On strong Lehmer pseudoprimes in the case of negative discriminant in arithmetic progressions

by

A. Rotkiewicz (Warszawa)

1. The Lehmer numbers can be defined as follows:

$$
P_{n}(\alpha, \beta)= \begin{cases}\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) & \text { if } n \text { is odd, } \\ \left(\alpha^{n}-\beta^{n}\right) /\left(\alpha^{2}-\beta^{2}\right) & \text { if } n \text { is even, }\end{cases}
$$

where α and β are distinct roots of the trinomial $f(z)=z^{2}-\sqrt{L} z+M$; its discriminant is $D=L-4 M$, and $L>0$ and M are rational integers. We can assume without any essential loss of generality that $(L, M)=1$ and $M \neq 0$.

The Lehmer sequence P_{k} is defined recursively as follows: $P_{0}=0, P_{1}=1$, and for $n \geq 2$,

$$
P_{n}= \begin{cases}L P_{n-1}-M P_{n-2} & \text { if } n \text { is odd, } \\ P_{n-1}-M P_{n-2} & \text { if } n \text { is even. }\end{cases}
$$

Let $V_{n}=\left(\alpha^{n}+\beta^{n}\right) /(\alpha+\beta)$ for n odd, and $V_{n}=\alpha^{n}+\beta^{n}$ for n even denote the nth term of the associated recurring sequence.

The associated Lehmer sequence V_{k} can be defined recursively as follows: $V_{0}=2, V_{1}=1$, and for $n \geq 2$,

$$
V_{n}= \begin{cases}L V_{n-1}-M V_{n-2} & \text { for } n \text { even, } \\ V_{n-1}-M V_{n-2} & \text { for } n \text { odd. }\end{cases}
$$

An odd composite number n is a strong Lehmer pseudoprime with parameters L, M (or an sLp for the bases α and β) if $(n, D L)=1$, and with $\delta(n)=n-(D L / n)=d \cdot 2^{s}, d$ odd, where $(D L / n)$ is the Jacobi symbol, we have either
(i) $P_{d} \equiv 0(\bmod n)$, or
(ii) $V_{d \cdot 2^{r}} \equiv 0(\bmod n)$, for some r with $0 \leq r<s$.

Each odd prime n satisfies either (i) or (ii), provided ($n, D L$) $=1$ (cf. [2]).

In 1982 I proved [4] that if $D=L-4 M>0$ and $L>0$ then every arithmetic progression $a x+b(x=0,1,2, \ldots)$, where a, b are relatively prime integers, contains an infinite number of odd strong Lehmer pseudoprimes with parameters L, M (that is, sLp's for the bases α and β). In the present paper we prove the following

Theorem T. If α, β defined above are different from zero and α / β is not a root of unity (that is, $\langle L, M\rangle \neq\langle 1,1\rangle,\langle 2,1\rangle,\langle 3,1\rangle$) then every arithmetic progression $a x+b(x=0,1,2, \ldots)$, where a, b are relatively prime integers, contains an infinite number of odd strong Lehmer pseudoprimes for the bases α and β.

In comparison with [4] the novelty of this theorem lies in the case $D<0$.
An odd composite n is an Euler Lehmer pseudoprime for the bases α and β if $(n, M D)=1$ and

$$
\begin{aligned}
& P_{(n-\varepsilon(n)) / 2} \equiv 0(\bmod n) \quad \text { if }(M L / n)=1, \text { or } \\
& V_{(n-\varepsilon(n)) / 2} \equiv 0(\bmod n) \quad \text { if }(M L / n)=-1, \text { where } \varepsilon(n)=(D L / n)
\end{aligned}
$$

If n is a strong Lehmer pseudoprime for the bases α and β, then it is an Euler Lehmer pseudoprime for the bases α and β (cf. [4], Theorem 1); thus if the assumptions of Theorem T hold, then every arithmetic progression $a x+b(x=0,1,2, \ldots)$, where a, b are relatively prime integers, contains an infinite number of odd Euler Lehmer pseudoprimes for the bases α and β.
2. For each positive integer n we denote by $\Phi_{n}(\alpha, \beta)=\bar{\Phi}_{n}(L, M)$ the nth cyclotomic polynomial

$$
\bar{\Phi}(L, M)=\Phi_{n}(\alpha, \beta)=\prod_{(m, n)=1}\left(\alpha-\zeta_{n}^{m} \beta\right)=\prod_{d \mid n}\left(\alpha^{d}-\beta^{d}\right)^{\mu(n / d)}
$$

where ζ_{n} is a primitive nth root of unity and the product is over the $\varphi(n)$ integers m with $1 \leq m \leq n$ and $(m, n)=1 ; \mu$ and φ are the Möbius and Euler functions respectively.

