj 2−j−1, xj ∈ {0, 1},

under the condition that xj 6= 1 for infinitely many j. In the following, this
uniqueness condition will be assumed without further notice.

Notation. (i) Let x ∈ [0, 1[, with dyadic expansion x = 0.x0x1 . . . , and
let k be a nonnegative integer, k =

∑∞
j=0 kj2

j . For g ∈ N we define

x(g) := 0.x0x1 . . . xg−1, k(g) :=
g−1∑

j=0

kj 2j .

Then x(g) ∈ {a2−g : 0 ≤ a < 2g} and k(g) ∈ {0, 1, . . . , 2g − 1}. Further, put

x(0) := 0, k(0) := 0.

(ii) An interval of the form [a2−g, (a+1)2−g[, 0 ≤ a < 2g, g ≥ 0, a and g
integers, is called an elementary dyadic interval of length 2−g. A subinterval
I of the s-dimensional torus [0, 1[s is called an elementary dyadic interval if
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it has the form

I =
s∏

i=1

[ai2−gi , (ai + 1)2−gi [,

with integers ai and gi, 0 ≤ ai < 2gi , gi ≥ 0.
(iii) Let b0, b1, . . . , bg−1 be arbitrary digits in {0, 1}. Let

I(b0, b1, . . . , bg−1) := {x ∈ [0, 1[ : xj = bj , ∀j : 0 ≤ j < g}
denote the cylinder set of order g defined by b0, b1, . . . , bg−1. Then, for any
elementary dyadic interval I = [a2−g, (a+1)2−g[ of length 2−g, g ∈ N, there
is a unique cylinder set I(b0, b1, . . . , bg−1) such that

I = I(b0, b1, . . . , bg−1).

We only have to observe that a2−g = 0.b0b1 . . . bg−1 with suitable digits bj .

The Haar functions constitute an important and widely used orthonor-
mal function system in harmonic analysis. For the theory, the reader is
referred to the monograph of Schipp et al . [9].

Definition 2. Let {hk : k ≥ 0} denote the system of Haar functions on
the interval [0, 1[. The k-th Haar function hk is defined as follows:

h0(x) := 1 ∀x ∈ [0, 1[.

If k ≥ 1, 2g ≤ k < 2g+1, k = 2g +m, 0 ≤ m < 2g, then

hk(x) :=





2g/2, x ∈ [m2−g,m2−g + 2−g−1[,
−2g/2, x ∈ [m2−g + 2−g−1, (m+ 1)2−g[,
0, otherwise.

Let Hk denote the k-th normalized Haar function,

Hk := 2−g/2hk if 2g ≤ k < 2g+1, g ≥ 0, and H0 := h0.

R e m a r k 1. (i) We note that the number m in the definition of hk is
just the integer k(g).

(ii) The function Hk takes only the values −1, 0 and 1.

Definition 3. Let {hk : k = (k1, k2, . . . , ks), ki ≥ 0} denote the system
of Haar functions on the s-dimensional torus [0, 1[s. The k-th Haar function
hk is defined as

hk(x) :=
s∏

i=1

hki(xi), x = (x1, . . . , xs) ∈ [0, 1[s.

In analogy to Definition 2, let

Hk(x) :=
s∏

i=1

Hki(xi), x = (x1, . . . , xs) ∈ [0, 1[s,

denote the k-th normalized Haar function on [0, 1[s.
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Definition 4. Let hk be the kth Haar function on [0, 1[. We define the
fundamental domain Dk of hk as the elementary dyadic interval

Dk := [k(g)2−g, (k(g) + 1)2−g[

if 2g ≤ k < 2g+1. For k = 0 we define D0 := [0, 1[.
The fundamental domain Dk of the k-th Haar function hk on [0, 1[s,

k = (k1, . . . , ks), is defined to be the elementary dyadic interval

Dk :=
s∏

i=1

Dki .

R e m a r k 2. The functions hk and Hk vanish outside the fundamental
domain Dk of hk.

The Haar coefficients of an integrable function f defined on [0, 1[ will be
denoted by f̂(k),

f̂(k) :=
∫

[0,1[

f(x)hk(x) dx.

Accordingly, the Haar coefficients of an integrable function f defined on
[0, 1[s will be denoted by f̂(k),

f̂(k) :=
∫

[0,1[s
f(x)hk(x) dx.

3. The discrepancy estimate. In step 3 of the proof of Theorem 1
we shall have to estimate the Haar coefficients of characteristic functions of
certain subintervals of [0, 1[s. For the necessary calculations, the reader will
be referred to Lemmas 1–3.

Lemma 1. Let f(x) := 1I(x) − λ(I), where I is a subinterval of the
interval [0, 1[.

(i) If I is an elementary dyadic interval of length 2−α, then f̂(k) = 0
for all k ≥ 2α.

(ii) If I = [0, β[, 0 < β < 1, then f̂(0) = 0 and , for all k in the range
2g ≤ k < 2g+1, g ≥ 0,

f̂(k) =





2g/2(β − β(g + 1)) if 2gβ(g) = k(g) and βg = 0,
2g/2(2−g−1 − (β − β(g + 1))) if 2gβ(g) = k(g) and βg = 1,
0 if 2gβ(g) 6= k(g).

