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On x3 + y3 + z3 = 3µxyz and Jacobi polynomials

by

Kaori Ota (Tokyo)

We consider the elliptic curve given by

x3 + y3 + z3 = 3µxyz

over various fields. Theorem 1 gives the connection between an invariant dif-
ferential form ω on this curve and Jacobi polynomials with some arguments.
More precisely, Jacobi polynomials are given by coefficients of the power se-
ries expansion of ω at a basepoint with respect to some local parameter.
This is quite analogous to the Jacobi quartic case (cf. [8]), where Legendre
polynomials appear. We denote polynomials appearing as coefficients of ω
by Bn.

As holomorphic differential 1-forms are unique up to constants, we obtain
congruences for Bn by using the Cartier operator for complete irreducible
smooth algebraic curves over algebraically closed fields of positive character-
istic (Theorem 3). From the characteristic polynomial of the Frobenius map
together with Honda theory, we obtain congruences for Bn modulo higher
powers (Theorem 4). Also finding the special element for a formal group
associated with some part of ω gives Theorem 5 (cf. [5]).

Theorems 1 and 2 are given in Section 1, whereas Theorems 3–5, con-
cerning congruences for Bn, are in Section 2.

1. Let K be a field of characteristic different from 3 and µ ∈ K, the
algebraic closure of K, and let Eµ be the curve in P2(K) given by

(1.1) x3 + y3 + z3 − 3µxyz = 0.

Eµ is non-singular and gives an elliptic curve if µ3 6= 1. Here we take O =
[0,−1, 1] as the origin for Eµ. Then

ω =
dx

y2 − µx
is a holomorphic differential 1-form and thus is an invariant differential form

[27]
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on Eµ. x is a local parameter at O. In the affine space z = 1, (1.1) becomes

(1.2) x3 + y3 + 1− 3µxy = 0.

The hypergeometric function 2F1 is defined by

2F1

(
α , β

γ
; X
)

=
∞∑
n=0

(α)n(β)n
(γ)nn!

Xn,

where (θ)n = θ(θ + 1) . . . (θ + n− 1) for n > 0 and (θ)0 = 1.

Theorem 1. Let Eµ be defined over K = Q(µ) with µ ∈ C, µ3 6= 1, and
let ω have the power series expansion at O with respect to x as

ω =
∞∑
n=0

bnx
ndx.

Then



b3n = γn · 2F1

(−n , n+ 2
3

2
3

; µ3
)

with γn =
(−1)n( 2

3 )n
n!

,

b3n+1 = τn · µ · 2F1

(−n , n+ 4
3

4
3

; µ3
)

with τn =
(−1)n+1(4

3 )n
n!

,

b3n+2 = 0 for any n ≥ 0.

P r o o f. Set

f =
1

y2 − µx, so y2 = µx+
1
f
.

Then from (1.2) we have

y =
−(1 + x3)f
1− 2µxf

.

Hence (−(1 + x3)f
1− 2µxf

)2

= µx+
1
f
,

from which we get

(1.3) {1 + 2x3(1− 2µ3) + x6} f3 = −3µxf + 1.

We now solve (1.3) for f . Let f(x) =
∑∞
n=0 bnx

n. Then we know that
b0 = f(0) = 1 and from (1.3),

∞∑
n=0

( ∑

i+j+k=n

bibjbk

)
xn + 2(1− 2µ3)

∞∑
n=0

( ∑

i+j+k=n

bibjbk

)
xn+3

+
∞∑
n=0

( ∑

i+j+k=n

bibjbk

)
xn+6 = −3µ

∞∑
n=0

bnx
n+1 + 1.
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By comparing the coefficients of xn in both sides, we can determine bn
for any n ≥ 0 inductively. Thus (1.3) together with b0 = 1 determines f
completely.

Set

(1.4) g(x) =
1√
S

{(√
S + x3 + 1

2

)1/3

− µx
(

2√
S + x3 + 1

)1/3}
,

where S = 1+2x3(1−2µ3)+x6. As S takes 1 as x tends to 0, we take principal
values |Im(log z)| < π for the logarithm in

√
S, and also in ((

√
S + x3 +

1)/2)1/3 and (2/(
√
S+x3 +1))1/3, for (

√
S+x3 +1)/2 and 2/(

√
S + x3 + 1)

both take 1 as x tends to 0. With this choice, g is an analytic function
around x = 0. We have

Sg3 =
1√
S

{(
X

2

)1/3

− µx
(

2
X

)1/3}3

with X =
√
S + x3 + 1

= − 3µxg + 1.