It will be convenient to write

$$
\Phi(\alpha, \beta ; n)=\Phi_{n}(\alpha, \beta)
$$

It is easy to see that $\Phi(\alpha, \beta ; n)>1$ for $D=L-4 M>0$ and $n>2$.
A. Schinzel [5] proved that if α and β are complex and β / α is not a root of unity, then for every $\varepsilon>0$ and $n>N(\alpha, \beta, \varepsilon)$,

$$
|\Phi(\alpha, \beta ; n)|>|\alpha|^{\varphi(n)-2^{\nu(n)} \log ^{2+\varepsilon} n}
$$

where $\nu(n)$ the number of prime factors of n and $N(\alpha, \beta, \varepsilon)$ can be effectively computed.
M. Ward [7] proved that $\Phi(\alpha, \beta ; n)>n$ for $n>12$ and $D>0$.

A prime factor p of $P_{n}(\alpha, \beta)$ is called a primitive prime factor of P_{n} if $p \mid P_{n}$ but $p \nmid D L P_{3} \ldots P_{n-1}$.

The following results are well known.
Lemma 1 (Lehmer [2]). Let $n \neq 2^{g}, 3 \cdot 2^{g}$. Denote by $r=r(n)$ the largest prime factor of n. If $r \nmid \Phi(\alpha, \beta ; n)$, then every prime p dividing $\Phi(\alpha, \beta ; n)$ is a primitive prime divisor of P_{n}. Every primitive prime divisor pof P_{n} is $\equiv(D L / p)(\bmod n)$.

If $r \mid \Phi(\alpha, \beta ; n)$ and $r^{l} \| n\left(\right.$ that is, $r^{l} \mid n$ but $\left.r^{l+1} \nmid n\right)$ then $r \| \Phi(\alpha, \beta ; n)$ and r is a primitive prime divisor of $P_{n / r^{l}}$.

LEMMA 2. For $n>12$ and $D>0$ the number P_{n} has a primitive prime divisor (see Durst [1], Ward [7]).

If $D<0$ and β / α is not a root of unity, then P_{n} has a primitive prime divisor for $n>n_{0}(\alpha, \beta)$. Here $n_{0}(\alpha, \beta)$ can be effectively computed (Schinzel [5]); in fact, $n_{0}=n_{0}(\alpha, \beta)=e^{452} \cdot 4^{67}$ (Stewart [6]).

We have $|\Phi(\alpha, \beta ; n)|>1$ for $n>n_{0}$ (Schinzel [5], Stewart [6]).
Lemma 3 (Rotkiewicz [3], Lemma 5). Let

$$
\Psi\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}\right)=2 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}\left(p_{1}^{2}-1\right)\left(p_{2}^{2}-1\right) \ldots\left(p_{k}^{2}-1\right)
$$

If q is a prime such that $q^{2} \| n$ and a is a natural number with $a \Psi(a) \mid q-1$, then $\Phi(\alpha, \beta ; n) \equiv 1(\bmod a)$.
3. Proof of Theorem T. The case $D>0$ is considered in [4], so we assume that $D<0$.

If for each pair of relatively prime integers a, b there is at least one strong Lehmer pseudoprime with parameters L, M of the shape $a x+b$, where x is a natural number, then there are infinitely many such pseudoprimes. We may suppose without loss of generality that a is even and b is odd and that $4 D L \mid a$.

The proofs of the above results are the same as in the case $D>0$. Thus, the theorem will be proved if we can produce a strong Lehmer pseudoprime n with parameters L, M with $n \equiv b(\bmod a)$.

Given a and b as described, with $2^{\lambda} \| b-(D L / b), \lambda \geq 1$, we start our construction by choosing four distinct primes $p_{1}, p_{2}, p_{3}, p_{4}$ that are relatively prime to a. Furthermore, we introduce two further primes p and q, with $q>p_{i}(i=1,2,3,4)$, which are to satisfy certain conditions detailed below. Firstly, we require that
(a) $\quad 2^{\lambda} p_{1} p_{2} p_{3} p_{4} q^{2} \| p-\varepsilon(p), \quad \varepsilon(p)=(D L / p), \quad(D L, p)=1$.

We apply Dirichlet's theorem on primes in arithmetic progressions to select a prime q with
(1) $2 p_{1} p_{2} p_{3} p_{4}\left(p_{1}^{2}-1\right)\left(p_{2}^{2}-1\right)\left(p_{3}^{2}-1\right)\left(p_{4}^{2}-1\right)\left|q-1, \quad 3 \cdot 2^{2 \lambda+3} a \Psi(a)\right| q-1$.

