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On strong Lehmer pseudoprimes
in the case of negative discriminant

in arithmetic progressions

by

A. Rotkiewicz (Warszawa)

1. The Lehmer numbers can be defined as follows:

Pn(α, β) =
{

(αn − βn)/(α− β) if n is odd,
(αn − βn)/(α2 − β2) if n is even,

where α and β are distinct roots of the trinomial f(z) = z2 − √Lz + M ;
its discriminant is D = L − 4M , and L > 0 and M are rational integers.
We can assume without any essential loss of generality that (L,M) = 1 and
M 6= 0.

The Lehmer sequence Pk is defined recursively as follows: P0 = 0, P1 = 1,
and for n ≥ 2,

Pn =
{
LPn−1 −MPn−2 if n is odd,
Pn−1 −MPn−2 if n is even.

Let Vn = (αn + βn)/(α+ β) for n odd, and Vn = αn + βn for n even denote
the nth term of the associated recurring sequence.

The associated Lehmer sequence Vk can be defined recursively as follows:
V0 = 2, V1 = 1, and for n ≥ 2,

Vn =
{
LVn−1 −MVn−2 for n even,
Vn−1 −MVn−2 for n odd.

An odd composite number n is a strong Lehmer pseudoprime with pa-
rameters L, M (or an sLp for the bases α and β) if (n,DL) = 1, and with
δ(n) = n− (DL/n) = d · 2s, d odd, where (DL/n) is the Jacobi symbol, we
have either

(i) Pd ≡ 0 (mod n), or
(ii) Vd·2r ≡ 0 (mod n), for some r with 0 ≤ r < s.

Each odd prime n satisfies either (i) or (ii), provided (n,DL) = 1 (cf. [2]).
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In 1982 I proved [4] that if D = L − 4M > 0 and L > 0 then every
arithmetic progression ax+b (x = 0, 1, 2, . . .), where a, b are relatively prime
integers, contains an infinite number of odd strong Lehmer pseudoprimes
with parameters L, M (that is, sLp’s for the bases α and β). In the present
paper we prove the following

Theorem T. If α, β defined above are different from zero and α/β is not
a root of unity (that is, 〈L,M〉 6= 〈1, 1〉, 〈2, 1〉, 〈3, 1〉) then every arithmetic
progression ax+ b (x = 0, 1, 2, . . .), where a, b are relatively prime integers,
contains an infinite number of odd strong Lehmer pseudoprimes for the bases
α and β.

In comparison with [4] the novelty of this theorem lies in the case D < 0.
An odd composite n is an Euler Lehmer pseudoprime for the bases α

and β if (n,MD) = 1 and

P(n−ε(n))/2 ≡ 0 (mod n) if (ML/n) = 1, or

V(n−ε(n))/2 ≡ 0 (mod n) if (ML/n) = −1, where ε(n) = (DL/n).

If n is a strong Lehmer pseudoprime for the bases α and β, then it is
an Euler Lehmer pseudoprime for the bases α and β (cf. [4], Theorem 1);
thus if the assumptions of Theorem T hold, then every arithmetic progres-
sion ax + b (x = 0, 1, 2, . . .), where a, b are relatively prime integers, con-
tains an infinite number of odd Euler Lehmer pseudoprimes for the bases α
and β.

2. For each positive integer n we denote by Φn(α, β) = Φn(L,M) the
nth cyclotomic polynomial

Φ(L,M) = Φn(α, β) =
∏

(m,n)=1

(α− ζmn β) =
∏

d|n
(αd − βd)µ(n/d),

where ζn is a primitive nth root of unity and the product is over the ϕ(n)
integers m with 1 ≤ m ≤ n and (m,n) = 1; µ and ϕ are the Möbius and
Euler functions respectively.

It will be convenient to write

Φ(α, β;n) = Φn(α, β).

It is easy to see that Φ(α, β;n) > 1 for D = L− 4M > 0 and n > 2.
A. Schinzel [5] proved that if α and β are complex and β/α is not a root

of unity, then for every ε > 0 and n > N(α, β, ε),

|Φ(α, β;n)| > |α|ϕ(n)−2ν(n) log2+ε n,

where ν(n) the number of prime factors of n and N(α, β, ε) can be effectively
computed.

M. Ward [7] proved that Φ(α, β;n) > n for n > 12 and D > 0.
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A prime factor p of Pn(α, β) is called a primitive prime factor of Pn if
p |Pn but p -DLP3 . . . Pn−1.

The following results are well known.

Lemma 1 (Lehmer [2]). Let n 6= 2g, 3 ·2g. Denote by r = r(n) the largest
prime factor of n. If r -Φ(α, β;n), then every prime p dividing Φ(α, β;n) is
a primitive prime divisor of Pn. Every primitive prime divisor p of Pn is
≡ (DL/p) (mod n).

If r |Φ(α, β;n) and rl ‖n (that is, rl |n but rl+1 -n) then r ‖Φ(α, β;n)
and r is a primitive prime divisor of Pn/rl .

Lemma 2. For n > 12 and D > 0 the number Pn has a primitive prime
divisor (see Durst [1], Ward [7]).