Since g(0) = 1, we get g = f around x = 0.
Now g has the following power series expansion near 0 (cf. (16) on p. 170

and (29) on p. 172 of [1]):

1√
S

(√
S + x3 + 1

2

)1/3

=
∞∑
n=0

( 2
3 )n · 2F1

(−n, n+ 2
3

2
3

; µ3
)

n!
(−x)3n,

1√
S

(
2√

S + x3 + 1

)1/3

=
∞∑
n=0

( 4
3 )n · 2F1

(−n, n+ 4
3

4
3

; µ3
)

n!
(−x)3n,

and by (1.4) we have

g(x) =
∞∑
n=0

γn · 2F1

(−n, n+ 2
3

2
3

; µ3
)
x3n

+
∞∑
n=0

τn · µ · 2F1

(−n, n+ 4
3

4
3

; µ3
)
x3n+1,

from which the theorem follows.

R e m a r k s. 1. For a non-negative integer n, j > 0 and i− j > −1, set

Gn(i, j, x) = 2F1

(−n , i+ n

j
; x
)
.

Gn is called the Jacobi polynomial . It satisfies the following second order
differential equation:

(1.5) x(1− x)G′′n + (j − (i+ 1)x)G′n + (i+ n)nGn = 0.
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It is known that Gn is the unique entire rational solution. Furthermore,
{Gn(i, j, ·)}n∈N∪{0} form an orthonormal system of polynomials in [0,1] with
respect to the inner product

〈f, g〉 =
1∫

0

f(x)g(x)xj−1(1− x)i−j dx

(cf. [2]). Legendre polynomials are Jacobi polynomials:

Pn(x) = Gn

(
1, 1,

1− x
2

)
= 2F1

(
n+ 1,−n

1
;

1− x
2

)
.

Pn are also defined as




P2n(x) =
(−1)n(1

2 )n
n!

· 2F1

(−n, n+ 1
2

1
2

; x2
)
,

P2n+1(x) =
(−1)n(3

2 )n
n!

x · 2F1

(−n, n+ 3
2

3
2

; x2
)
.

Pn satisfies the following differential equation:

(1.6) (1− x2)P ′′n − 2xP ′n + n(n+ 1)Pn = 0.

These Legendre polynomials appear as coefficients of the power series ex-
pansion of the invariant differential

ω =
dx

y
=

dx√
1− 2%x2 + x4

=
∞∑
n=0

Pn(%)x2ndx

for the Jacobi quartic y2 = 1 − 2%x2 + x4 (cf. [8]). Theorem 1 gives an
analogous result. Thus we define polynomials Bn by



B3n(x) =
(−1)n( 2

3 )n
n!

· 2F1

(−n, n+ 2
3

2
3

; x3
)

= γnGn( 2
3 ,

2
3 , x

3),

B3n+1(x) =
(−1)n+1( 4

3 )n
n!

x · 2F1

(−n, n+ 4
3

4
3

; x3
)

= τn xGn( 4
3 ,

4
3 , x

3),

B3n+2(x) = 0 for n ≥ 0.

(We need the last definition only to simplify our statements.) The first few
polynomials are

B0(x) = 1, B1(x) = −x, B2(x) = 0, B3(x) = − 2
3 + 5

3x
3,

B4(x) = 4
3x− 7

3x
4, B5(x) = 0, B6(x) = 5

9 − 40
9 x

3 + 44
9 x

6.

From the differential equation (1.5) for Gn, we can find the differential
equation for Bm with m 6≡ 2 (mod 3):

(1− x3)B′′m − 3x2B′m +m(m+ 2)xBm = 0.
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(For m ≡ 2 (mod 3), this equation does not have a polynomial solution.)
Notice the similarity of this to (1.6).

From the identity (cf. (16) on p. 170 of [1])

(1.7)
(
n+ α

n

)
· 2F1

(−n, n+ α+ β + 1
α+ 1

;
1− x

2

)

= (−1)n
(
n+ β

n

)
· 2F1

(−n, n+ α+ β + 1
β + 1

;
1 + x

2

)
,

by taking (α, β) = (− 1
3 , 0) and also (α, β) = ( 1

3 , 0) we obtain a simpler
expression for Bn:



B3n(x) = 2F1

(−n, n+ 2
3

1
; 1− x3

)
= Gn( 2

3 , 1, 1− x3),

B3n+1(x) = − x · 2F1

(−n, n+ 4
3

1
; 1− x3

)
= −xGn( 4

3 , 1, 1− x3).

