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A real number x which satisfies |qx−p| < q−τ for infinitely many p, q ∈ Z
for any τ > 1 is called well-approximable. The Hausdorff dimension of the
set of such numbers was found in 1929 by Jarńık [5]. Throughout this paper
the modulus will be the sup norm, i.e.,

|q| = max
i
{|qi|}.

Let W (m,n; τ) be the set of matrices X ∈Mm×n(R) which satisfy

|qX − p| < |q|−τ
for infinitely many q ∈ Zm,p ∈ Zn. This set is a generalisation of the set
of well-approximable numbers corresponding to m = n = 1. The Hausdorff
dimension of W (m,n; τ) was obtained in [1]. The Hausdorff dimension of
the subset

W0 = W0(m,n; τ) = {X ∈ Rmn : |qX| < |q|−τ for infinitely many q ∈ Zm}
of W (m,n; τ) was obtained in [2]. In W0, all the vectors p which can be
regarded as a general kind of numerator, are set to zero. There now arises
the question of what happens for a more general selection of the vectors p.
To this end define WA(m,n; τ) to be the set of matrices X ∈Mm×n(R) such
that

|qX − p| < |q|−τ
for infinitely many q ∈ Zm, p ∈ A. In these sets Ŵ will be used to denote the
set of X restricted to the unit cube I. In this paper the Hausdorff dimension
of WA(m,n; τ) is studied when A ⊆ Zn is a subgroup of Zn. Because A is
a subgroup the result holds for m + r > n where r is the dimension of the
lattice A. Following the proof an application will be shown. This will give
the Hausdorff dimension of the set of X ∈Mm×n(I), where I = (−1/2, 1/2],
such that the system of inequalities

(1) max{|q ·x(1)−p1|, . . . , |q ·x(r)−pr|, |q ·x(r+1)|, . . . , |q ·x(n)|} < |q|−τ

[133]
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holds for infinitely many integer vectors q ∈ Zm and p ∈ A. Here x(1), . . .
. . . ,x(n) are the column vectors of X. This is a set of mixed Diophan-
tine inequalities and A = Zr × {0}n−r. Evidently the result for this set
contains the result for W0 in which r = 0. The Hausdorff dimension of
ŴZr×{0}n−r (m,n; τ) in the case m > 1, r = 1, n = 2 was obtained in [3].

The case r = 0,m = 1 will be omitted; in this case Ŵ (1, n; τ) = {0} and so
the Hausdorff dimension is 0.

As some of the proofs for the present paper are very similar to those of
[2] they will be omitted. The upper bound is straightforward as is usual and
is found using a covering and counting argument. The lower bound will be
found in two parts as in [2]. For m+r > n the more general result discussed
above will be used. The second part will use this result to find the Hausdorff
dimension of a cartesian product of two sets one of which is diffeomorphic
to ŴZr×{0}n−r (m,n; τ) when m+ r ≤ n. This method is taken from [2] and
the details will not be included here. Hereafter Rmn is identified with the set
of m× n real matrices Mm×n(R). Also Mm×n(I) will be denoted by Imn.

To obtain the Hausdorff dimension of WA the idea of ubiquity [3] will be
used.

Define the set Π(p,q) to be the set of matrices X ∈ Imn such that

|qX − p| = 0.

Also define

NA(N) = card{p ∈ A : |p| ≤ N} and ℘A(p) = card{p ∈ A : |p| = p}.
The symbol κ will be used to denote upper order at infinity. That is, for an
increasing function f ,

κ(f) = lim sup
N→∞

log f(N)
logN

.

Since in this paper A will always be a subgroup of the lattice it will have
a dimension r and this will usually be equivalent to κ(N ). For example,
consider those vectors with only even entries. As there may exist a subgroup
for which this is not so the upper order notation will be maintained but in
the example given κ(N ) = r.

Theorem. When m,n > 0 are integers, for m+ κ(N ) > n,

dimWA(m,n; τ) = (m− 1)n+
m+ κ(N )
τ + 1

when τ ≥ m+ κ(N )
n

− 1.

First the upper bound result will be stated with a brief proof. Full details
of this type of proof can be found in [1] and [2].
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Lemma 1. For all integers m,n,

dimWA(m,n; τ) ≤ (m− 1)n+
m+ κ(N )
τ + 1

when τ ≥ m+ κ(N )
n

− 1.

P r o o f. The number of mn-dimensional hypercubes C ∈ C(p,q) of
width 4|q|−(τ+1) with centres on the (m − 1)n-dimensional hyperplane
Π(p,q) which cover {X ∈ Imn : |qX − p| < |q|−τ} is � |q|(τ+1)(m−1)n.
The collection of such hypercubes with |q| > N covers WA for each N . The
“t-volume” of this cover of WA(m,n; τ) can be estimated by

∑

q∈Zm
|q|>N

∑

p∈A
|p|<|q|

∑

C∈C(p,q)

4t|q|−(τ+1)t.

