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1. Introduction. For real z and positive integers n, let dz(n) be the
multiplicative function of n determined by the formula

(1.1) dz(pa) = (−1)a
(−z
a

)
=
(
z + a− 1

a

)
=

(z + a− 1)(z + a− 2) . . . z
a!

for a = 0, 1, 2, . . . and any prime p. This function occurs naturally in the
expansion

(1.2) ζ(s)z =
∏
p

(1− p−s)−z =
∏
p

∞∑
a=0

dz(pa)p−as =
∞∑
n=1

dz(n)n−s,

where ζ is the Riemann zeta-function and s > 1. It follows from (1.2) that for
any positive integer k, dk(n) is the number of ordered k-tuples (n1, . . . , nk) of
positive integers such that n1 . . . nk = n. In particular, d2(n) is the number
of distinct positive divisors of n.

For real z, x, w, define

∆z(x,w) = #{n ≤ x : dz(n) > w},(1.3)

∆∗z(x,w) = #{n ≤ x : dz(n) ≥ w},(1.4)

where #B means the number of members of the finite set B (note that
∆z(x,w) ≤ ∆∗z(x,w)). Our main objective is to obtain good upper bounds
for ∆∗z(x,w) and good lower bounds for ∆z(x,w) when z > 1, x is large,
and logw is larger than the normal order of log dz(n) for n ≤ x.

Before stating our results, we must specify some notation. Unless oth-
erwise stated, r, t, u, v, w, x, y, z, α, β, δ, ε denote real numbers, with
ε > 0. (For consistency with the notation of some earlier authors, we shall
let y denote a positive integer in Section 3.) We use γ to denote Euler’s
constant, while k, m, n represent positive integers and p is a (positive)
prime number. If a is a nonnegative integer, pa ‖n means that pa |n and
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pa+1 -n. Empty sums mean 0, empty products 1. The notations Oδ,ε,...
and �δ,ε,... imply constants depending at most on δ, ε, . . . , while O and
� without subscripts imply absolute constants. Likewise, for i = 1, 2, . . . ,
ci(δ, ε, . . .) means a positive number depending at most on δ, ε, . . . , while
ci means a positive absolute constant. When j is an integer such that
cj(δ, ε, . . .) has not previously appeared in the text, a statement of the form
“If x ≥ cj(δ, ε, . . .), . . .” means “There exists a positive constant cj(δ, ε, . . .)
such that if x ≥ cj(δ, ε, . . .), . . .”. We write [x] for the largest integer ≤ x,
and we define log2 x = log log x, logk x = log(logk−1 x) for k = 3, 4, . . . The
functions L = L(x, y) and K = K(x, y) are defined throughout by (1.12)
and (1.13).

The maximal order of dz(n) is indicated by the following result: if ε > 0,
z > 1, and x ≥ c1(ε, z), then

(1.5) z(1−ε)(log x)/ log2 x < max{dz(n) : 1 ≤ n ≤ x} < z(1+ε)(log x)/ log2 x.

This can be proved by a slight alteration of the methods used to prove [21,
(1.27) and Theorem 1.29]. A proof can also be based on the work of earlier
authors; we omit the details and refer to [21, pp. 65–67] for references and
related results.

The function dz(n) is usually much smaller than its maximal order. To
see this, define

(1.6) ω(n) =
∑

p|n
1, Ω(n) =

∑

pa‖n
a for n ≥ 1

and observe that

(1.7) zω(n) ≤ dz(n) ≤ zΩ(n) for z > 1, n = 1, 2, . . .

(see [21, (1.22)]). From (1.7) and the work of Hardy and Ramanujan [9], [10,
Chap. 22] on the normal orders of ω(n) and Ω(n), it follows that for each
ε > 0 and z > 1, the inequalities

(1.8) z(1−ε) log2 x < dz(n) < z(1+ε) log2 x

hold for all but o(x) values of n ≤ x as x→∞.
Observing the great size of the interval between zlog2 x and z(log x)/ log2 x

when z > 1 and x is large, one is naturally led to ask how the large values
of dz(n) when n ≤ x are distributed in this interval. We shall answer this
question in the following theorems on ∆z(x, zy), ∆∗z(x, z

y), and the related
functions

S(x, y;ω) = #{n ≤ x : ω(n) > y},(1.9)

S∗(x, y;ω) = #{n ≤ x : ω(n) ≥ y}.(1.10)

First we extend to ∆∗z(x, z
y) a simple upper bound for S(x, y;ω) contained

in the author’s earlier work [20, Theorem 1.14]:
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Theorem 1.11. Suppose that x ≥ c2, z > 1, and y ≥ log2 x. Then

S∗(x, y;ω) ≤ ∆∗z(x, zy)

≤ x

log x
exp

{
− y log y

+ y(log3 x+ 1) +O

(
z log2(3z) +

y

log2 x

)}
.