P r o o f. Part (i) is shown as follows. Let 2g ≤ k < 2g+1, with g ≥ α.
Define the digits a0, . . . , ag−1 by

0.a0 . . . ag−1 := k(g)/2g.

The Haar function hk is zero outside its fundamental domain Dk = I(a0, . . .
. . . , ag−1), which is an elementary dyadic interval of length 2−g. Now, let
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I be an arbitrary elementary dyadic interval of length 2−α. If I does not
contain Dk, then it is evident that f̂(k) = 0. If Dk is a subinterval of I, then

f̂(k) =
∫
I

hk(x) dx =
∫
Dk

hk(x) dx =
1∫

0

hk(x) dx = 0.

To prove part (ii), consider k such that 2g ≤ k < 2g+1, g ≥ 0. From part
(i) we deduce that

f̂(k) =
β∫

β(g)

hk(x) dx.

The result follows easily.

Lemma 2. Let f(x) := 1I(x) − λ(I), where I = [a2−α, b2−α[, 0 ≤ a <
b ≤ 2α, α ≥ 1, with integers a, b and α. Define β′ := a2−α and β′′ := b2−α.
Then, for all k such that 2g ≤ k < 2g+1, g < α,

|f̂(k)|
{

= 0 if k(g) 6∈ {2gβ′(g), 2gβ′′(g)},
≤ 2−1−g/2 if k(g) ∈ {2gβ′(g), 2gβ′′(g)}.

P r o o f. We have f̂(0) = 0 and, for all k ≥ 1,

f̂(k) = 1̂I(k) = 1̂[0,β′′[(k)− 1̂[0,β′[(k).

If b = 2α, i.e. β′′ = 1, then 1̂[0,β′′[(k) = 0 for all k ≥ 1. The result follows
directly from Lemma 1. If b < 2α, then we have to consider two cases. In the
first case, if k(g) equals neither 2gβ′(g) nor 2gβ′′(g), then f̂(0) = 0. If k(g)
equals exactly one of these two numbers, we can apply Lemma 1 directly. If
k(g) = 2gβ′(g) = 2gβ′′(g), then a short calculation gives the result.

R e m a r k 3. In Lemma 2, we have proved the following. There are at
most two numbers k in [2g, 2g+1[ such that f̂(k) 6= 0. If k equals one of
them, then |f̂(k)| ≤ 2−g/2−1.

Definition 5. Let k be a nonnegative integer. Define

%Haar(k) :=
{

1 if k = 0,
2−g/2 if 2g ≤ k < 2g+1, g ≥ 0,

(i)

%rect
Haar(k) :=

{
1 if k = 0,
2−g/2−1 if 2g ≤ k < 2g+1, g ≥ 0.

(ii)

(iii) If k = (k1, . . . , ks) with nonnegative integer coordinates ki, then let

%Haar(k) :=
s∏

i=1

%Haar(ki),
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and, analogously,

%rect
Haar(k) :=

s∏

i=1

%rect
Haar(ki).

R e m a r k 4. We observe that Hk = %Haar(k)hk.

Lemma 3. Let f(x) := 1G(x)− λs(G), where

G :=
s∏

i=1

[
ai
2α
,
bi
2α

[
, 0 ≤ ai < bi ≤ 2α,

is a subinterval of [0, 1[s. Define

∆ := {k ∈ Zs : 0 ≤ ki < 2α ∀i} and ∆∗ := ∆ \ {0}.
Then:

(i) For all k ∈ Zs \∆∗ with nonnegative coordinates ki, 1 ≤ i ≤ s, we
have |f̂(k)| = 0.

(ii) For all k ∈ ∆∗, |f̂(k)| ≤ %rect
Haar(k).

P r o o f. Let k = (k1, . . . , ks). We have f̂(0) = 0 and, for all k 6= 0,
f̂(k) = 1̂G(k). Further, 1̂G(k) =

∏s
i=1 1̂Gi(ki), where Gi := [aiq−α, biq−α[.

The result follows directly from Lemma 2.

Theorem 1. Let P = {x0,x1, . . . ,xN−1} be a finite point set in [0, 1[s,
with xn of the form xn = yn/M mod 1, yn ∈ Zs. Suppose that M = 2α,
with some positive integer α. Let

(1) SN (Hk) :=
1
N

N−1∑
n=0

Hk(xn),

Hk the k-th normalized Haar function on [0, 1[s. Let

B := sup
k∈∆∗

|SN (Hk)|,

where the domain ∆∗ has been defined in Lemma 3. Then

(2) DN (P) ≤ 1−
(

1− 1
M

)s
+B

(
log2M +

1
2

)s
.