If D < 0 and β/α is not a root of unity , then Pn has a primitive
prime divisor for n > n0(α, β). Here n0(α, β) can be effectively computed
(Schinzel [5]); in fact , n0 = n0(α, β) = e452 · 467 (Stewart [6]).

We have |Φ(α, β;n)| > 1 for n > n0 (Schinzel [5], Stewart [6]).

Lemma 3 (Rotkiewicz [3], Lemma 5). Let

Ψ(pα1
1 pα2

2 . . . pαkk ) = 2pα1
1 pα2

2 . . . pαkk (p2
1 − 1)(p2

2 − 1) . . . (p2
k − 1).

If q is a prime such that q2 ‖n and a is a natural number with aΨ(a) | q− 1,
then Φ(α, β;n) ≡ 1 (mod a).

3. Proof of Theorem T. The case D > 0 is considered in [4], so we
assume that D < 0.

If for each pair of relatively prime integers a, b there is at least one strong
Lehmer pseudoprime with parameters L, M of the shape ax + b, where x
is a natural number, then there are infinitely many such pseudoprimes. We
may suppose without loss of generality that a is even and b is odd and that
4DL | a.

The proofs of the above results are the same as in the case D > 0. Thus,
the theorem will be proved if we can produce a strong Lehmer pseudoprime
n with parameters L, M with n ≡ b (mod a).

Given a and b as described, with 2λ ‖ b − (DL/b), λ ≥ 1, we start our
construction by choosing four distinct primes p1, p2, p3, p4 that are relatively
prime to a. Furthermore, we introduce two further primes p and q, with
q > pi (i = 1, 2, 3, 4), which are to satisfy certain conditions detailed below.
Firstly, we require that

(a) 2λp1p2p3p4q
2 ‖ p− ε(p), ε(p) = (DL/p), (DL, p) = 1.

We apply Dirichlet’s theorem on primes in arithmetic progressions to
select a prime q with

(1) 2p1p2p3p4(p2
1−1)(p2

2−1)(p2
3−1)(p2

4−1) | q−1, 3 ·22λ+3aΨ(a) | q−1.
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Then automatically we have q > pi (i = 1, 2, 3, 4). Since (a, b) = 1 and
4DL | a, we have (DL/b) 6= 0.

By the Chinese Remainder Theorem there exists a natural number m
such that

(2) m ≡ (DL/b) + p1p2p3p4q
2 (mod p2

1p
2
2p

2
3p

2
4q

3), m ≡ b (mod 2λ+1a).

From (2) it follows that (m, 2ap2
1p

2
2p

2
3p

2
4q

3) = 1 and by Dirichlet’s theorem,
there exists a positive x such that

2λ+1ap2
1p

2
2p

2
3p

2
4q

3x+m = p is a prime.

Since 4DL | a, we have p ≡ m (mod 4DL), hence

ε(p) = (DL/p) = (DL/m) = (DL/b).

Thus 2λp1p2p3p4q
2 ‖ p− ε(p) and (DL, p) = 1. This gives (a).

Since p is prime, it satisfies the conditions

Pd ≡ 0 (mod p) or V2rd ≡ 0 (mod p)

for some r, 0 ≤ r < λ, with

p− ε(p) = 2λd, ε(p) = (DL/p).

So

(3) either P(p−ε(p))/2λ ≡ 0 (mod p) or V(p−ε(p))/2µ ≡ 0 (mod p)

for some µ, 0 < µ ≤ λ.
Our considerations rest on the fact that only one of the numbers mi =

Φ(α, β; (p−(DL/p))/2νpi) (1 ≤ i ≤ 4) is divisible by p and only one of them
is divisible by the highest prime factor r of p− (DL/p).

Indeed, let si = (p−ε(p))/2νpi. We can assume that si > n0(α, β), so by
Lemma 2, Psi has a primitive prime divisor. Hence if p divided more than
one of the mi, then by Lemma 1, p would be a primitive prime factor of both
Psi and Psj , which is absurd if si 6= sj . So we may suppose that p divides
neither m1 nor m2 nor m3. By (a) we have r ≤ q, so r > p1, p2, p3, p4 and
thus r is the greatest prime divisor of s1, s2 and s3. Again by Lemma 1, if
r were to divide both m2 and m3, then r would be a primitive prime factor
of both Ps2/rk and Ps3/rk , where rk‖p− ε(p). But this is absurd, so without
loss of generality r does not divide m2 and m1.

Thus without loss of generality one can assume that neither m1 =
Φ(α, β; (p− (DL/p))/2νp1) nor m2 = Φ(α, β; (p− (DL/p))/2νp2) is divisible
by p or r.

Now the proof of Theorem T can be divided into four cases:

(i) the first alternative of (3) holds with m1 > 0 or m2 > 0 (where
ν = λ),



Strong Lehmer pseudoprimes 149

(ii) the second alternative of (3) holds for some 0 < µ ≤ λ with m1 > 0
or m2 > 0 (where ν = µ− 1),

(iii) the first alternative of (3) holds, but m1, m2 < 0 (where ν = λ),
(iv) the second alternative of (3) holds for some 0 < µ ≤ λ with m1,

m2 < 0 (where ν = µ− 1).