As we shall show, this is a fairly precise estimate if y is not very large, in
particular if y ≤ c3 log2 x for an arbitrary constant c3. For larger y, we obtain
results which are more precise but also more complicated. These are given in
the next theorem, which is our main result on upper bounds for ∆∗z(x, z

y).
In order to state it compactly, we introduce the following notations which
will be used throughout this paper:

L = L(x, y) = log2 x− log y − log2 y for x > 1, y > 1,(1.12)

K = K(x, y) = −y log y + y(1 + logL+ L−1 logL) when L > 0.(1.13)

Theorem 1.14. Suppose that x ≥ c4, z > 1, and ε > 0. If

(1.15) z1+ε log2 x ≤ y ≤ (log x)(3 log2 x)−1,

then

S∗(x, y;ω) ≤ ∆∗z(x, zy)(1.16)

≤ x

log x
exp

{
K +

y

L

(
log2 y − log2

(
3y
L

)
+ 1− γ

)

+Oε

(
y

L log(3y/L)

{
1 +

y(log2 x)2

L log x

})}
,

where γ is Euler’s constant. If

(1.17) y ≥ (log x)(3 log2 x)−1,

then

(1.18) S∗(x, y;ω) ≤ ∆∗z(x, zy) ≤ x exp{−y log y +O(z log2(3z) + y)}.
Note that (1.15) implies L ≥ log 3, while L → ∞ if x → ∞ and y =

o((log x)(log2 x)−1); see Lemma 2.22. Also, if y = (log x)α for a fixed α with
0 < α < 1, then L ∼ (1 − α) log2 x as x → ∞. It is not hard to see that
when z1+ε log2 x ≤ y � log2 x, (1.16) is essentially the same as Theorem
1.11. Likewise, if

y = (log x)(3 log2 x)−1 ≥ z1+ε log2 x,

then (1.16) essentially degenerates to (1.18). We shall also derive the fol-
lowing simpler but less precise corollary of (1.16) under a slightly stronger
hypothesis:
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Corollary 1.19. Suppose that x ≥ c5, z > 1, and ε > 0. If

(1.20) (z log2 x)1+ε ≤ y ≤ (log x)(3 log2 x)−1,

then

(1.21) S∗(x, y;ω) ≤ ∆∗z(x, zy) ≤ x

log x
exp

{
K +Oε

(
y

L

)}
.

We now state our principal lower bound, which is very similar to the
upper bound in (1.21). (Recall the definitions (1.3) and (1.9).)

Theorem 1.22. Suppose that x ≥ c6 and z > 1. If

(1.23) log2 x ≤ y ≤ (log x)(3 log2 x)−1,

then

(1.24) ∆z(x, zy) ≥ S(x, y;ω) ≥ x

log x
exp

{
K +O

(
y

L
+ (logL) log

3y
L

)}
.

When y is restricted to certain shorter subintervals of (1.23), it is possible
to replace (1.24) by lower bounds more closely resembling the upper bound
(1.16). We shall prove the following example of such a result:

Theorem 1.25. Suppose that ε > 0, x ≥ c7(ε), and z > 1. If

(1.26) log2 x ≤ y ≤ (log2 x)2−ε,

then

∆z(x, zy) ≥ S(x, y;ω)(1.27)

≥ xy−1/2

log x
exp

{
K +

y

L

(
log2 y − log2

(
3y
L

)
+ 1− γ

)

+O

(
y

L log(3y/L)

)}
.

We remark that (1.27) continues to hold if x ≥ c8, z > 1, and log2 x ≤
y ≤ β(log2 x)2, where β > 0 is sufficiently small (the implied constant is
still absolute). To save space, we shall omit the proof of this last remark as
well as the proof of the next theorem (but see the comments at the end of
Section 4).

Theorem 1.28. Suppose that β > 0, δ > 0, x ≥ c9(β, δ), z > 1, and

(1.29) β(log2 x)2 ≤ y ≤ δ(log x)(log2 x)−2.

Then
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(1.30) ∆z(x, zy) ≥ S(x, y;ω)

≥ x

log x
exp

{
K +

y

L

(
log2 y − log2

(
3y
L

)
+ 1− γ

)
− y

2

(
logL
L

)2

− y logL
L2

(
log2 y − log2

(
3y
L

)
− γ
)

+Oβ,δ

(
y

L2 +
y

L log y

)}
.

Note that because of (1.29), the factor y−1/2 which appears in (1.27) has
been absorbed by the (exponentiated) error term in (1.30).

Since the functions L and K are rather complicated, it is sometimes
desirable to have a restatement of our main results without using L and K.
We shall give only the following example, which resembles Theorem 1.11
and refines that theorem when y is a fixed power of log x.

