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1. Introduction. We investigate the distribution of the divisor functions
d(1,1,2;n) and d(1,1,2,2;n), which are defined as
d(1,1,2;n) = #{(n1,n9,n3) | n1,n2,n3 € N, ninyn3 = n},
d(1,1,2,2;n) = #{(n1,n2,n3,1n4) | n1,n2,n3,n4 € N, ninonin? =n},
where N is the set of all natural numbers. Our results are:
THEOREM 1.
Z d(1,1,2;n) = main terms + O(x77/208+¢),
n<wz
THEOREM 2.
Z d(1,1,2,2;n) = main terms + O(z%41).
n<w

Here ¢ is an arbitrarily small given positive number, and = is a large
positive number. The exponent 77/208 = 0.3701 ... of Theorem 1 improves
the corresponding exponent 3/8 = 0.375 of Schmidt [10], and the exponent
0.4 of Theorem 2 improves the exponent 45/109 = 0.412. .. of Menzer and
Seibold [9]. The connection of these divisor problems with the distribution of
certain quantities of finite Abelian groups was first established in Krétzel [2].
Let 7(G) be the number of direct factors of a finite Abelian group G, and
t(G) be the number of unitary factors of G, and

T(x) =) 7(G), T*(x)=) #Q),
where the summations are over all Abelian groups of order not exceeding x.
Then from the arguments of [2] we get

COROLLARY 1. T(z) = main terms + O(x04+2¢),
COROLLARY 2. T*(x) = main terms + O(x77/208+25)'

After certain reductions our problems are connected with multiple ex-
ponential sums, which can be estimated as accurately as possible by means
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of the method given in the author’s preceding papers [3]-[8] on similar di-
visor problems. A sharper estimate of Huxley [1] will also be appealed to in
proving Theorem 1.

The author wishes to thank his colleagues, M. N. Huxley of Cardiff and
E. Krétzel of Jena, for sending reprints of [1] and [2], and for their encour-
agement.

2. Proof of Theorem 1. Let

S(abcz)= w((ﬂ@”’;b)m), b(t) =t — [t] —1/2.

nambte<z,n<m

We have
LEMMA 1.
Z d(1,1,2;n) = main terms + A(1,1,2; x),
n<a
where

A(1,1,2;2) = —25(1,1,2;2) — 25(1,2,1;2) — 25(2,1, 1; ) + O(2'/*).

Proof. This is Lemma 5 of [2]. The expression for A(1,1,2;x) comes
from a paper of Vogts (cf. Lemma 3 of Krétzel [2]).

For any permutation (a,b,c) of (1,1,2), it suffices for us to consider
S(M, N;zx), where M and N are integers with 2M > N, M*+t¢N® < gz,

1/c
SOMLN:2) = Supo (M, Niz) = 3 w(( . ) ) MN > 299,

namb
(m,n)eD

and D := D(M,N) = {(m,n) | m ~ M, n ~ N, m’™n® < 2z, n < m}.
Throughout this paper, we use r ~ R and r =2 R to mean 1 < r/R < 2
and C1; < r/R < Cy, respectively; C; (i = 1,2,3,...) will be some abso-
lute constants. In order to introduce exponential sums we apply the famil-
iar Fourier expansion treatment of the function v (¢); thus for a parameter
K > 100, we get, as on p. 266 of [3], the following estimate:

(Inz)"'S(M,N;x)

<MNE'+ Y min(1/h,K/h2)) S e(f(hym,n)),
1<h<K?2 (m,n)eD

F(h,m,n) = h( x >1/C.

namb

where
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Thus for some H € [1, K?] we have

(1) r7°S(M,N;z) < MNK™ +min(1, K/H)®(H, M, N),
where
(2) O(H,M,N) := Dy .(H,M,N)

—HIZ‘ Z f(hym,n))|.

h~H (m,n)eD

Similarly to (1) and (2) of [7] we get (we have omitted the routine details
for simplicity)

(3) @(H,M,N)

< H\(MX(HF) ™)y ‘ S P)Q(n)e(g: (hyu n))‘
h~H (u,n)eD;

+ (HF)l/2 +2'/3
and
(4)  O(H,M,N) < MN(HF) 37| 37 R)S(©)e(ga(h,u,v))|
h~H (u,v)€D2
+ (HF)1/2 + x1/3,

where F = (zM~-°N-%)'/¢, D; and D, are subsets of {(u,n) | u/U €
[C1,C4],n € [N,2N)} and {(u,v) | u/U € [Cs,Cy],v/V € [Cs, Cg}, respec-
tively, both are embraced by O(1) algebraic curves, P(-), Q(-), R(-), S(-)

are monomials of the form At®, with A being the number independent of
variables, and « being a rational, and

IPOLIQOL IR IS <15
g1(h,u,n) = C7(xhcubn_a)l/(c+b), g2(h,u,v) = Cg(:chcubv“)l/4;
U=HFM™' V=HFN!