Then automatically we have $q>p_{i}(i=1,2,3,4)$. Since $(a, b)=1$ and $4 D L \mid a$, we have $(D L / b) \neq 0$.

By the Chinese Remainder Theorem there exists a natural number m such that
(2) $m \equiv(D L / b)+p_{1} p_{2} p_{3} p_{4} q^{2}\left(\bmod p_{1}^{2} p_{2}^{2} p_{3}^{2} p_{4}^{2} q^{3}\right), \quad m \equiv b\left(\bmod 2^{\lambda+1} a\right)$.

From (2) it follows that $\left(m, 2 a p_{1}^{2} p_{2}^{2} p_{3}^{2} p_{4}^{2} q^{3}\right)=1$ and by Dirichlet's theorem, there exists a positive x such that

$$
2^{\lambda+1} a p_{1}^{2} p_{2}^{2} p_{3}^{2} p_{4}^{2} q^{3} x+m=p \quad \text { is a prime. }
$$

Since $4 D L \mid a$, we have $p \equiv m(\bmod 4 D L)$, hence

$$
\varepsilon(p)=(D L / p)=(D L / m)=(D L / b)
$$

Thus $2^{\lambda} p_{1} p_{2} p_{3} p_{4} q^{2} \| p-\varepsilon(p)$ and $(D L, p)=1$. This gives (a).
Since p is prime, it satisfies the conditions

$$
P_{d} \equiv 0(\bmod p) \quad \text { or } \quad V_{2^{r} d} \equiv 0(\bmod p)
$$

for some $r, 0 \leq r<\lambda$, with

$$
p-\varepsilon(p)=2^{\lambda} d, \quad \varepsilon(p)=(D L / p)
$$

So

$$
\begin{equation*}
\text { either } \quad P_{(p-\varepsilon(p)) / 2^{\lambda}} \equiv 0(\bmod p) \quad \text { or } \quad V_{(p-\varepsilon(p)) / 2^{\mu}} \equiv 0(\bmod p) \tag{3}
\end{equation*}
$$

for some $\mu, 0<\mu \leq \lambda$.
Our considerations rest on the fact that only one of the numbers $m_{i}=$ $\Phi\left(\alpha, \beta ;(p-(D L / p)) / 2^{\nu} p_{i}\right)(1 \leq i \leq 4)$ is divisible by p and only one of them is divisible by the highest prime factor \bar{r} of $p-(D L / p)$.

Indeed, let $s_{i}=(p-\varepsilon(p)) / 2^{\nu} p_{i}$. We can assume that $s_{i}>n_{0}(\alpha, \beta)$, so by Lemma $2, P_{s_{i}}$ has a primitive prime divisor. Hence if p divided more than one of the m_{i}, then by Lemma $1, p$ would be a primitive prime factor of both $P_{s_{i}}$ and $P_{s_{j}}$, which is absurd if $s_{i} \neq s_{j}$. So we may suppose that p divides neither m_{1} nor m_{2} nor m_{3}. By (a) we have $\bar{r} \leq q$, so $\bar{r}>p_{1}, p_{2}, p_{3}, p_{4}$ and thus \bar{r} is the greatest prime divisor of s_{1}, s_{2} and s_{3}. Again by Lemma 1, if \bar{r} were to divide both m_{2} and m_{3}, then \bar{r} would be a primitive prime factor of both $P_{s_{2} / \bar{r}^{k}}$ and $P_{s_{3} / \bar{r}^{k}}$, where $\bar{r}^{k} \| p-\varepsilon(p)$. But this is absurd, so without loss of generality \bar{r} does not divide m_{2} and m_{1}.

Thus without loss of generality one can assume that neither $m_{1}=$ $\Phi\left(\alpha, \beta ;(p-(D L / p)) / 2^{\nu} p_{1}\right)$ nor $m_{2}=\Phi\left(\alpha, \beta ;(p-(D L / p)) / 2^{\nu} p_{2}\right)$ is divisible by p or \bar{r}.

Now the proof of Theorem T can be divided into four cases:
(i) the first alternative of (3) holds with $m_{1}>0$ or $m_{2}>0$ (where $\nu=\lambda)$,
(ii) the second alternative of (3) holds for some $0<\mu \leq \lambda$ with $m_{1}>0$ or $m_{2}>0$ (where $\nu=\mu-1$),
(iii) the first alternative of (3) holds, but $m_{1}, m_{2}<0$ (where $\nu=\lambda$),
(iv) the second alternative of (3) holds for some $0<\mu \leq \lambda$ with m_{1}, $m_{2}<0($ where $\nu=\mu-1)$.