2. For any n ≥ 0,

Bn(x) ∈ Z[1/3][x] and degBn(x) = n if n 6≡ 2 (mod 3).

The assertion on the degree of Bn is clear from the expressions for bn in
Theorem 1. So we only have to show that Bn has coefficients in Z[1/3].

From (1.2), by setting Y = y + 1 we have

Y = − µx+ µxY + Y 2 − 1
3x

3 − 1
3Y

3

= − µx+ µx(−µx+ µxY − 1
3x

3 + Y 2 − 1
3Y

3)

+ (−µx+ µxY − 1
3x

3 + Y 2 − 1
3Y

3)2 − 1
3x

3 − 1
3Y

3

= − µx+ . . . ∈ Z[1/3][µ][[x]].

So

ω =
dx

y2 − µx =
dx

Y 2 − 2Y + 1− µx =
dx

1 + µx+ . . .
∈ Z[1/3][µ][[x]] dx.

Hence Bn(µ) ∈ Z[1/3][µ].

The following theorem gives an analogous statement to Theorem 4.1 on
p. 140 of [7]. This may be known but it does not seem to appear anywhere
in the literature.

Theorem 2. Let K be a finite field of characteristic p 6= 3. Set

H(t) =





(p−1)/3∑
n=0

(1
3 )n( 1

3 )n
( 2

3 )nn!
t3n if p ≡ 1 (mod 3),

t

(p−2)/3∑
n=0

( 2
3 )n( 2

3 )n
( 4

3 )nn!
t3n if p ≡ 2 (mod 3).
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Then

1. For µ ∈ K with µ3 6= 1, Eµ is supersingular if and only if H(µ) = 0.
2. H(t) has distinct roots in K.

P r o o f. 1. Set

(1.8) h = x3 + y3 + z3 − 3µxyz.

Then

Eµ is supersingular ⇔ the Hasse invariant = 0

⇔ the coefficient of (xyz)p−1 in hp−1 = 0

(cf. Proposition 4.21 on p. 332 of [3]).
(a) For p ≡ 1 (mod 3), write p = 3k+1. Then the coefficient of (xyz)p−1

in hp−1 is
k∑

n=0

(
3k

k − n
)(

2k + n

k − n
)(

k + 2n
k − n

)
(−3)3nµ3n.

Hence it suffices to find an integer ck 6≡ 0 (mod p) independent of n satis-
fying

(
3k

k − n
)(

2k + n

k − n
)(

k + 2n
k − n

)
(−3)3n ≡ ck

( 1
3 )n( 1

3 )n
( 2

3 )nn!
(mod p).

Now

(k − n)! · 3k−n = (3k − 3n)(3k − 3(n+ 1)) . . . (3k − 3(k − 1))

≡ (−1− 3n)(−1− 3(n+ 1)) . . . (−1− 3(k − 1)) (mod p)

≡ (−1)k−n(3n+ 1)(3n+ 4) . . . (3k − 2) (mod p).

Hence

(k − n)! ≡ (−1)k−n{1 · 4 · 7 · . . . · (3k − 2)}
3k−n{1 · 4 · 7 · . . . · (3n− 2)} (mod p).

So (
3k

k − n
)(

2k + n

k − n
)(

k + 2n
k − n

)
(−3)3n =

(3k)!(−3)3n

{(k − n)!}3(3n)!

≡ (3k)!33(k−n){1 · 4 · . . . · (3n− 2)}3(−3)3n

(−1)3(k−n){1 · 4 · 7 · . . . · (3k − 2)}3(3n)!
(mod p)

≡ −1
{1 · 4 · . . . · (3k − 2)}3

( 1
3 )n( 1

3 )n
( 2

3 )nn!
(mod p),

as k is even, (3k)! ≡ −1 and 33k ≡ 1 (mod p). Thus we take

ck =
−1

{1 · 4 · . . . · (3k − 2)}3 .
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(b) For p ≡ 2 (mod 3), write p = 3k+2. Then the coefficient of (xyz)p−1

in hp−1 is

µ

k∑
n=0

(
3k + 1
k − n

)(
2k + n+ 1
k − n

)(
k + 2n+ 1
k − n

)
(−3)3n+1µ3n.

Now

(k − n)! · 3k−n = (3k − 3n)(3k − 3(n+ 1)) . . . (3k − 3(k − 1))

≡ (−1)k−n(3n+ 2)(3n+ 5) . . . (3k − 1) (mod p).