We can apply Theorem 3 of [4] to estimate the triple exponential sum in (3),
with the choice (h,z,y) = (h,u,n); this yields

(5) 2 °®(H,M,N) < ¥HSFUIM3N® + (HF)'/2N°/8 + YVHIFINT
+ 3\/H8F11M3N28 + 3\/H13F16M3N18
+ VEMN*+ VHF2MN? + 2'/3,

By putting the estimate (5) into (1) and choosing K € [0, z] optimally via
Lemma 2 of [3], we get
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LEMMA 2.

t72S(M,N;z) < VYVFIMUIN?' + ¥/ FSMENT + Y/ FIMAN?
4 4‘0/F11M11N36 + 4\5/F16M16N31 + \5/F2M2N3
+ (FMN4)1/4 + 1:1/3-

Since (a, b, c) is a permutation of (1,1,2), M > N and M’T°N® < z,
we have F' < 2(MN?)~! and N < 2/, and thus by Lemma 2 we get

(6) 22 S(M,Nyz) < Va? N1+ (aN?)/* 4 205,

We now use Huxley’s results, which are better than those which can be
deduced from [5]. By Theorem 4 of [1], for (a,b,c) = (1,1,2) we have

Mo\ 23/146
(7) JT_ES(M,N;QZ) < N( ~ > < ($46N123)1/219 < xO.SG;
for (a,b,c) = (2,1,1) or (1,2,1) we have
(8) 2 S(M,N;z) < N(zN 22/ = (23 N?T)1/73,

From (6)—(8) we get

(9) 2~ *S(M,N;z) < (2N*)"* 4+ min((2* N*")V/™ Jp2N-T) + 209
< ($N2)1/4 + 1177/208.

To remove the term (zN?)'/* we use Kolesnik’s method.

LEMMA 3. Let f(x,y) be an algebraic function in the rectangle Dy =
{(z,y) |z~ X,y ~Y} with f(x,y) ~a Az®y® throughout Dy, and let D be
a subdomain of Dy bounded by O(1) algebraic curves. Suppose that X >Y,
N=XY,A>0 F=AXY?% aBla+B—-1(a+B-2)#0,0< A< g,

where €¢ is a small number depending at most on « and 3. Then

Z e(f(l‘,y)) <<e,a,ﬁ (W«F N5/6 + 9 AYY4AE2 NS

(z,y)eD
+ VFIX-INS 4 NF~1/4
+ VAXIN* + NY1/2)(NF)*/2.
Proof. See Lemma 1.5 of [6]. This result is due to Kolesnik.

By Cauchy’s inequality and Weyl’s inequality (cf. Lemma 3 of [3]), after
a partial summation removing the smooth coefficient S(v) together with an
appeal to Lemma 1 of [3] relaxing the range of v, we get for the double
summation over (u,v) in (4) the following estimate:

x_s‘ Z R(u)S(v)e(gg(u,v))2<< CAD +ﬂ Z ‘ Z e(g3)

(u,w)EDo Q Q 1<¢<@Q (u,w)€D(q)

)
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where

D(q) = {(uav) | (IS [C3U7 C4U}7 v e [05‘/706‘/]7 (U + Q) € [C5V, CGV]}v
g3 = 93(h7uavv Q) = g2(ha u,v + Q) - gQ(h,U, U)7

Q = min(V(lnz)~!, V(HF)2U3V?).

If @ < 1 the above inequality holds obviously. Assume that @ > 1. We
apply Lemma 3 to the inner double exponential sum over (u,v), with the
choice X 2V, Y 2U, A=q/V, F = HFq/V, to obtain

Y elgs) < V(HF)? QU + (UV)YS + V(HF)*SU°V 1

(u.v)€D(q)
+V(HF) ¢ UV + (HFq)~Y4Uv>o/4
+ VUiV + VU2,
and so
(10) 27 Y R(u)S(v)e(ga(u,v))
(u,v)ED2

< (UV)11/12+VU3/4+ 1{3/(HF)2U13‘/11_|_ 8\0/(HF)2U85V51

+ Y(HF)2UV® + V(HF) UV

+ W(HF)SUV2S L UV (HF) Y8+ V(HF)SUSVoT.

