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The digits of 1/p in connection with class number factors

by

Kurt Girstmair (Innsbruck)

1. Introduction. Let p be a prime and g a natural number, g ≥ 2. Like
any other real number, the quotient 1/p has a digit expansion with respect
to the basis g. This means that

1
p

=
∞∑

k=1

xkg
−k

with xk ∈ {0, 1, . . . , g − 1}. The numbers xk, k ∈ N, are uniquely deter-
mined and called the digits of 1/p with respect to g. In what follows we
always assume that g is a primitive root modulo p. For this reason the digits
x1, . . . , xp−1 form a period of shortest possible length in the above expansion.
Our concern are some remarkable properties of this period, which seem to
be unknown even in the simplest cases. For example, if p ≡ 3 mod 4, p ≥ 7,

(1) (x2 + x4 + . . .+ xp−1)− (x1 + x3 + . . .+ xp−2) = (g + 1)h−2 ,

h−2 denoting the class number of the quadratic field Q(
√−p). This identity

slightly resembles the Hirzebruch–Zagier formula (cf. [5]), which expresses
h−2 in terms of the period of the continued fraction of

√
p, provided that

Q(
√
p) has class number one.

The half-periods x1, . . . , x(p−1)/2 and x(p+1)/2, . . . , xp−1 are connected
by the formula

(2) xk + xk+(p−1)/2 = g − 1,

k ≥ 1, which was already known at the beginning of the 19th century
(cf. [1], p. 161; a short proof is given below). By (2), the sum of the digits
x1, . . . , xp−1 is (g−1)(p−1)/2, so the mean value of these digits is (g−1)/2.
Now let q be a divisor of the period length p− 1. It seems natural to group
the digits x1, . . . , xp−1 in classes

Cj = {xk ; 1 ≤ k ≤ p− 1, k ≡ j mod q}, j = 1, . . . , q,

and to investigate the mean value of each such class. Of course this is the
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same as investigating the sums

Sj =
∑

x∈Cj
x =

∑
{xk ; 1 ≤ k ≤ p− 1, k ≡ j mod q}, j = 1, . . . , q.

The expected value of each sum Sj is

S =
(g − 1)(p− 1)

2q
,

since S1 + . . . + Sq = x1 + . . . + xp−1 = (g − 1)(p − 1)/2. We first consider
the trivial case, i.e., when Sj = S for all j ∈ {1, . . . , q}. Here the mean value
of the digits in the class Cj does not differ from the “general” mean value
(g − 1)/2 of above. The trivial case occurs whenever q divides (p − 1)/2.
Indeed, if (p− 1)/2 ≡ 0 mod q,

Sj =
∑
{xk +xk+(p−1)/2 ; 1 ≤ k ≤ (p− 1)/2, k ≡ j mod q}, j = 1, . . . , q.

Therefore (2) gives Sj = (g − 1)(p− 1)/(2q) = S for all j.
In the sequel we exclude (p− 1)/2 ≡ 0 mod q. In other words, we always

require: q even, p ≡ q + 1 mod 2q. On putting

(3) Tj = Sj − S, j = 1, . . . , q,

we bring the sums Sj into a “balanced” form with respect to their expected
value S. Throughout this paper let

n = q/2.

Then it suffices to investigate the first half T1, . . . , Tn of the sequence T1, . . .
. . . , Tq. In fact,

(4) Sj + Sj+n =
∑
{xk ; 1 ≤ k ≤ p− 1, k ≡ j mod n} = 2S,

since the modulus n = q/2 belongs to the trivial case. This identity and (3)
imply

(5) Tj+n = −Tj , j = 1, . . . , n.

We call T = (T1, . . . , Tn) ∈ Qn the q-digit eccentricity of 1/p with respect
to g.

The subject of this paper is the connection of T with class number fac-
tors. Let Q(m) denote the mth cyclotomic field. The field Q(p) contains a
(unique) subfield Kq with [Kq : Q] = q. Since q is even and p ≡ q+1 mod 2q,
Kq is imaginary. Let h−q denote the minus part of the class number of Kq

(also called the relative class number of Kq). In Theorem 1 the number h−q
is expressed in terms of T and qth roots of unity. The case q = 2 yields

T = T1 = −g + 1
2

h−2 ,
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which is equivalent to (1) via (5). In order to obtain simple rational formulas
(cf. example below) we use Hasse’s representation of h−q as a product of
canonical factors h∗r , r running through certain divisors of q (cf. [3]). For
each r there is a norm form Nr such that Nr(T1, . . . , Tn) = crh

∗
r , with an

explicit factor cr (Theorem 2).

2. The main result. Let the above notations hold. For an integer k ≥ 0
let gk ∈ {1, . . . , p− 1} be defined by

(6) gk ≡ gk mod p.

A central tool of this paper is the simple formula

(7) xk =
ggk−1 − gk

p
,

which holds for all k ∈ N and is proved as follows: Let yk be the right side of
(7). Then (6) shows that yk is an integer. Since both gk−1, gk are less than
p, one obtains −1 < yk < g. Therefore yk is in {0, 1, . . . , g − 1}. By (7),

∞∑

k=1

ykg
k =

1
p

( ∞∑

k=1

gk−1/g
k−1 −

∞∑

k=1

gk/g
k
)

=
1
p
.

The uniqueness of the digit expansion of 1/p yields yk = xk for all k ≥ 1.
From (7) formula (2) follows immediately: Since g(p−1)/2 ≡ −1 mod p,

we get gk+(p−1)/2 = p− gk, k ≥ 1. By (7),

xk+(p−1)/2 = (g(p− gk−1)− (p− gk))/p = g − 1− xk,
which is (2).

