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On some divisor problems
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Hong-Quan Liu (Harbin)

1. Introduction. We investigate the distribution of the divisor functions
d(1, 1, 2;n) and d(1, 1, 2, 2;n), which are defined as

d(1, 1, 2;n) = #{(n1, n2, n3) | n1, n2, n3 ∈ N, n1n2n
2
3 = n},

d(1, 1, 2, 2;n) = #{(n1, n2, n3, n4) | n1, n2, n3, n4 ∈ N, n1n2n
2
3n

2
4 = n},

where N is the set of all natural numbers. Our results are:

Theorem 1.∑

n≤x
d(1, 1, 2;n) = main terms +O(x77/208+ε).

Theorem 2.∑

n≤x
d(1, 1, 2, 2;n) = main terms +O(x0.4+ε).

Here ε is an arbitrarily small given positive number, and x is a large
positive number. The exponent 77/208 = 0.3701 . . . of Theorem 1 improves
the corresponding exponent 3/8 = 0.375 of Schmidt [10], and the exponent
0.4 of Theorem 2 improves the exponent 45/109 = 0.412 . . . of Menzer and
Seibold [9]. The connection of these divisor problems with the distribution of
certain quantities of finite Abelian groups was first established in Krätzel [2].
Let τ(G) be the number of direct factors of a finite Abelian group G, and
t(G) be the number of unitary factors of G, and

T (x) =
∑

τ(G), T ∗(x) =
∑

t(G),

where the summations are over all Abelian groups of order not exceeding x.
Then from the arguments of [2] we get

Corollary 1. T (x) = main terms +O(x0.4+2ε).

Corollary 2. T ∗(x) = main terms +O(x77/208+2ε).

After certain reductions our problems are connected with multiple ex-
ponential sums, which can be estimated as accurately as possible by means
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of the method given in the author’s preceding papers [3]–[8] on similar di-
visor problems. A sharper estimate of Huxley [1] will also be appealed to in
proving Theorem 1.

The author wishes to thank his colleagues, M. N. Huxley of Cardiff and
E. Krätzel of Jena, for sending reprints of [1] and [2], and for their encour-
agement.

2. Proof of Theorem 1. Let

S(a, b, c;x) =
∑

namb+c≤x,n≤m
ψ

((
x

namb

)1/c)
, ψ(t) = t− [t]− 1/2.

We have

Lemma 1. ∑

n≤x
d(1, 1, 2;n) = main terms +∆(1, 1, 2;x),

where

∆(1, 1, 2;x) = −2S(1, 1, 2;x)− 2S(1, 2, 1;x)− 2S(2, 1, 1;x) +O(x1/4).

P r o o f. This is Lemma 5 of [2]. The expression for ∆(1, 1, 2;x) comes
from a paper of Vogts (cf. Lemma 3 of Krätzel [2]).

For any permutation (a, b, c) of (1, 1, 2), it suffices for us to consider
S(M,N ;x), where M and N are integers with 2M ≥ N , M b+cNa ≤ x,

S(M,N ;x) := Sa,b,c(M,N ;x) =
∑

(m,n)∈D
ψ

((
x

namb

)1/c)
, MN > x0.35,

and D := D(M,N) = {(m,n) | m ∼ M, n ∼ N, mb+cna ≤ x, n ≤ m}.
Throughout this paper, we use r ∼ R and r ∼= R to mean 1 ≤ r/R < 2
and C1 ≤ r/R ≤ C2, respectively; Ci (i = 1, 2, 3, . . .) will be some abso-
lute constants. In order to introduce exponential sums we apply the famil-
iar Fourier expansion treatment of the function ψ(t); thus for a parameter
K ≥ 100, we get, as on p. 266 of [3], the following estimate:

(lnx)−1S(M,N ;x)

�MNK−1 +
∑

1≤h≤K2

min(1/h,K/h2)
∣∣∣
∑

(m,n)∈D
e(f(h,m, n))

∣∣∣,

where

f(h,m, n) = h

(
x

namb

)1/c

.
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Thus for some H ∈ [1,K2] we have

(1) x−εS(M,N ;x)�MNK−1 + min(1,K/H)Φ(H,M,N),

where

Φ(H,M,N) := Φa,b,c(H,M,N)(2)

= H−1
∑

h∼H

∣∣∣
∑

(m,n)∈D
e(f(h,m, n))

∣∣∣.

