Upper bounds for class numbers of real quadratic fields

by

Maohua Le (Zhanjiang)

1. Introduction. Let $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ denote the sets of integers, positive integers and rational numbers respectively. Let $D \in \mathbb{N}$ be square free, and let Δ, h, ε denote the discriminant, the class number and the fundamental unit of the real quadratic field $K=\mathbb{Q}(\sqrt{D})$ respectively. Then

$$
\Delta= \begin{cases}D & \text { if } D \equiv 1(\bmod 4) \\ 4 D & \text { if } D \not \equiv 1(\bmod 4)\end{cases}
$$

For the case that D is an odd prime, Gut [3] proved that if $D \equiv 1$ $(\bmod 4)$, then $h<D / 4$. Newman [6] proved that $h<2 \sqrt{D} / 3$. Agoh [1] proved that if $\nu>1 / 2$ and $D \equiv 1(\bmod 4)$, then $h<\nu \sqrt{D}$ except for a finite number of D. In this paper, we prove a general result as follows.

ThEOREM. (a) For any square free $D \in \mathbb{N}$, we have $h \leq[\sqrt{\Delta} / 2]$.
(b) Moreover, if $D \equiv 3(\bmod 4)$ is an odd prime, then

$$
h \leq \begin{cases}{[\sqrt{D} / 3]+1 \quad \text { if } D=36 k^{2}+36 k+7, k \in \mathbb{Z}, k \geq 0} \\ {[\sqrt{D} / 4]+1 \quad \text { otherwise }}\end{cases}
$$

where $[x]$ is the greatest integer less than or equal to x.
2. Preliminaries. Here and below, let χ be the non-trivial Dirichlet character of K, and let $L(s, \chi)$ denote the L-function attached to χ. Then χ is an even quadratic character of conductor Δ. The two lemmas below follow immediately from [5, Theorem] and [8, p. 531] respectively.

Lemma 1. Let γ be Euler's constant. We have

$$
|L(1, \chi)| \leq \begin{cases}\frac{1}{4}(\log \Delta+2+\gamma-\log \pi) & \text { if } 2 \mid \Delta \\ \frac{1}{2}(\log \Delta+2+\gamma-\log 4 \pi) & \text { otherwise }\end{cases}
$$

Lemma 2. If $D>1500$ and $D \equiv 5(\bmod 8)$, then

$$
|L(1, \chi)|<\frac{1}{6}(\log D+5.16)
$$

By much the same argument as in the proof of [4, Theorem A], we can prove the following lemma.

Lemma 3. If $\chi(2)=0$ and $\chi(3)=-1$, then

$$
|L(1, \chi)| \leq \frac{1}{8}(\log \Delta+3 \log 6+8)
$$

Lemma 4. For any square free $D \in \mathbb{N}$, we have

$$
\varepsilon^{2}> \begin{cases}D-3 & \text { if } D=a^{2} \pm 4, a \in \mathbb{N} \tag{1}\\ 4 D-3 & \text { otherwise. }\end{cases}
$$

Moreover, if D is a prime with $D \equiv 3(\bmod 4)$, then

$$
\varepsilon> \begin{cases}2 D-3 & \text { if } D=a^{2} \pm 2, a \in \mathbb{N} \tag{2}\\ 18 D-3 & \text { otherwise } .\end{cases}
$$

Proof. Since ε is equal to the fundamental solution $\left(u_{1}+v_{1} \sqrt{D}\right) / 2$ of the equation

$$
u^{2}-D v^{2}= \pm 4, \quad u, v \in \mathbb{Z}
$$

we have

$$
\begin{aligned}
\varepsilon^{2} & =\frac{1}{4}\left(u_{1}+v_{1} \sqrt{D}\right)^{2} \geq \frac{1}{4}\left(\sqrt{D v_{1}^{2}-4}+v_{1} \sqrt{D}\right)^{2} \\
& >D v_{1}^{2}-3 \geq \begin{cases}D-3 & \text { if } v_{1}=1, \\
4 D-3 & \text { if } v_{1}>1,\end{cases}
\end{aligned}
$$

and (1) follows.
By $[7]$, if D is a prime with $D \equiv 3(\bmod 4)$, then the equation

$$
\begin{equation*}
U^{2}-D V^{2}= \pm 2, \quad U, V \in \mathbb{N}, \tag{3}
\end{equation*}
$$

has solutions (U, V) and $\varepsilon=\left(U_{1}+V_{1} \sqrt{D}\right)^{2} / 2$, where $\left(U_{1}, V_{1}\right)$ is the least solution of (3). So we have

$$
\begin{equation*}
\varepsilon \geq \frac{1}{2}\left(\sqrt{D V_{1}^{2}-2}+V_{1} \sqrt{D}\right)^{2}>2 D V_{1}^{2}-3 \tag{4}
\end{equation*}
$$

Since $2 \nmid V_{1}$, we see from (4) that

$$
\varepsilon> \begin{cases}2 D-3 & \text { if } V_{1}=1 \\ 18 D-3 & \text { if } V_{1}>1,\end{cases}
$$

and (2) follows. The lemma is proved.
3. Proof of Theorem. By the numerical results of [2], it suffices to prove the Theorem for $\Delta>24572$. By the class number formula, we have

$$
\begin{equation*}
h=\frac{\sqrt{\Delta}}{2 \log \varepsilon}|L(1, \chi)| . \tag{5}
\end{equation*}
$$

