Upper bounds for class numbers of real quadratic fields

by

MAOHUA LE (Zhanjiang)

1. Introduction. Let \mathbb{Z} , \mathbb{N} , \mathbb{Q} denote the sets of integers, positive integers and rational numbers respectively. Let $D \in \mathbb{N}$ be square free, and let Δ , h, ε denote the discriminant, the class number and the fundamental unit of the real quadratic field $K = \mathbb{Q}(\sqrt{D})$ respectively. Then

$$\Delta = \begin{cases} D & \text{if } D \equiv 1 \pmod{4}, \\ 4D & \text{if } D \not\equiv 1 \pmod{4}. \end{cases}$$

For the case that D is an odd prime, Gut [3] proved that if $D \equiv 1 \pmod{4}$, then h < D/4. Newman [6] proved that $h < 2\sqrt{D}/3$. Agoh [1] proved that if $\nu > 1/2$ and $D \equiv 1 \pmod{4}$, then $h < \nu\sqrt{D}$ except for a finite number of D. In this paper, we prove a general result as follows.

THEOREM. (a) For any square free $D \in \mathbb{N}$, we have $h \leq \sqrt{\Delta}/2$. (b) Moreover, if $D \equiv 3 \pmod{4}$ is an odd prime, then

$$h \leq \begin{cases} [\sqrt{D}/3] + 1 & \text{if } D = 36k^2 + 36k + 7, \ k \in \mathbb{Z}, \ k \ge 0, \\ [\sqrt{D}/4] + 1 & \text{otherwise}, \end{cases}$$

where [x] is the greatest integer less than or equal to x.

2. Preliminaries. Here and below, let χ be the non-trivial Dirichlet character of K, and let $L(s,\chi)$ denote the *L*-function attached to χ . Then χ is an even quadratic character of conductor Δ . The two lemmas below follow immediately from [5, Theorem] and [8, p. 531] respectively.

LEMMA 1. Let γ be Euler's constant. We have

$$|L(1,\chi)| \le \begin{cases} \frac{1}{4}(\log \varDelta + 2 + \gamma - \log \pi) & \text{if } 2 \mid \varDelta, \\ \frac{1}{2}(\log \varDelta + 2 + \gamma - \log 4\pi) & \text{otherwise.} \end{cases}$$

LEMMA 2. If D > 1500 and $D \equiv 5 \pmod{8}$, then

$$|L(1,\chi)| < \frac{1}{6}(\log D + 5.16).$$

By much the same argument as in the proof of [4, Theorem A], we can prove the following lemma.

LEMMA 3. If
$$\chi(2) = 0$$
 and $\chi(3) = -1$, then
 $|L(1,\chi)| \le \frac{1}{8}(\log \Delta + 3\log 6 + 8).$

LEMMA 4. For any square free $D \in \mathbb{N}$, we have

(1)
$$\varepsilon^2 > \begin{cases} D-3 & \text{if } D = a^2 \pm 4, \ a \in \mathbb{N}, \\ 4D-3 & \text{otherwise.} \end{cases}$$

Moreover, if D is a prime with $D \equiv 3 \pmod{4}$, then

(2)
$$\varepsilon > \begin{cases} 2D-3 & \text{if } D = a^2 \pm 2, \ a \in \mathbb{N}, \\ 18D-3 & \text{otherwise.} \end{cases}$$

Proof. Since ε is equal to the fundamental solution $(u_1 + v_1 \sqrt{D})/2$ of the equation

$$u^2 - Dv^2 = \pm 4, \quad u, v \in \mathbb{Z},$$

we have

$$\begin{split} \varepsilon^2 &= \frac{1}{4}(u_1 + v_1\sqrt{D})^2 \geq \frac{1}{4}(\sqrt{Dv_1^2 - 4} + v_1\sqrt{D})^2 \\ &> Dv_1^2 - 3 \geq \begin{cases} D - 3 & \text{if } v_1 = 1, \\ 4D - 3 & \text{if } v_1 > 1, \end{cases} \end{split}$$

and (1) follows.

By [7], if D is a prime with $D \equiv 3 \pmod{4}$, then the equation

(3)
$$U^2 - DV^2 = \pm 2, \quad U, V \in \mathbb{N},$$

has solutions (U, V) and $\varepsilon = (U_1 + V_1 \sqrt{D})^2/2$, where (U_1, V_1) is the least solution of (3). So we have

(4)
$$\varepsilon \ge \frac{1}{2}(\sqrt{DV_1^2 - 2} + V_1\sqrt{D})^2 > 2DV_1^2 - 3.$$

Since $2 \nmid V_1$, we see from (4) that

$$\varepsilon > \begin{cases} 2D - 3 & \text{if } V_1 = 1, \\ 18D - 3 & \text{if } V_1 > 1, \end{cases}$$

and (2) follows. The lemma is proved.