Hence

(k − n)! ≡ (−1)k−n{2 · 5 · . . . · (3k − 1)}
3k−n{2 · 5 · . . . · (3n− 1)} (mod p).

So for k > 0,(
3k + 1
k − n

)(
2k + n+ 1
k − n

)(
k + 2n+ 1
k − n

)
(−3)3n+1

=
(3k + 1)! (−3)3n+1

{(k − n)!}3(3n+ 1)!

≡ −(−3)3n+133(k−n){2 · 5 · . . . · (3n− 1)}3
(−1)3(k−n){2 · 5 · . . . · (3k − 1)}3 (3n+ 1)!

(mod p)

≡ −1
{2 · 5 · . . . · (3k − 1)}3

( 2
3 )n( 2

3 )n
( 4

3 )nn!
(mod p),

as k is odd, (3k + 1)! ≡ −1 and 33k+1 ≡ 1 (mod p).
So for k > 0, we take

ck =
−1

{2 · 5 · . . . · (3k − 1)}3 .

For k = 0, i.e. for p = 2, the coefficient of xyz in h is −3µ. Hence Eµ is
supersingular if and only if H(µ) = µ 6= 0.

2. In both cases p ≡ 1 and 2 (mod 3),H satisfies the following differential
equation:

(1.9) (1− t3)H ′′ − 3t2H ′ − tH = 0.

This can be checked by direct computation.
Suppose that H has a multiple root t = µ0. Then H(µ0) = H ′(µ0) = 0.

Hence (1 − µ3
0)H ′′(µ0) = 0. So if µ3

0 6= 1, then H ′′(µ0) = 0. By taking the
derivative of (1.9), we can show that H ′′′(µ0) = 0 if µ3

0 6= 1. By repeating this
process, we arrive at H(n)(µ0) = 0 for any n ≥ 0, which is a contradiction.
Hence we only have to show that

H(µ) 6= 0 for µ3 = 1.
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Suppose that p = 3k + 1. Then k ≡ − 1
3 (mod p), so for µ3 = 1

H(µ) ≡ 2F1

(−k, k + 2
3

2
3

; 1
)

(mod p)

= Gk(2/3, 2/3, 1).

But from the proof of Theorem 1, we have the identity

1√
S

(√
S + x3 + 1

2

)1/3

=
∞∑
n=0

γnGn(2/3, 2/3, µ3)x3n

with S = 1 + 2x3(1− 2µ3) + x6.
For µ3 = 1, we have S = (1− x3)2. Hence

1
1− x3 =

∞∑
n=0

x3n =
∞∑
n=0

γnGn(2/3, 2/3, 1)x3n.

So

γnGn(2/3, 2/3, 1) = 1 for any n ≥ 0,

from which we get

Gk(2/3, 2/3, 1) =
1
γk
6≡ 0 (mod p).

(Or we can use the identity (1.7) for (α, β) = (−1/3, 0) by substituting
x = −1.)

Similarly for p = 3k + 2,

H(µ) ≡ µ · 2F1

(−k, k + 4
3

4
3

; 1
)

(mod p)

= µGk(4/3, 4/3, 1).

Since

1√
S

(
2√

S + x3 + 1

)1/3

= −
∞∑
n=0

τnGn(4/3, 4/3, µ3)x3n,

we get

1
1− x3 =

∞∑
n=0

x3n = −
∞∑
n=0

τnGn(4/3, 4/3, 1)x3n.

Hence

µGk(4/3, 4/3, 1) =
−µ
τk
6≡ 0 (mod p).

(Or we can use the identity (1.7) for (α, β) = (1/3, 0) by substituting x = −1
as before.)
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R e m a r k. Let Zp be the ring of p-adic integers. If we denote the co-
efficient of (xyz)p−1 in hp−1 by Λ(µ), then for p 6= 3, as polynomials in
Zp[µ],

Λ(µ) ≡ Bp−1(µ) (mod p).

P r o o f. With ck in the proof of Theorem 2, we have

Λ(µ) ≡





ck · 2F1

(−k, k + 2
3

2
3

; µ3
)

(mod p) for p = 3k + 1,

ck · µ · 2F1

(−k, k + 4
3

4
3

; µ3
)

(mod p) for p = 3k + 2 > 2.

Hence it suffices to show that

ck ≡
{
γk (mod p) for p = 3k + 1,
τk (mod p) for p = 3k + 2.