Corollary 1.31. Suppose that z > 1, 0 < α < 1, x ≥ c10(z, α), and
y = (log x)α. Then

S∗(x, y;ω) ≤ ∆∗z(x, zy)(1.32)

≤ x exp{−y log y + y(log3 x+ 1 + log(1− α))

+Oα(y/ log2 x)}
and

∆z(x, zy) ≥ S(x, y;ω)(1.33)

≥ x exp{−y log y + y(log3 x+ 1 + log(1− α))

+Oα(y/ log2 x)}.
This follows from Corollary 1.19 and Theorem 1.22 by a straightforward

calculation. Note that Corollary 1.31 improves a special case of [20, Corol-
lary 1.16].

Recall (1.6), and define S(x, y;Ω) and S∗(x, y;Ω) similarly to S(x, y;ω)
and S∗(x, y;ω) (see (1.9) and (1.10)). Then by (1.7),

S(x, y;ω) ≤ ∆z(x, zy) ≤ S(x, y;Ω) for x ≥ 1, y > 0, z > 1,(1.34)

S∗(x, y;ω) ≤ ∆∗z(x, zy) ≤ S∗(x, y;Ω) for x ≥ 1, y > 0, z > 1.(1.35)

Now when y ≤ (2 − ε) log2 x for some fixed ε > 0, the sizes of S(x, y;ω),
S(x, y;Ω), S∗(x, y;ω), and S∗(x, y;Ω) are known with some precision and
are all essentially the same. For these facts, see [14, Theorem 9.2], [15], [18,
Section 6], [19, Section 3 and Theorem 4.27], [7, Proposition 3], and [5,
p. 148]. Thus we can get quite good estimates for ∆z(x, zy) and ∆∗z(x, z

y)
from (1.34) and (1.35) when y ≤ (2− ε) log2 x; see in particular [18, Theo-
rem 1.20], [19, pp. 15–16]. This method fails, however, when y ≥ (2+ε) log2 x
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and y is not too large, for then S(x, y;Ω) and S∗(x, y;Ω) are significantly
larger than S(x, y;ω) and S∗(x, y;ω) (see [25, p. 87], [20, Theorem 1.14 and
p. 37], [17], and [4]). For y � log2 x, a new approach was recently found
by Balazard, Nicolas, Pomerance, and Tenenbaum [5], who obtained a gen-
eral theorem which leads to a complicated asymptotic formula for ∆∗z(x, z

y).
With some effort, this formula can be obtained from their Théorème 2 by
taking z > 1, f(n) = (log z)−1 log dz(n), and λ = y/ log2 x. We shall not
state the asymptotic formula here but merely note the following simpler
corollary which is not given explicitly in [5]: if z, ε, λ1, x, y are real with
z > 1, ε > 0, λ1 > 1, x ≥ c11(ε, λ1, z), and

(1.36) (1 + ε) log2 x ≤ y ≤ λ1 log2 x,

then

(1.37) c12(ε, λ1, z)B(x, y) ≤ ∆z(x, zy) ≤ ∆∗z(x, zy) ≤ c13(ε, λ1, z)B(x, y),

where

(1.38) B(x, y) =
x

(log x)(log2 x)1/2
exp{−y log y + y(log3 x+ 1)}.

For further refinements of this result in the case z = 2, y = λ log2 x with λ
fixed, 0 < λ ≤ 2, λ 6= 1, see Deléglise and Nicolas [6]. The inequalities (1.37)
refine Theorem 1.11 for large x, but we have retained Theorem 1.11 because
it does not require the condition (1.36), is more explicit in its dependence
on z and y/ log2 x, and has a simpler proof than (1.37).

While (1.37) is quite precise, it has been proved in only the narrow
interval (1.36). To obtain estimates valid in much wider y-intervals such
as (1.15) or (1.23), we shall use methods different from those of [5]. Our
approach to obtaining an upper bound for ∆∗z(x, z

y) is conceptually simple
but not easy to carry out in detail. We define

(1.39) Dz(x, t) =
∑

n≤x
(dz(n))t for z > 1.

Then by (1.4),

(1.40) ∆∗z(x, z
y) ≤

∑

n≤x
(dz(n)z−y)t = (zt)−yDz(x, t)

for x ≥ 1, y > 0, z > 1, t ≥ 0.

In Section 2, we shall derive Theorems 1.11 and 1.14 by combining (1.40)
with our recent uniform analytic upper bounds for Dz(x, t) (see [21]), then
choosing t so that the resulting estimates are approximately minimized.
(There is a much older uniform upper bound for Dz(x, t) due to Mardžani-
švili [16] which is insufficient to prove Theorems 1.11 and 1.14. See [21,
pp. 62–64] for comments.)
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We obtain lower bounds for S(x, y;ω) and ∆z(x, zy) in a very different
way. Defining

(1.41) π(x, k) = #{n ≤ x : ω(n) = k} for x ≥ 1, k = 1, 2, . . . ,

we observe that by (1.34) and (1.9),

(1.42) ∆z(x, zy) ≥ S(x, y;ω) ≥ π(x, [y] + 1) for x ≥ 1, y > 0, z > 1.