By Lemma 2 we can assume that

$$
\left|\Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\nu} p_{i}\right)\right|>1
$$

where $\nu=\lambda$ or $\nu=\mu-1$ and $i=1,2$.
It will be convenient to write

$$
n_{i}=p m_{i} \quad(i=1,2), \quad m_{12}=m_{1} m_{2}, \quad n_{12}=p m_{1} m_{2}
$$

In case (i) without loss of generality we can assume that $m_{1}>0$, and $n_{1}=p \Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\lambda} p_{1}\right)$ is the required strong Lehmer pseudoprime. The proof is the same as in the case $D>0$ (cf. [4]).

In case (ii) also without loss of generality we can assume that $m_{1}>0$, and $n_{1}=p \cdot \Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\mu-1} p_{1}\right)$ is the required strong Lehmer pseudoprime of the form $a x+b$. The proof is the same as in the case $D>0$ (cf. [4]).

In case (iii),

$$
n_{12}=p \cdot \Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\lambda} p_{1}\right) \cdot \Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\lambda} p_{2}\right)
$$

is the required strong Lehmer pseudoprime.
Indeed, since \bar{r} does not divide m_{1} and m_{2}, Lemma 1 implies that every prime factor t of m_{1} is congruent to $(D L / t) \bmod s_{1}$ or s_{2}, hence is congruent to $(D L / t) \bmod (p-\varepsilon(p)) / 2^{\lambda} p_{1} p_{2}$.

Since $m_{12}=\Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\lambda} p_{1}\right) \cdot \Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\lambda} p_{2}\right)>0$ we have

$$
\begin{equation*}
m_{12} \equiv\left(D L / m_{12}\right)\left(\bmod (p-\varepsilon(p)) / 2^{\lambda} p_{1} p_{2}\right), \tag{4}
\end{equation*}
$$

where $m_{12}=m_{1} m_{2}$ with $m_{i}=\Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\lambda} p_{i}\right)$ for $i=1,2$.
Certainly $q^{2} \|(p-\varepsilon(p)) / 2^{\lambda} p_{1} p_{2}$ and $a \Psi(a) \mid q-1$. By Lemma $3, m_{i} \equiv$ $1(\bmod a)$ for $i=1,2$, hence we have $m_{12} \equiv 1(\bmod a)$. Since $4 D L \mid a$, we obtain $m_{12} \equiv 1(\bmod 4 D L)$. So $\left(D L / m_{12}\right)=1$ and from (4) it follows that

$$
\begin{equation*}
m_{12} \equiv 1\left(\bmod (p-\varepsilon(p)) / 2^{\lambda} p_{1} p_{2}\right) . \tag{5}
\end{equation*}
$$

Since $p_{1} p_{2} \Psi\left(p_{1} p_{2}\right) \mid q-1$ and $q^{2} \|(p-\varepsilon(p)) / 2^{\lambda} p_{1} p_{2}$, by Lemma 3 we have $m_{i} \equiv\left(\bmod p_{1} p_{2}\right)$ for $i=1,2$, hence

$$
\begin{equation*}
m_{12} \equiv 1\left(\bmod p_{1} p_{2}\right) . \tag{6}
\end{equation*}
$$

The requirement on q that $3 \cdot 2^{2 \lambda+3} \mid q-1$ implies by Lemma 3 (recall that $2^{\lambda+1} \Psi\left(2^{\lambda+1}\right)=3 \cdot 2^{2 \lambda+3}$ and $\left.q^{2} \|(p-\varepsilon(p)) / 2^{\lambda} p_{1} p_{2}\right)$ that $m_{i} \equiv 1\left(\bmod 2^{\lambda+1}\right)$
for $i=1,2$, hence

$$
\begin{equation*}
m_{12}=1\left(\bmod 2^{\lambda+1}\right) . \tag{7}
\end{equation*}
$$

Recalling $p_{1}\left\|p-\varepsilon(p), p_{2}\right\| p-\varepsilon(p)$ and $2^{\lambda} \| p-\varepsilon(p)$, we conclude from (5), (6) and (7) that

$$
m_{12} \equiv 1(\bmod 2(p-\varepsilon(p))),
$$

which says that

$$
\begin{equation*}
n_{12}=p m_{12}=p(2(p-\varepsilon(p)) \bar{x}+1)=(p-\varepsilon(p))(2 p \bar{x}+1)+\varepsilon(p) \tag{8}
\end{equation*}
$$

for some positive $\bar{x} ; n_{12}$ is positive because $\Phi\left(\alpha, \beta, s_{1}\right) \cdot \Phi\left(\alpha, \beta, s_{2}\right)>1$ for $s_{i}>n_{0}(\alpha, \beta)$, by Lemma 2 .