Now take t > (m − 1)n + (m + κ(N ))/(τ + 1), i.e., take t to be (m − 1)n
+ (m+ κ(N ))/(τ + 1) + ε for some ε > 0. The triple sum is then

�
∑

q>N

q−(τ+1)(m−1)n−m−κ(N )−ε(τ+1)+(τ+1)(m−1)n+κ(N )+(m−1)

where |q| = q. This becomes

�
∑

q>N

q−1−ε,

which tends to 0 as N →∞ and proves the lemma.

For the lower bound consider the related lim sup set ΛA, where

ΛA = {X ∈ Imn : dist(X,Π(p,q)) < ψ(|q|)
for infinitely many q ∈ Zm,p ∈ A},

and ψ(|q|) = m−1|q|−(τ+1). Here dist(X,Π(p,q)) represents the distance
of X from the resonant set Π(p,q) taken with the sup norm. Evidently
WA ⊇ ΛA. Thus it suffices to find a lower bound for the Hausdorff dimen-
sion for ΛA. In [3] the method of ubiquity was developed in order to find
the Hausdorff dimensions of general lim sup sets. There follows a modified
version (with appropriate notation for ΛA) of ubiquity which can be shown
to be equivalent to the full definition in [3] when the affine case is considered.

Ubiquity . Let Ω be a bounded open region in Rmn and let

RA = {Π(p,q) : q ∈ Zm\{0}, p ∈ A}.
Also for each δ write

B(Π(p,q); δ) = {X ∈ Ω : dist(X,Π(p,q)) < δ}.
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Then, if

lim
N→∞

∣∣∣Ω
∖ ⋃

q
|q|≤N
p∈A

B(Π(p,q); %(N))
∣∣∣ = 0

and limN→∞ %(N) = 0, where % is a decreasing function, the family RA is
called a ubiquitous system relative to %. (For the details see [3].)

Lemma 2. RA is ubiquitous with respect to the function

%(N) = (m+ 2)N−m/n(NA(N/2))−1/n logN.

To prove this lemma we need the following.

Lemma 3. For N > N0(n,m,A) and every X ∈ Imn there exist integer
vectors q ∈ Zm, p ∈ A with |q|, |p| ≤ N for N0 large enough such that

|qX − p| < (m+ 2)N1−m/n(NA(N/2))−1/n.

P r o o f. Consider those q with non-negative components and those p
such that |p| ≤ N/2. There are (N + 1)mNA(N/2) vectors qX − p and

−m+ 2
2

N ≤ qX − p ≤ m+ 2
2

N.

Divide the cube in Rn with centre 0, sidelength (m + 2)N and volume
(m + 2)nNn into NmNA(N/2) smaller cubes of volume (m + 2)nNn−m ×
(NA(N/2))−1 and sidelength (m+2)N1−m/n(NA(N/2))−1/n. As (N+1)m >
Nm there must be two vectors q1X −p1, q2X −p2, say, in one small cube.
Therefore

|(q1 − q2)X − (p1 − p2)| < (m+ 2)N1−m/n(NA(N/2))−1/n.

Evidently q1 − q2 ∈ Zm and |q1 − q2| ≤ N . Also p1 − p2 ∈ A since A is
closed under subtraction and |p1 − p2| ≤ N by choice of p1 and p2. Thus
the lemma is proved.

In Lemma 3 the p which has been shown to exist will always be such
that |p| < 1

2 |q|+1 as otherwise |qX−p| > 1, which would be unacceptable.

P r o o f o f L e m m a 2. The p,q in the following proof are those which
have been shown to exist for any X in the previous lemma. Let

E(N) = {X ∈ Imn : |q| < N/ logN}
and

D(N) = {X ∈ Imn : |X − ∂Imn| ≥ N−1}\E(N).
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Then

E(N) ⊆
N/ logN⋃
q=1

k|q|⋃
p=1

⋃

|q|=q

⋃

p∈A
|p|=p

{X ∈ Imn :

|qX − p| < (m+ 2)N1−m/n(NA(N/2))−1/n}.
Therefore

|E(N)| ≤
N/ logN∑
q=1

k|q|∑
p=1

∑

|q|=q

∑

p∈A
|p|=p

2n(m+ 2)nNn−m(NA(N/2))−1

|q|n

� Nn−m(NA(N/2))−1
N/ logN∑
q=1

NA(kq)qm−1−n.

For m+ κ(N ) > n this is

(2) � Nn−m(NA(N/2))−1
(

N

logN

)m−n−1(
N

logN

)
NA
(

N

logN

)
.

This is � (logN)n−m−κ(N )+ε for all ε > 0 since it can be shown that

NA(N/ logN)
NA(N/2)

� (logN)−κ(N )+ε.

Thus |E(N)| → 0 as N →∞ when m+ κ(N ) > n.
Thus limN→∞ |E(N)| = 0 and limN→∞ |Imn\D(N)| = 0. Now let X̃ ∈

D(N) and choose a q̃ such that

|q̃X̃ − p̃| ≤ (m+ 2)N1−m/n(NA(N/2))−1/n,

N/ logN ≤ |q̃| ≤ N
as is possible by Lemma 3.