By substituting (10) in (4) we get

(11) 27 %@¢(H,M,N) < V(HF)"°MN + V(HF)"M>N®
+ V(HF)M + V(HF)»M—°N%
+ Y(HF)*M—3N" + V(HF)“N
+ 12\8/(HF)114M3N5+(HF)7/8
+ Y(HF)®M3N 3 + /3,

We put the estimate of (11) in (1) and choose K € [0,z] optimally via
Lemma 2 of [3] to get

(12) 2 3S(M,N;z) < VFO(MN)" 4 ¥ FOMBND
+ ,7/F3M4N3 4 13‘8/F58M53N87
4 11‘8/F54M51N65 4 3‘0/F14M14N15
+ WFHMITNIG - V/(FMN)T
4 12’2/F58M61N55 + $1/3
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< VaMN=+ ¥VzOMN5

VP MN73 + "WaBMON-2 4 g1/
11\87:1:54M—3N—43+ 3\(7.’1314]\7_13
24\2/I114M3N_109+ 1\5/337]\]—7

B MIN T,

by using the fact that FF < M ~1N~2. From (9) and (12) we deduce that

+ o+ + o+

r73¢S(M,N;z) < Z E; + z77/208
1<i<9

where (note that MN < x'/2 always holds)

By = min((aN?)V4, V2aOMN9) < (2P MN)Y/42 < g31/88 < 1057,
By = min((zN?)'*, V2lOM3N7%) < (2™ (MN)*)H/42

< 231/84 950‘37,
Bz = min((zN?)Y4, Vel MN3) < (2 MN)V1 < g11/30 < 2037
E4 — min((mN2)1/4, 13W) < 1.75/206 < 1,0.37’
Es = min((:rN2)1/4, ll\g/W) < x77/210’
E6 — min(($N2)1/4, SW) < x41/112 < 130'37,
E7 = min((xN?)Y/4, Ve MM N-19) < (2170 (MN)3) /466
< $343/932 < :L’0'37,

ES — min((mN2)1/4, 15 m7N_7) < m21/58 < x0.37’
By = min((zN?)!/*, "VaBMIN-O) < (2%°(MN)?)H/250

91.5/250

Lz < 2037

whence the required estimate follows.

3. Proof of Theorem 2. Let

x 1/d
S(a,b,c,d;x) = Z d}((nanbnc) )’
1 3

n‘lzngn§+d§w,1§n1(§)n2§n3 2

where n;(<)ng means that ny < ng for (a,b) = (a;,a;) with ¢ < j, and
ny < ng otherwise; here we have set (a1,a9,as,a4) = (1,1,2,2). Then we
have
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LEMMA 4.
Z d(1,1,2,2;n) = main terms + A(1,1,2,2; ),
n<x
where
A(1,1,2,252) == > S(a,b,c,d;z) + O(z'/?),

(a,b,c,d)
and (a,b,c,d) runs through all the ordered permutations of (1,1,2,2).

Proof. The expression for the remainder A(1,1,2,2;x) is due to Vogts,
see [2].

In what follows we use the method presented in [8] for 4-dimensional
exponential sums, but the details are much simpler here, and we omit many
routine procedures. The reader is invited to consult [8]. It suffices for us
to achieve an estimate of the type S(a,b,c,d; N) < 2%414¢ where N =
(N1, N3, N3), N1, Ny and N3 are arbitrary positive integers with
(13) N1 < Na < N3,  N{NJNsT <, NyNaN3 > 2%,

(a,b, ¢, d) is any permutation of (1,1,2,2), and

1/d
* X
S(a,b,c,d; N) =Y ¢<<nnn> )
1 3

2

where " denotes summation over lattice points (ny,n2,n3) with
nindnst <z, 1< n(na <nz, N, <n, <2N, (v=1,2,3).
Let G = (xN;“Ny "Ny €)' /4. As in (12) of [8], we can deduce
LEMMA 5.
t7%85(a,b,¢,d; N) < VGUNIONZINIT + ¥/ (GN3)* NIEN?A
+ V(GNP NETNT + Y/(GNa) NN
+ V(GN3) ' NFIN{® + V(GN3)* NN}
+ GNGNEN + 21975
Similarly to (17) of [8], we also have
LEMMA 6. 2735 (a,b,c,d; N) < (GNyNoN3)/? 4 13/36,

Note that the term 2'3/36 comes from an application of Lemma 1 of [§]
(see also Lemma 1.4 of [6]) to the variable ng together with an estimate
for the resulting “extra” term R(h,ni,ns) (involving the use of the expo-
nent pair (1/6,4/6)). From (13) it is seen that G < x(NZNZN3)~! and
N1 NyN3 < z'/2. Thus Lemmas 5 and 6 give respectively (with J = N1 Ny)

(14) t74S(a,b,¢,d; N) < V135 4 VB85 + VatJs
+ VallJ 4 Ve J? + a:o‘4,
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and
(15)

H.-Q. Liu

78 (a,b, e, d; N) < (wJ~H)Y2 4 213/36,

Now if J > 292 then the required estimate follows from (15), and otherwise
it follows from (14). Thus Theorem 2 has been verified.
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