Now we use the first alternative of (3). We have
(9) $\varepsilon\left(n_{12}\right)=\left(D L / p m_{1} m_{2}\right)=(D L / p) \cdot\left(D L / m_{1} m_{2}\right)=(D L / p) \cdot 1=\varepsilon(p)$.

By (9) we have

$$
\frac{n_{12}-\varepsilon\left(n_{12}\right)}{2^{\lambda}}=\frac{n_{12}-\varepsilon(p)}{2^{\lambda}}=\frac{p-\varepsilon(p)}{2^{\lambda}}(2 p \bar{x}+1)
$$

and

$$
m_{12}=\Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\lambda} p_{1}\right) \cdot \Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\lambda} p_{2}\right) \mid P_{(p-\varepsilon(p)) / 2^{\lambda}}
$$

Moreover, $p \mid P_{(p-\varepsilon(p)) / 2^{\lambda}},\left(p, m_{12}\right)=1$. Hence

$$
n_{12}=p m_{12}\left|P_{(p-\varepsilon(p)) / 2^{\lambda}}\right| P_{\left(n_{12}-\varepsilon\left(n_{12}\right)\right) / 2^{\lambda}},
$$

where $\left(n_{12}-\varepsilon\left(n_{12}\right)\right) / 2^{\lambda}$ is odd. Hence n_{12} is an sLp with parameters L, M.
In case (iv),

$$
n_{12}=p \Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\mu-1} p_{1}\right) \cdot \Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\mu-1} p_{2}\right)
$$

is the required strong Lehmer pseudoprime. We have, as before,

$$
\frac{n_{12}-\varepsilon\left(n_{12}\right)}{2^{\mu}}=\frac{p-\varepsilon(p)}{2^{\mu}}(2 p x+1)
$$

and we note that $2 p x+1$ is odd. Hence

$$
m_{12}=\Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\mu-1} p_{1}\right) \cdot \Phi\left(\alpha, \beta ;(p-\varepsilon(p)) / 2^{\mu-1} p_{2}\right) \mid V_{(p-\varepsilon(p)) / 2^{\mu}},
$$ $p \mid V_{(p-\varepsilon(p)) / 2^{\mu}}$ and since $\left(p, m_{12}\right)=1$ we have

$$
\begin{aligned}
n_{12}=p \Phi\left(\alpha, \beta ;(p-1) / 2^{\mu-1} p_{1}\right) \cdot \Phi(\alpha, \beta ; & \left.(p-1) / 2^{\mu-1} p_{2}\right) \\
& \left|V_{(p-\varepsilon(p)) / 2^{\mu}}\right| V_{\left(n_{12}-\varepsilon\left(n_{12}\right)\right) / 2^{\mu}}
\end{aligned}
$$

so also in this case n_{12} is an sLp with parameters L, M.
These remarks conclude the proof for we have $a \Psi(a) \mid q-1$ and $q^{2} \|(p-$ $\varepsilon(p)) / p_{1} p_{2}$, so Lemma 3 yields $m_{12} \equiv 1(\bmod a)$. Hence $n_{12}=p m_{12} \equiv b$ $(\bmod a)$ as required.

References

[1] L. K. Durst, Exceptional real Lehmer sequences, Pacific J. Math. 9 (1959), 437-441.
[2] D. H. Lehmer, An extended theory of Lucas functions, Ann. of Math. (2) 31 (1930), 419-448.
[3] A. Rotkiewicz, On the pseudoprimes of the form $a x+b$ with respect to the sequence of Lehmer, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 349354.
[4] -, On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L, Q in arithmetic progressions, Math. Comp. 39 (1982), 239-247.
[5] A. Schinzel, The intrinsic divisors of Lehmer numbers in the case of negative discriminant, Ark. Mat. 4 (1962), 413-416.
[6] C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, in: Transcendence Theory: Advances and Applications, Academic Press, 1977, 79-92.
[7] M. Ward, The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955), 230-236.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
ŚNIADECKICH 8
00-950 WARSZAWA, POLAND
and
TECHNICAL UNIVERSITY IN BIAEYSTOK
WIEJSKA 45
15-351 BIAEYSTOK, POLAND

Received on 4.8.1993
and in revised form on 13.4.1994