Now we turn to the connection with class number factors. Let X−q be
the set of all odd Dirichlet characters χ mod p belonging to Kq. Put

E−q = {η ∈ C ; ηn = −1}
(this is one half of the set of qth roots of unity). X−q and E−q are in one-to-one
correspondence by χ 7→ χ(g). Let

Bχ =
1
p

p−1∑

k=1

kχ(k)

be the first Bernoulli number attached to χ ∈ X−q . Consider the polynomial

P =
1
p

p−1∑

k=1

gkZ
k

with rational coefficients. For χ ∈ X−q and ζ = χ(g), we have Bχ = P (ζ).
On account of (7) it is easy to connect the digits x1, . . . , xp−1 with Bχ.
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Indeed, let

Q =
p−1∑

k=1

xkZ
k.

Then

(8) Q(ζ) = (gζ − 1)P (ζ) = (gχ(g)− 1)Bχ.

Moreover, ζq = 1, hence Q(ζ) =
∑q
j=1 Sjζ

j . In view of (4) and ζj+n = −ζj ,
we obtain Q(ζ) = 2

∑n
j=1 Tjζ

j , and from (8),

(9)
n∑

j=1

Tjζ
j = (gζ − 1)Bχ/2,

with ζ = χ(g). The connection of (9) with the number h−q is clear. Put

(10) γq =
{
p if p = q + 1,
1 otherwise.

The analytic class number formula yields (cf. [4])

(11)
∏

χ∈X−q

Bχ
2

=
(−1)nh−q

2γq
.

On using ∏

ζ∈E−q

(gζ − 1) = (−1)n(gn + 1)

we obtain from (9) and (11)

Theorem 1. Let q be even, p ≡ q + 1 mod 2q and T = (T1, . . . , Tn) the
q-digit eccentricity of 1/p with respect to g. Then

(12)
∏

ζ∈E−q

n∑

j=1

Tjζ
j =

gn + 1
2γq

h−q .

In particular , T 6= (0, . . . , 0).

Following Hasse [3] we now decompose (12) into canonical factors. For
an even number r ≥ 2 let

E∗r = {ζ ∈ E−r ; ord(ζ) = r}
be the set of roots of unity of (exact) order r. The notation r‖q means that
r divides q and q/r is odd. Then

E−q =
•⋃

r‖q
E∗r .
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The left side of (12) splits into the factors

(13) Nr(T ) =
∏

ζ∈E∗r

n∑

j=1

Tjζ
j , r‖d,

each of them being a Q(r)/Q-norm. Moreover, we put

δr =
{

2 if r is a power of 2,
1 otherwise.

Let Φr denote the rth cyclotomic polynomial, µ the Möbius function, and
φ the Euler function.

Theorem 2. For each r with r‖q, the q-digit eccentricity T of 1/p sat-
isfies

(14) Nr(T ) =
Φr(g)h∗r
γrδr

.

All entries on the right side of (14) are natural numbers; γr is defined by
(10) and h∗r by

h∗r =
∏

s‖r
(h−s )µ(r/s).

Furthermore, h∗r is prime to γrδr and divides h−q .

P r o o f. Hasse ([3], p. 93, Satz 32) proved that

∏
{Bχ/2 ; ord(χ) = r} =

h̃r
γrδr

with an integer h̃r prime to γrδr. In view of (13) we get

Nr(T ) =
Φr(g)εrh̃r
γrδr

,

where εr is the Q(r)/Q-norm of a number ζ ∈ E∗r . Now (12) shows

(15)
∏

r‖q
εrh
∗
r = h−q ,

and (multiplicative) Möbius inversion of (15) yields h∗r = εrh̃r. But εrh̃r
is in Z and h∗r > 0 by its definition, so h∗r is a natural number. It divides
h−q because of (15). Möbius inversion, applied to

∏
r‖q Φr(g) = gn + 1, also

shows that Φr(g) is positive.

We note that Nr(T ) is a norm form in T1, . . . , Tn; in particular, it is a ho-
mogeneous polynomial in T1, . . . , Tn of degree |E∗r | = φ(r) with coefficients
in Z.

It is not hard to compute these polynomials for small values of q, r.
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In the case q = r = 12, e.g., we obtain
3
4 (T 2

1 − T 2
2 + T 2

4 − T 2
5 + 2T1T3 − 2T3T5 + 2T2T6 + 2T6T4)2

+ 1
4 (T 2

1 + T 2
2 − 2T 2

3 + T 2
4 + T 2

5 − 2T 2
6 − 2T1T3 − 2T3T5

− 4T5T1 + 2T2T6 − 2T6T4 + 4T4T2)2 = (g4 − g2 + 1)h−12/h
−
4 .

R e m a r k. For r‖q let br denote the right side of (14). Formulas (13) and
(14), together with the arithmetic-geometric inequality, yield a lower bound
for the euclidean norm ‖T‖ of the digit eccentricity, namely

(16) ‖T‖2 ≥ 1
n

∑

r‖q
φ(r)b2/φ(r)

r .

In the cases q ≤ 6 equality holds in (16). Thus the 6-eccentricity satisfies

‖T‖2 =
(g + 1)2(h−2 )3 + 8(g2 − g + 1)h−6

12h−2
for all p ≡ 7 mod 12, p > 7. It can be shown, however, that (14) does not
supply an upper bound for ‖T‖ if q ≥ 8. But the lower bound (16) seems to
be quite good.

Acknowledgments. The author would like to thank L. Skula, K. Dil-
cher, H. Herdlinger, and M. Schgraffer for their support in preparing this
paper.

References

[1] L. E. Dickson, History of the Theory of Numbers, Vol. I (reprint), Chelsea, New
York, 1952.

[2] K. Girstmair, On the l-divisibility of the relative class number of certain cyclic
number fields, Acta Arith. 64 (1993), 189–204.
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