3. Proof of Theorem. By the numerical results of [2], it suffices to prove the Theorem for $\Delta > 24572$. By the class number formula, we have

(5)
$$h = \frac{\sqrt{\Delta}}{2\log\varepsilon} |L(1,\chi)|.$$

First, we consider the case $D \equiv 1 \pmod{4}$. Then $\Delta = D$ and D > 24572. If $D = a^2 \pm 4$ with $a \in \mathbb{N}$, then $D \equiv 5 \pmod{8}$. On applying Lemmas 2 and

142

4 with (5), we get

(6)
$$h < \frac{\sqrt{D}}{2} \left(\frac{\log D + 5.16}{3 \log(D - 3)} \right) < \frac{\sqrt{D}}{2}, \quad D \ge 18.$$

On the other hand, by Lemmas 1 and 4, if $D \neq a^2 \pm 4$, then

(7)
$$h < \frac{\sqrt{D}}{2} \left(\frac{\log D + 0.046}{\log(4D - 3)} \right) < \frac{\sqrt{D}}{2}, \quad D \ge 2$$

Since $h \in \mathbb{N}$, we see from (6) and (7) that $h \leq \sqrt{D}/2$ for $D \equiv 1 \pmod{4}$.

Second, we consider the case $D \not\equiv 1 \pmod{4}$. Then $\Delta = 4D$, D > 6143 and $\chi(2) = 0$. By Lemmas 1 and 4, we get

$$h < \sqrt{D} \left(\frac{\log 4D + 1.433}{2\log(4D - 3)} \right) < \sqrt{D}, \qquad D \ge 3$$

It implies that $h \leq \sqrt{D}$ for $D \not\equiv 1 \pmod{4}$. Up to now, we obtain $h \leq \sqrt{D}/2$.

Finally, we consider the case where $D \equiv 3 \pmod{4}$ is an odd prime. If $D = a^2 - 2$, $a \in \mathbb{N}$ and $3 \mid a$, then $D = 36k^2 + 36k + 7$, where $k \in \mathbb{Z}$ with $k \geq 0$. On applying Lemmas 1 and 4 with (5), we get

$$h < \frac{\sqrt{D}}{4} \left(\frac{\log 4D + 1.433}{\log(2D - 3)} \right) < \frac{\sqrt{D}}{3}, \quad D \ge 250.$$

If $D = a^2 + 2$ or $a^2 - 2$ and $3 \nmid a$, then $D \equiv 2 \pmod{3}$ and $\chi(3) = -1$. By Lemmas 3 and 4, we get

$$h < \frac{\sqrt{D}}{4} \left(\frac{\log 4D + 13.38}{2\log(2D - 3)} \right) < \frac{\sqrt{D}}{4}, \quad D \ge 7 \cdot 10^5.$$

Furthermore, using the methods of [9], we can check that $h < \sqrt{D}/4$ for 79 < $D < 10^6$. Similarly, by Lemmas 1 and 4, if $D \equiv 3 \pmod{4}$ and $D \neq a^2 \pm 2$, then

$$h < \frac{\sqrt{D}}{4} \left(\frac{\log 4D + 1.433}{\log(18D - 3)} \right) < \frac{\sqrt{D}}{4}, \quad D \ge 3.$$

All cases are considered and the Theorem is proved.

Acknowledgements. The author is grateful to the referee for the valuable suggestions.

References

 T. Agoh, A note on unit and class number of real quadratic fields, Acta Math. Sinica (N.S.) 5 (1989), 281–288.

M.-H. Le

- [2] O. Bernard, Groupes des classes d'idéaux des corps quadratiques réels $\mathbb{Q}(d^{1/2})$, $1 < d \leq 24572$, Théorie des nombres, Années 1986/87-1987/88, Fasc. 2, 65 pp., Besançon, 1988.
- M. Gut, Abschätzungen f
 ür die Klassenzahlen der quadratischen K
 örper, Acta Arith. 8 (1962), 113–122.
- [4] S. Louboutin, Majoration au point 1 des fonctions L associées aux caractères de Dirichlet primitifs, ou au caractère d'une extension quadratique d'un corps quadratique imaginaire principal, J. Reine Angew. Math. 419 (1991), 213–219.
- [5] —, Majoration explicites de |L(1, χ)|, C. R. Acad. Sci. Paris Sér. I 316 (1993), 11–14.
 [6] M. Newman, Bounds for class numbers, in: Proc. Sympos. Pure Math. 8, Amer.
- Math. Soc., 1965, 70–77.
- [7] K. Petr, Sur l'équation de Pell, Časopis Pest. Mat. Fys. 56 (1927), 57–66 (in Czech).
- [8] R. G. Stanton, C. Sudler, Jr., and H. C. Williams, An upper bound for the period of the simple continued fraction for \sqrt{D} , Pacific J. Math. 67 (1976), 525–536.
- [9] H. C. Williams and J. Broere, A computational technique for evaluating $L(1,\chi)$ and the class number of a real quadratic field, Math. Comp. 30 (1976), 887–893.

DEPARTMENT OF MATHEMATICS ZHANJIANG TEACHER'S COLLEGE P.O. BOX 524048 ZHANJIANG, GUANGDONG P.R. CHINA

> Received on 5.5.1993 and in revised form on 31.3.1994

(2430)