Similarly to (1) and (2) of [7] we get (we have omitted the routine details
for simplicity)

(3) Φ(H,M,N)

� H−1(M2(HF )−1)1/2
∑

h∼H

∣∣∣
∑

(u,n)∈D1

P (u)Q(n)e(g1(h, u, n))
∣∣∣

+ (HF )1/2 + x1/3

and

(4) Φ(H,M,N)�MN(H2F )−1
∑

h∼H

∣∣∣
∑

(u,v)∈D2

R(u)S(v)e(g2(h, u, v))
∣∣∣

+ (HF )1/2 + x1/3,

where F = (xM−bN−a)1/c, D1 and D2 are subsets of {(u, n) | u/U ∈
[C1, C2], n ∈ [N, 2N)} and {(u, v) | u/U ∈ [C3, C4], v/V ∈ [C5, C6]}, respec-
tively, both are embraced by O(1) algebraic curves, P (·), Q(·), R(·), S(·)
are monomials of the form Atα, with A being the number independent of
variables, and α being a rational, and

|P (·)|, |Q(·)|, |R(·)|, |S(·)| ≤ 1;

g1(h, u, n) = C7(xhcubn−a)1/(c+b), g2(h, u, v) = C8(xhcubva)1/4;

U = HFM−1, V = HFN−1.

We can apply Theorem 3 of [4] to estimate the triple exponential sum in (3),
with the choice (h, x, y) = (h, u, n); this yields

x−εΦ(H,M,N)� 22
√
H8F 11M3N13 + (HF )1/2N5/8 + 16

√
H4F 4N17(5)

+ 32
√
H8F 11M3N28 + 32

√
H13F 16M3N18

+ 4
√
FMN4 + 4

√
HF 2MN2 + x1/3.

By putting the estimate (5) into (1) and choosing K ∈ [0, x] optimally via
Lemma 2 of [3], we get
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Lemma 2.

x−2εS(M,N ;x)� 30
√
F 11M11N21 + 24

√
F 8M8N18 + 20

√
F 4M4N21

+ 40
√
F 11M11N36 + 45

√
F 16M16N31 + 5

√
F 2M2N3

+ (FMN4)1/4 + x1/3.

Since (a, b, c) is a permutation of (1, 1, 2), M � N and M b+cNa ≤ x,
we have F � x(MN2)−1 and N � x1/4, and thus by Lemma 2 we get

(6) x−2εS(M,N ;x)� 5
√
x2N−1 + (xN2)1/4 + x0.36.

We now use Huxley’s results, which are better than those which can be
deduced from [5]. By Theorem 4 of [1], for (a, b, c) = (1, 1, 2) we have

(7) x−εS(M,N ;x)� N

(
Mx

N

)23/146

� (x46N123)1/219 � x0.36;

for (a, b, c) = (2, 1, 1) or (1, 2, 1) we have

(8) x−εS(M,N ;x)� N(xN−2)23/73 = (x23N27)1/73.

From (6)–(8) we get

x−2εS(M,N ;x)� (xN2)1/4 + min((x23N27)1/73,
5
√
x2N−1) + x0.36(9)

� (xN2)1/4 + x77/208.

To remove the term (xN2)1/4 we use Kolesnik’s method.

Lemma 3. Let f(x, y) be an algebraic function in the rectangle D0 =
{(x, y) | x ∼ X, y ∼ Y } with f(x, y) ∼∆ Axαyβ throughout D0, and let D be
a subdomain of D0 bounded by O(1) algebraic curves. Suppose that X � Y ,
N = XY , A > 0, F = AXαY β , αβ(α+ β − 1)(α+ β − 2) 6= 0, 0 < ∆ < ε0,
where ε0 is a small number depending at most on α and β. Then

∑

(x,y)∈D
e(f(x, y))�ε,α,β ( 6

√
F 2N3 +N5/6 + 10

√
∆4Y 4F 2N5

+ 8
√
F−1X−1N8 +NF−1/4

+ 4
√
∆X−1N4 +NY −1/2)(NF )ε/2.