For p = 3k + 1,

γk =
(−1)k( 2

3 )k
k!

=
(−1)k(3k)!

32k(k!)2{1 · 4 · 7 · . . . · (3k − 2)}

≡ −(−1)k

{1 · 4 · 7 · . . . · (3k − 2)}3 ≡ ck (mod p)

as k is even.
For p = 3k + 2 and k > 0,

τk =
(−1)k+1( 4

3 )k
k!

=
(3k + 1)!

32k(k!)2{2 · 5 · . . . · (3k − 1)}
≡ −1
{2 · 5 · . . . · (3k − 1)}3 ≡ ck (mod p)

as k is odd.
For p = 2,

Λ(µ) = −3µ ≡ B1(µ) (mod 2).

2. In this section we obtain congruences for Bn by using the Cartier
operator and Honda theory.

Theorem 3. Let p be a prime different from 3. For m ≥ 1 and n ≥ 0,
as polynomials in Zp[µ] we have

Bmpn−1(µ) ≡ Bp−1(µ)Bp−1(µp) . . . Bp−1(µp
n−1

)Bm−1(µp
n

) (mod p).

P r o o f. We proceed our proof as in [8]. We consider Eµ over Fp(µ) and
let C be the Cartier operator (cf. [6]):

C : H0(Eµ, Ω1)→ H0(Eµ, Ω1).
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Let

ω =
dx

y2 − µx = fdx.

Note that x is a local parameter at O = [0,−1, 1]. Then f can be written
uniquely as f = fp0 + fp1 x + . . . + fpp−1x

p−1. If we set fp−1 =
∑∞
n=0 anx

n,
then

(2.1) (ak−1(µ))p = Bpk−1(µ) for any k ≥ 1.

Now

(2.2) C(ω) = fp−1dx = B
1/p
p−1fdx.

By comparing coefficients of xk−1 of fp−1 and B
1/p
p−1f , we get

ak−1 = B
1/p
p−1Bk−1.

Hence from (2.1),
Bpk−1(µ) = Bp−1(µ)Bk−1(µp).

So for m ≥ 1 and n ≥ 0, we obtain

Bmpn−1(µ) = Bp−1(µ)Bmpn−1−1(µp)

= Bp−1(µ)Bp−1(µp)Bmpn−2−1(µp
2
) = . . .

= Bp−1(µ)Bp−1(µp) . . . Bp−1(µp
n−1

)Bm−1(µp
n

).

Theorem 4. Let p be a prime different from 3 and µ ∈ Zp. Let Eµ be
Eµ mod p and assume that Eµ is non-singular (i.e. µ3 6≡ 1 (mod p)). Let
ξ(x) = xp be the Frobenius map and denote the trace of ξ acting on the Tate
module by Tr(ξ). Then:

1. Tr(ξ) ≡ Bp−1(µ) (mod p).
2. For n ≥ 1 and m ≥ 1,

Bmpn−1(µ)− Tr(ξ)Bmpn−1−1(µ) + pBmpn−2−1(µ) ≡ 0 (mod pn),

where we set Bmpn−2−1(µ) = 0 for n = 1.
In particular , for m ≥ 1

Bpm−1(µ) ≡ Bp−1(µ)Bm−1(µ) (mod p).

P r o o f. Set

f(x) =
∞∑
n=1

Bn−1(µ)
n

xn

and consider the formal group F with f as its transformer:

F (x, y) = f−1(f(x) + f(y))

(cf. [4] for terminology). Then F gives the formal group of Eµ by taking
O = [0,−1, 1] as the origin and x as a local parameter at O. Since the
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equation (1.1) defines a smooth group scheme over Zp and its formal com-
pletion along the unit section is Spf(Zp[[x]]), this F is p-integral. Let F =
F (mod p). Since ξ satisfies the equation

X2 − Tr(ξ)X + p = 0,

the induced map ξ on F also satisfies the same equation (cf. Theorem 7.4
on p. 92 of [7]). Hence

0 = (ξ2 − Tr(ξ)ξ + p)(x)

= F ((ξ2 − Tr(ξ)ξ)(x), [p]∗(x))

= F (F (xp
2
, [−Tr(ξ)]∗(xp)), [p]∗(x)),

where for any u ∈ Zp, [u](x) = f−1(uf(x)) gives an endomorphism of F and
[u]∗(x) = [u](x) (mod p). Hence

f−1(f(xp
2
)− Tr(ξ)f(xp) + pf(x)) ≡ 0 (mod p).