Now |q̃| = |q̃i| for some i. Let δj = (p̃j − q̃x̃(j))/|q̃i|, for 1 ≤ j ≤ n. Then
q̃(x̃(j) + δje(i)) − p̃j = 0 for j = 1, . . . , n where e(i) denotes the ith basis
vector. Also

|δj | ≤ (m+ 2)N1−m/n(NA(N/2))−1/n

|q̃|
≤ (m+ 2)N−m/n logN(NA(N/2))−1/n,

for 1 ≤ j ≤ n. Therefore X = (x̃(1) + δ1e(i), . . . , x̃(n) + δne(i)) is a point in
the resonant set and

dist(X̃,X) ≤ (m+ 2)N−m/n(NA(N/2))−1/n logN.

Now, let
%(N) = (m+ 2)N−m/n(NA(N/2))−1/n logN,
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so that
D(N) ⊆ A(N) =

⋃

q∈Zm,p∈A
|q|≤N

B(Π(p,q), %(N))

giving limN→∞ |Ω\A(N)| = 0. Thus RA is ubiquitous with respect to %(N)
for m+ κ(N ) > n.

From Theorem 1 in [3],

dimΛA ≥ dimRA + γ codimRA
where

γ = lim sup
N→∞

log %(N)
logψ(N)

,

and RA is the set of resonant sets Π(p,q). Now, dimRA = (m − 1)n,
codimRA = n, %(N) = (m + 2)N−m/n(NA(N/2))−1/n logN and ψ(N) =
m−1N−(τ+1). Hence

γ = lim sup
N→∞

log %(N)
logN

logN
logψ(N)

= lim sup
N→∞

[(
− m

n
− 1
n

logNA(N/2)
logN

+
log logN

logN

)( −1
τ + 1

)]

=
m+ κ(N )
n(τ + 1)

.

Thus, since WA(m,n; τ) ⊇ ΛA,

dimWA(m,n; τ) ≥ dimΛA ≥ (m− 1)n+
m+ κ(N )
τ + 1

.

So the theorem is proved for m+ κ(N ) > n.
Now we apply this result to WZr×{0}n−r (m,n; τ). If WZr×{0}n−r (m,n; τ)

then NA(N) = Nr. Thus

κ(N ) = lim
N→∞

logNr

logN
= r.

Hence for m+ r > n,

dimWZr×{0}n−r (m,n; τ) ≥ (m− 1)n+
m+ r

τ + 1
.

The upper bound result, Lemma 1, also holds giving

dim ŴA(m,n; τ) = (m− 1)n+
m+ r

τ + 1
for m+ r > n where A = Zr × {0}n−r.

To obtain the Hausdorff dimension for WZr×{0}n−r (m,n; τ) when m+r ≤
n the result obtained above will be used. In the following method a subset
W̃A(m,n; τ) will be needed. This is the set of matrices in ŴA(m,n; τ) such
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that the column vectors x(r+1), . . . ,x(n) are linearly independent. It can
be readily verified that this set has the same dimension as ŴA(m,n; τ). In
fact the set of X for which those vectors are linearly dependent is of lower
dimension and so plays no major part.

First two lemmas will be stated, the proof of the first can be found in
[1], [2] and [6] and the proof of the second can be found in [4].

Lemma 4. For any real interval , (a, b), and set X ⊆ Rk, the Hausdorff
dimension of the set (X × (a, b)p), where p is a positive integer , is

dim(X × (a, b)p) = dimX + p.

Lemma 5. If there exists an onto function f : X → Y such that f is
one-one and obeys a bi-Lipschitz condition then dimY = dimX.

For simplicity only the case n = m+ r will be obtained; the result then
extends easily to n > m+ r. Let G denote the set of vectors

(
x(1), . . . ,x(m+r−1),

m−1∑

k=1

akx(r+k)
)

such that

(x(1), . . . ,x(m+r−1)) ∈ W̃A(m,m+ r − 1; τ)

and

ak ∈
( −1
m− 1

,
1

m− 1

)
.

As in [2], G ⊆ ŴA(m,m+ r; τ). Define the function

f : W̃A(m,m+ r − 1; τ)×
( −1
m− 1

,
1

m− 1

)m−1

→ G

by

(x(1), . . . ,x(m+r−1), a1, . . . , am−1) 7→
(
x(1), . . . ,x(m+r−1),

m−1∑

k=1

akx(r+k)
)
.

Exactly as in [2] this function can be shown to be locally bi-Lipschitz. There-
fore, from the two lemmas above

dim ŴA(m,m+ r; τ) ≥ dimG

= dim W̃A(m,m+ r − 1; τ)×
( −1
m− 1

,
1

m− 1

)m−1

,

which gives

dim ŴA(m,n; τ) ≥ (m− 1)(m+ r) +
m+ r

τ + 1
,
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for m + r = n. For m + r > n extend the function f as in [2]. In this
case the cartesian product is between W̃A(m,m+ r− 1; τ) and a “cube” in
(n−m− r + 1)(m− 1) dimensions. This gives the result that

dimWZr×{0}n−r (m,n; τ) ≥ (m− 1)n+
m+ r

τ + 1
,

and finally from Lemma 1 that

dimWZr×{0}n−r (m,n; τ) = (m− 1)n+
m+ r

τ + 1
.
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