P r o o f. See Lemma 1.5 of [6]. This result is due to Kolesnik.

By Cauchy’s inequality and Weyl’s inequality (cf. Lemma 3 of [3]), after
a partial summation removing the smooth coefficient S(v) together with an
appeal to Lemma 1 of [3] relaxing the range of v, we get for the double
summation over (u, v) in (4) the following estimate:

x−ε
∣∣∣
∑

(u,v)∈D2

R(u)S(v)e(g2(u, v))
∣∣∣
2
� (UV )2

Q
+
UV

Q

∑

1≤q≤Q

∣∣∣
∑

(u,v)∈D(q)

e(g3)
∣∣∣,
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where

D(q) = {(u, v) | u ∈ [C3U,C4U ], v ∈ [C5V,C6V ], (v + q) ∈ [C5V,C6V ]},
g3 = g3(h, u, v, q) = g2(h, u, v + q)− g2(h, u, v),

Q = min(V (lnx)−1,
8
√

(HF )−2U3V 5).

If Q � 1 the above inequality holds obviously. Assume that Q � 1. We
apply Lemma 3 to the inner double exponential sum over (u, v), with the
choice X ∼= V , Y ∼= U , ∆ = q/V , F ∼= HFq/V , to obtain

x−ε
∑

(u,v)∈D(q)

e(g3)� 6
√

(HF )2q2U3V + (UV )5/6 + 10
√

(HF )2q6U9V −1

+ 8
√

(HF )−1q−1U8V 8 + (HFq)−1/4UV 5/4

+ 4
√
qU4V 2 + V U1/2,

and so

(10) x−2ε
∑

(u,v)∈D2

R(u)S(v)e(g2(u, v))

� (UV )11/12 + V U3/4 + 16
√

(HF )2U13V 11 + 80
√

(HF )2U85V 51

+ 64
√

(HF )−2U67V 53 + 16
√

(HF )−1U16V 15

+ 128
√

(HF )−6U125V 123 + UV (HF )−1/8 + 64
√

(HF )−6U61V 67.

By substituting (10) in (4) we get

x−2εΦ(H,M,N)� 12
√

(HF )10MN + 16
√

(HF )10M3N5(11)

+ 4
√

(HF )3M + 80
√

(HF )58M−5N29

+ 64
√

(HF )54M−3N11 + 16
√

(HF )14N

+ 128
√

(HF )114M3N5 + (HF )7/8

+ 64
√

(HF )58M3N−3 + x1/3.

We put the estimate of (11) in (1) and choose K ∈ [0, x] optimally via
Lemma 2 of [3] to get

x−3εS(M,N ;x)� 22
√
F 10(MN)11 + 26

√
F 10M13N15(12)

+ 7
√
F 3M4N3 + 138

√
F 58M53N87

+ 118
√
F 54M51N65 + 30

√
F 14M14N15

+ 242
√
F 114M117N119 + 15

√
(FMN)7

+ 122
√
F 58M61N55 + x1/3
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� 22
√
x10MN−9 + 26

√
x10M3N−5

+ 7
√
x3MN−3 + 138

√
x58M−5N−29 + x1/3

+ 118
√
x54M−3N−43 + 30

√
x14N−13

+ 242
√
x114M3N−109 + 15

√
x7N−7

+ 122
√
x58M3N−61,

by using the fact that F � xM−1N−2. From (9) and (12) we deduce that

x−3εS(M,N ;x)�
∑

1≤i≤9

Ei + x77/208,

where (note that MN � x1/2 always holds)

E1 = min((xN2)1/4,
22
√
x10MN−9) ≤ (x15MN)1/42 � x31/84 < x0.37,

E2 = min((xN2)1/4,
26
√
x10M3N−5) ≤ (x14(MN)3)1/42

� x31/84 < x0.37,

E3 = min((xN2)1/4,
7
√
x3MN−3) ≤ (x5MN)1/15 � x11/30 < x0.37,

E4 = min((xN2)1/4,
138
√
x58N−34) ≤ x75/206 < x0.37,

E5 = min((xN2)1/4,
118
√
x54N−46) ≤ x77/210,

E6 = min((xN2)1/4,
30
√
x14N−13) ≤ x41/112 < x0.37,

E7 = min((xN2)1/4,
242
√
x114M3N−109) ≤ (x170(MN)3)1/466

� x343/932 < x0.37,

E8 = min((xN2)1/4,
15
√
x7N−7) ≤ x21/58 < x0.37,

E9 = min((xN2)1/4,
122
√
x58M3N−61) ≤ (x90(MN)3)1/250

� x91.5/250 < x0.37,

whence the required estimate follows.