First, we consider the case $D \equiv 1(\bmod 4)$. Then $\Delta=D$ and $D>24572$. If $D=a^{2} \pm 4$ with $a \in \mathbb{N}$, then $D \equiv 5(\bmod 8)$. On applying Lemmas 2 and

4 with (5), we get

$$
\begin{equation*}
h<\frac{\sqrt{D}}{2}\left(\frac{\log D+5.16}{3 \log (D-3)}\right)<\frac{\sqrt{D}}{2}, \quad D \geq 18 \tag{6}
\end{equation*}
$$

On the other hand, by Lemmas 1 and 4 , if $D \neq a^{2} \pm 4$, then

$$
\begin{equation*}
h<\frac{\sqrt{D}}{2}\left(\frac{\log D+0.046}{\log (4 D-3)}\right)<\frac{\sqrt{D}}{2}, \quad D \geq 2 \tag{7}
\end{equation*}
$$

Since $h \in \mathbb{N}$, we see from (6) and (7) that $h \leq[\sqrt{D} / 2]$ for $D \equiv 1(\bmod 4)$.
Second, we consider the case $D \not \equiv 1(\bmod 4)$. Then $\Delta=4 D, D>6143$ and $\chi(2)=0$. By Lemmas 1 and 4 , we get

$$
h<\sqrt{D}\left(\frac{\log 4 D+1.433}{2 \log (4 D-3)}\right)<\sqrt{D}, \quad D \geq 3
$$

It implies that $h \leq[\sqrt{D}]$ for $D \not \equiv 1(\bmod 4)$. Up to now, we obtain $h \leq$ $[\sqrt{\Delta} / 2]$.

Finally, we consider the case where $D \equiv 3(\bmod 4)$ is an odd prime. If $D=a^{2}-2, a \in \mathbb{N}$ and $3 \mid a$, then $D=36 k^{2}+36 k+7$, where $k \in \mathbb{Z}$ with $k \geq 0$. On applying Lemmas 1 and 4 with (5), we get

$$
h<\frac{\sqrt{D}}{4}\left(\frac{\log 4 D+1.433}{\log (2 D-3)}\right)<\frac{\sqrt{D}}{3}, \quad D \geq 250
$$

If $D=a^{2}+2$ or $a^{2}-2$ and $3 \nmid a$, then $D \equiv 2(\bmod 3)$ and $\chi(3)=-1$. By
Lemmas 3 and 4, we get

$$
h<\frac{\sqrt{D}}{4}\left(\frac{\log 4 D+13.38}{2 \log (2 D-3)}\right)<\frac{\sqrt{D}}{4}, \quad D \geq 7 \cdot 10^{5}
$$

Furthermore, using the methods of [9], we can check that $h<\sqrt{D} / 4$ for $79<D<10^{6}$. Similarly, by Lemmas 1 and 4 , if $D \equiv 3(\bmod 4)$ and $D \neq a^{2} \pm 2$, then

$$
h<\frac{\sqrt{D}}{4}\left(\frac{\log 4 D+1.433}{\log (18 D-3)}\right)<\frac{\sqrt{D}}{4}, \quad D \geq 3
$$

All cases are considered and the Theorem is proved.
Acknowledgements. The author is grateful to the referee for the valuable suggestions.

References

[1] T. Agoh, A note on unit and class number of real quadratic fields, Acta Math. Sinica (N.S.) 5 (1989), 281-288.
[2] O. Bernard, Groupes des classes d'idéaux des corps quadratiques réels $\mathbb{Q}\left(d^{1 / 2}\right)$, $1<d \leq 24572$, Théorie des nombres, Années 1986/87-1987/88, Fasc. 2, 65 pp., Besançon, 1988.
[3] M. Gut, Abschätzungen für die Klassenzahlen der quadratischen Körper, Acta Arith. 8 (1962), 113-122.
[4] S. Louboutin, Majoration au point 1 des fonctions L associées aux caractères de Dirichlet primitifs, ou au caractère d'une extension quadratique d'un corps quadratique imaginaire principal, J. Reine Angew. Math. 419 (1991), 213-219.
[5] -, Majoration explicites de $|L(1, \chi)|$, C. R. Acad. Sci. Paris Sér. I 316 (1993), 11-14.
[6] M. Newman, Bounds for class numbers, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 70-77.
[7] K. Petr, Sur l'équation de Pell, Casopis Pest. Mat. Fys. 56 (1927), 57-66 (in Czech).
[8] R. G. Stanton, C. Sudler, Jr., and H. C. Williams, An upper bound for the period of the simple continued fraction for \sqrt{D}, Pacific J. Math. 67 (1976), 525-536.
[9] H. C. Williams and J. Broere, A computational technique for evaluating $L(1, \chi)$ and the class number of a real quadratic field, Math. Comp. 30 (1976), 887-893.

DEPARTMENT OF MATHEMATICS
Zhanjiang teacher's college
P.O. BOX 524048

ZHANJIANG, GUANGDONG
P.R. CHINA