From Lemma (4.2) in [4],

f(xp
2
)− Tr(ξ)f(xp) + pf(x) ≡ 0 (mod p).

From this, we have
∞∑
n=1

Bn−1

n
xp

2n − Tr(ξ)
∞∑
n=1

Bn−1

n
xpn + p

∞∑
n=1

Bn−1

n
xn ≡ 0 (mod p).

By taking the coefficient of xp
nm, we have

Bpn−2m−1

pn−2m
− Tr(ξ)

Bpn−1m−1

pn−1m
+ p

Bpnm−1

pnm
≡ 0 (mod p).

Hence

Bmpn−1 − Tr(ξ)Bmpn−1−1 + pBmpn−2−1 ≡ 0 (mod pn),

which proves the second statement.
For the first statement, we have, mod p,

Tr(ξ) = Tr(ξ acting on H1(Eµ,OEµ))

= the coefficient of (xyz)p−1 in hp−1 = Bp−1

(cf. (1.8) for h and Remark after Theorem 2).

Theorem 5. Suppose that p is a prime with p ≡ 1 (mod 3). Then for
m 6≡ 0 (mod 3) and n ≥ 1, as polynomials in Zp[µ],

Bpnm(µ) ≡ Bpn−1m(µp) (mod pn).

P r o o f. The proof goes exactly as in [5]. Let Qp be the field of p-adic
numbers and K = Qp(µ), and consider the Gaussian valuation on K, i.e.
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for f(µ) =
∑n
i=0 aiµ

i ∈ Qp[µ],

ν(f) def= min{νp(ai) | 0 ≤ i ≤ n}
with the p-adic valuation of Qp normalized by νp(p) = 1. Let O and P be the
valuation ring and the maximal ideal of K, respectively. Then there exists
an endomorphism σ of K such that

ασ ≡ αp (mod P) for any α ∈ O.
In particular, for f(µ) in Qp[µ],

(f(µ))σ = f(µp).

Set

g′(x) =
∞∑
n=0

B3n+1(µ)x3n = B1(µ) +B4(µ)x3 + . . .

= − µ√
S

(
2√

S + x3 + 1

)1/3

,

where S = 1 + 2x3(1− 2µ3) + x6. Then by changing a variable from x to t
with x3 = t3(1− µ3t3)/(1− t3), we get

g′(x)dx =
−µ

1− µ3t3
dt

set= r′(t)dt.

Then

r(t) = −
∞∑
n=0

µ3n+1

3n+ 1
t3n+1,

and r is of type (−µ, p − T ) in the terminology of [4]. From the next little
lemma the transformation from x to t is given by

x = t+ . . . ∈ Zp[µ][[t]].

So the formal group with g(x) as its transformer is also of type (−µ, p− T )
(cf. Proposition 2.5 in [4]). Thus

pg(x)− gσ(xp) ≡ 0 (mod p),

where for u(x) =
∑∞
n=0 λnx

n in K[[x]],

uσ(x) =
∞∑
n=0

λσnx
n.

Hence for p ≡ 1 (mod 3) and for m ≡ 1 (mod 3),

p
Bpnm(µ)
pnm

− Bpn−1m(µp)
pn−1m

≡ 0 (mod p).

For m ≡ 2 (mod 3), as pnm ≡ pn−1m ≡ 2 (mod 3) we have

Bpnm = Bpn−1m = 0.
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Lemma. There exists a power series

x =
∞∑
n=1

dnt
n = t+ . . . ∈ Zp[a][[t]]

satisfying x3 = t3(1− at3)/(1− t3).

P r o o f. Set

x =
∞∑
n=1

dnt
n.

Then we can determine the dn inductively to make them satisfy the given
equation.

Acknowledgements. The author would like to thank N. Yui who in-
troduced her to the subject. Thanks are also due to M. Ohta for useful
conversations during the preparation of this paper.

References

[1] H. Bateman, Higher Transcendental Functions, Vol. 2, McGraw-Hill, 1953.
[2] R. Courant and D. Hi lbert, Methods of Mathematical Physics, Vol. 1, Interscience,

1953.
[3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer, 1977.
[4] T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan 22

(1970), 213–246.
[5] —, Two congruence properties of Legendre polynomials, Osaka J. Math. 13 (1976),

131–133.
[6] J. P. Serre, Sur la topologie des variétés algébriques en caractéristique p, in: Œuvres,
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