By Lemma 2 we can assume that

|Φ(α, β; (p− ε(p))/2νpi)| > 1

where ν = λ or ν = µ− 1 and i = 1, 2.
It will be convenient to write

ni = pmi (i = 1, 2), m12 = m1m2, n12 = pm1m2.

In case (i) without loss of generality we can assume that m1 > 0, and
n1 = pΦ(α, β; (p− ε(p))/2λp1) is the required strong Lehmer pseudoprime.
The proof is the same as in the case D > 0 (cf. [4]).

In case (ii) also without loss of generality we can assume thatm1 > 0, and
n1 = p·Φ(α, β; (p−ε(p))/2µ−1p1) is the required strong Lehmer pseudoprime
of the form ax+ b. The proof is the same as in the case D > 0 (cf. [4]).

In case (iii),

n12 = p · Φ(α, β; (p− ε(p))/2λp1) · Φ(α, β; (p− ε(p))/2λp2)

is the required strong Lehmer pseudoprime.
Indeed, since r does not divide m1 and m2, Lemma 1 implies that every

prime factor t of m1 is congruent to (DL/t) mod s1 or s2, hence is congruent
to (DL/t) mod (p− ε(p))/2λp1p2.

Since m12 = Φ(α, β; (p − ε(p))/2λp1) · Φ(α, β; (p − ε(p))/2λp2) > 0 we
have

(4) m12 ≡ (DL/m12) (mod (p− ε(p))/2λp1p2),

where m12 = m1m2 with mi = Φ(α, β; (p− ε(p))/2λpi) for i = 1, 2.
Certainly q2 ‖ (p − ε(p))/2λp1p2 and aΨ(a) | q − 1. By Lemma 3, mi ≡

1 (mod a) for i = 1, 2, hence we have m12 ≡ 1 (mod a). Since 4DL | a,
we obtain m12 ≡ 1 (mod 4DL). So (DL/m12) = 1 and from (4) it follows
that

(5) m12 ≡ 1 (mod (p− ε(p))/2λp1p2).

Since p1p2Ψ(p1p2) | q−1 and q2 ‖ (p−ε(p))/2λp1p2, by Lemma 3 we have
mi ≡ (mod p1p2) for i = 1, 2, hence

(6) m12 ≡ 1 (mod p1p2).

The requirement on q that 3·22λ+3 | q−1 implies by Lemma 3 (recall that
2λ+1Ψ(2λ+1) = 3·22λ+3 and q2 ‖ (p−ε(p))/2λp1p2) that mi ≡ 1 (mod 2λ+1)
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for i = 1, 2, hence

(7) m12 = 1 (mod 2λ+1).

Recalling p1 ‖ p− ε(p), p2 ‖ p− ε(p) and 2λ ‖ p− ε(p), we conclude from
(5), (6) and (7) that

m12 ≡ 1 (mod 2(p− ε(p))),
which says that

(8) n12 = pm12 = p(2(p− ε(p))x+ 1) = (p− ε(p))(2px+ 1) + ε(p)

for some positive x; n12 is positive because Φ(α, β, s1) · Φ(α, β, s2) > 1 for
si > n0(α, β), by Lemma 2.

Now we use the first alternative of (3). We have

(9) ε(n12) = (DL/pm1m2) = (DL/p) · (DL/m1m2) = (DL/p) · 1 = ε(p).

By (9) we have

n12 − ε(n12)
2λ

=
n12 − ε(p)

2λ
=
p− ε(p)

2λ
(2px+ 1)

and

m12 = Φ(α, β; (p− ε(p))/2λp1) · Φ(α, β; (p− ε(p))/2λp2) |P(p−ε(p))/2λ .

Moreover, p |P(p−ε(p))/2λ , (p,m12) = 1. Hence

n12 = pm12 |P(p−ε(p))/2λ |P(n12−ε(n12))/2λ ,

where (n12− ε(n12))/2λ is odd. Hence n12 is an sLp with parameters L, M .
In case (iv),

n12 = pΦ(α, β; (p− ε(p))/2µ−1p1) · Φ(α, β; (p− ε(p))/2µ−1p2)

is the required strong Lehmer pseudoprime. We have, as before,

n12 − ε(n12)
2µ

=
p− ε(p)

2µ
(2px+ 1)

and we note that 2px+ 1 is odd. Hence

m12 = Φ(α, β; (p− ε(p))/2µ−1p1) · Φ(α, β; (p− ε(p))/2µ−1p2) |V(p−ε(p))/2µ ,

p |V(p−ε(p))/2µ and since (p,m12) = 1 we have

n12 = pΦ(α, β; (p− 1)/2µ−1p1) · Φ(α, β; (p− 1)/2µ−1p2)

|V(p−ε(p))/2µ |V(n12−ε(n12))/2µ

so also in this case n12 is an sLp with parameters L, M .
These remarks conclude the proof for we have aΨ(a) | q− 1 and q2 ‖ (p−

ε(p))/p1p2, so Lemma 3 yields m12 ≡ 1 (mod a). Hence n12 = pm12 ≡ b
(mod a) as required.
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