R e m a r k 5. The numerical quantity B = B(P) is closely related to the
nonuniformity ϕ∞(P) of the point set P. The nonuniformity is a measure
of the evenness of the distribution of P in [0, 1[s. It has been introduced by
Sobol’ (see [10, 11, 5]). Its definition is as follows:

ϕ∞(P) := N sup
k 6=0
|SN (Hk)|.
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Hence B ≤ (1/N)ϕ∞(P). It is known that

1
N
ϕ∞(P) ≤ 2sDN (P)

(see [5, inequality (2.8), p. 968]). Inequality (2) yields an upper bound for
DN (P) in terms of ϕ∞(P):

DN (P) ≤ 1−
(

1− 1
M

)s
+

1
N
ϕ∞(P)

(
log2M +

1
2

)s
.

P r o o f o f T h e o r e m 1. For an arbitrary Borel subset E of [0, 1[s we
define

RN (E) :=
1
N

N−1∑
n=0

(1E(xn)− λs(E))
(

=
A(E,N)

N
− λs(E)

)
.

The proof of Theorem 1 is structured as follows:

S t e p 1: Discretization of the problem: we approximate an arbitrary
subinterval C of [0, 1[s by an appropriate set G.

S t e p 2: Estimation of the discretization error |RN (C)−RN (G)|.
S t e p 3: Estimation of |RN (G)|.
S t e p 1. Let C be an arbitrary subinterval of [0, 1[s. We define

Γ :=
1
M
Zs mod 1.

For a point p ∈ Γ , p = (p1, . . . , ps), we let

Ip :=
s∏

i=1

[pi, pi + 1/M [

denote the elementary dyadic interval of sidelengthM−1 defined by the point
p. We approximate C by a finite union G of elementary dyadic intervals Ip:

(3) G := G(C) :=
⋃

p∈Γ∩C
Ip.

Let us consider the following discretization principle:

|RN (C)| ≤ |RN (C)−RN (G)|+ |RN (G)|.
We observe that

A(C,N) = A(G,N).

Hence the discretization error is given by

|RN (C)−RN (G)| = |λs(C)− λs(G)|.
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S t e p 2. C is a subinterval of [0, 1[s,

C =
s∏

i=1

[ui, vi[, 0 ≤ ui < vi ≤ 1.

We consider two subcases. The idea stems from Niederreiter [8, Proof of
Theorem 3.10, p. 34].

C a s e 1: G = ∅. In this case, there is some i, 1 ≤ i ≤ s, such that
vi − ui < 1/M . But then

|RN (C)| = λs(C) <
1
M
≤ 1−

(
1− 1

M

)s
.

Hence the estimate (2) trivially holds.
C a s e 2: G 6= ∅. Then G is an s-dimensional subinterval of the form

G :=
s∏

i=1

[
ai
M
,
bi
M

[
,

where
ai := min{a ∈ {0, 1, . . . ,M − 1} : ui ≤ a/M},
bi := min{a ∈ {1, . . . ,M} : vi ≤ a/M}.

Lemma 3.9 in [8] implies the following bound for the discretization error:

|λs(C)− λs(G)| ≤ 1−
(

1− 1
M

)s
.

S t e p 3. Lemma 3(i) implies that the function

f(x) := 1G(x)− λs(G)

is a Haar polynomial. In other words, the Haar series of f is finite. We have

(4) f(x) =
∑

k∈∆∗
1̂G(k)hk(x) ∀x ∈ [0, 1[s.

From this identity it follows that

(5) RN (G) =
∑

k∈∆∗
1̂G(k)SN (hk),

where

(6) SN (hk) :=
1
N

N∑
n=0

hk(xn).

Consider the set

∆(g) := {k ∈ Zs : ∀i, 1 ≤ i ≤ s : 2gi ≤ ki < 2gi+1},
where g = (g1, . . . , gs) ∈ Zs, and all coordinates gi are nonnegative. From
Remark 3 we know that there are at most 2]{i:gi≥1} points k in the set ∆(g)
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such that 1̂G(k) 6= 0. We deduce from Lemma 3(ii) that

|1̂G(k)| ≤ 2−s
s∏

i=1

2−gi/2 ∀k ∈ ∆(g).

Further, we observe that

Hk =
s∏

i=1

2−gi/2hk ∀k ∈ ∆(g).

We now consider a suitable partition of the summation domain ∆∗. For
u, 0 ≤ u < s, let

∆u := {k ∈ ∆∗ : ]{i : ki = 0} = u}.
Then

∆∗ =
s−1⋃
u=0

∆u (disjoint union).

Let

¤ := {g ∈ Zs : ∀i, 1 ≤ i ≤ s : 0 ≤ gi < α},
and, for t, 0 ≤ t ≤ s,

¤t := {g ∈ ¤ : ]{i : gi = 0} = t}.
Then

∆0 =
s⋃
t=0

⋃

g∈¤t

∆(g) (disjoint union).

As a consequence,
∣∣∣
∑

k∈∆0

1̂G(k)SN (hk)
∣∣∣ ≤ B

s∑
t=0

2−t]¤t = B

(
α− 1

2

)s
.

In the very same manner we obtain the estimate
∣∣∣
∑

k∈∆u
1̂G(k)SN (hk)

∣∣∣ ≤ B
(
s

u

)(
α− 1

2

)s−u
.

This ends the proof of Theorem 1.
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