3. Proof of Theorem 2. Let

S(a, b, c, d;x) =
∑

na1n
b
2n
c+d
3 ≤x, 1≤n1(≤)n2≤n3

ψ

((
x

na1n
b
2n
c
3

)1/d)
,

where n1(≤)n2 means that n1 ≤ n2 for (a, b) = (ai, aj) with i < j, and
n1 < n2 otherwise; here we have set (a1, a2, a3, a4) = (1, 1, 2, 2). Then we
have
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Lemma 4.∑

n≤x
d(1, 1, 2, 2;n) = main terms +∆(1, 1, 2, 2;x),

where
∆(1, 1, 2, 2;x) = −

∑

(a,b,c,d)

S(a, b, c, d;x) +O(x1/3),

and (a, b, c, d) runs through all the ordered permutations of (1, 1, 2, 2).

P r o o f. The expression for the remainder ∆(1, 1, 2, 2;x) is due to Vogts,
see [2].

In what follows we use the method presented in [8] for 4-dimensional
exponential sums, but the details are much simpler here, and we omit many
routine procedures. The reader is invited to consult [8]. It suffices for us
to achieve an estimate of the type S(a, b, c, d;N) � x0.4+4ε, where N =
(N1, N2, N3), N1, N2 and N3 are arbitrary positive integers with

(13) N1 � N2 � N3, Na
1N

b
2N

c+d
3 ≤ x, N1N2N3 > x0.37,

(a, b, c, d) is any permutation of (1, 1, 2, 2), and

S(a, b, c, d;N) =
∑∗

ψ

((
x

na1n
b
2n
c
3

)1/d)
,

where
∑∗ denotes summation over lattice points (n1, n2, n3) with

na1n
b
2n
c+d
3 ≤ x, 1 ≤ n1(≤)n2 ≤ n3, Nv ≤ nv < 2Nv (v = 1, 2, 3).

Let G = (xN−a1 N−b2 N−c3 )1/d. As in (12) of [8], we can deduce

Lemma 5.

x−2εS(a, b, c, d;N)� 30
√
G11N30

1 N21
2 N11

3 + 24
√

(GN3)8N18
2 N24

1

+ 20
√

(GN3)4N21
2 N20

1 + 40
√

(GN3)11N36
2 N40

1

+ 45
√

(GN3)16N31
2 N45

1 + 5
√

(GN3)2N3
2N

5
1

+ 4
√
GN3N

4
2N

4
1 + x13/36.

Similarly to (17) of [8], we also have

Lemma 6. x−3εS(a, b, c, d;N)� (GN1N2N3)1/2 + x13/36.

Note that the term x13/36 comes from an application of Lemma 1 of [8]
(see also Lemma 1.4 of [6]) to the variable n3 together with an estimate
for the resulting “extra” term R(h, n1, n2) (involving the use of the expo-
nent pair (1/6, 4/6)). From (13) it is seen that G � x(N2

1N
2
2N3)−1 and

N1N2N3 � x1/2. Thus Lemmas 5 and 6 give respectively (with J = N1N2)

x−4εS(a, b, c, d;N)� 30
√
x11J3.5 + 24

√
x8J5 + 20

√
x4J13(14)

+ 40
√
x11J16 + 4

√
xJ2 + x0.4,
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and

(15) x−4εS(a, b, c, d;N)� (xJ−1)1/2 + x13/36.

Now if J ≥ x0.2 then the required estimate follows from (15), and otherwise
it follows from (14). Thus Theorem 2 has been verified.

References

[1] M. N. Huxley, Exponential sums and lattice points II , Proc. London Math. Soc.
66 (1993), 279–301.
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