Now, Pomerance [22] was the first to give fairly simple and accurate upper
and lower bounds for π(x, k) when k/ log2 x is large. (For recent related work
and references, see [1]–[4], [11]–[13], [17], [18, pp. 687–688], [19, pp. 17–19,
25–27], [23], [26].) We shall use Pomerance’s method (with several modifica-
tions) to obtain a lower bound for π(x, k) rather like one of his bounds, but
valid in a wider interval (see Theorem 3.39). From this, we shall derive Theo-
rem 1.22. If we replace (1.23) by the assumption that y = α(log x)(log2 x)−1

with 1/3 ≤ α ≤ 1− ε, we can derive a lower bound for S(x, y;ω) similar to
the upper bound (1.18). See the remarks after (2.9).

Our proofs of Theorems 1.11, 1.14, and 1.22 are intricate but entirely
elementary, requiring no more background than the Chebyshev inequalities
and the Mertens formulas from elementary prime number theory. (The same
comment applies to [21].) To prove Theorem 1.25, however, we shall use a
difficult nonelementary theorem of Hensley [11] which gives an asymptotic
formula for π(x, k) when 1 ≤ k ≤ (log2 x)2−ε. Theorem 1.28 (the proof
of which we omit) depends on another difficult nonelementary estimate for
π(x, k) due to Hildebrand and Tenenbaum [12, Corollary 2]; we shall restate
their result below in a form better suited to the derivation of (1.30) (see
Theorem 3.53).

Because of the obvious inequality

(1.43) π(x, y) ≤ S∗(x, y;ω) for y = 1, 2, . . . ,

our Theorems 1.11 and 1.14 yield upper bounds for π(x, y), and these com-
pare rather favorably with earlier work. In particular, we can combine (1.43)
with (1.16) to get an upper bound which refines Theorem 4.1 of Pomerance
[22] and holds over a wider y-interval (see the comments at the end of Sec-
tion 2). This upper bound of ours for π(x, y) is somewhat less precise than
the upper bound in Corollary 2 of Hildebrand and Tenenbaum [12], but
our result is more explicit, has an easier proof, and again holds over a wider
y-interval (to be sure, their Corollary 2 also gives a lower bound for π(x, y)).

2. Proofs of Theorems 1.11 and 1.14. In order to estimate ∆∗z(x, z
y)

using (1.40), we need an analytic upper bound for the sum Dz(x, t). The
next lemma gives such a bound stated in terms of the function

(2.1) E(x,w) = (w − 1) log{log x+ w log(3w)} (x ≥ 1, w ≥ 1).
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Another estimate for Dz(x, t) will be introduced at a more convenient point
near the end of this section.

Lemma 2.2. Let x ≥ 1, z > 1, and t ≥ 0. Then

Dz(x, t) ≤ x exp{E(x, zt)− zt log zt − zt log2(3zt) + c14(z log2(3z) + zt)}.
This result is trivial for t = 0 and was proved in [21] for t ≥ 1. Much of

the effort in that proof was aimed at obtaining a good upper estimate for

R1(z, t) =
∏

p≤3zt

∞∑
a=0

(dz(pa))tp−a.

When 0 < t ≤ 1, however, R1(z, t) can be estimated very simply (see [21,
(2.18)]):

logR1(z, t)� z log2(3z) for 0 < t ≤ 1, z > 1.

Using this bound in place of [21, Lemma 4.7], one can complete the proof
of Lemma 2.2 as in [21]: one begins with the inequality [21, (4.12)] and
estimates the quantities R2(z, t, σ, x) and R3(z, t, x) exactly as before, noting
that it suffices to assume t > 0 rather than t ≥ 1.

Corollary 2.3. Let x ≥ c15, z > 1, and t ≥ 0. Then

Dz(x, t) ≤ x exp{(zt − 1) log2 x+ c14(z log2(3z) + zt)}.
P r o o f. Write β = zt log(3zt), so β ≥ log 3. If log x ≥ 1 + (log 3− 1)−1,

then β(β − 1)−1 ≤ log x, so log x+ β ≤ β log x. Hence

E(x, zt) ≤ (zt − 1)(log2 x+ log β),

and the result follows from Lemma 2.2.

Combining (1.40) with Corollary 2.3, we obtain an upper bound for
∆∗z(x, z

y) which is approximately minimized by taking zt = y/ log2 x. The-
orem 1.11 follows immediately.

To derive more precise upper bounds for ∆∗z(x, z
y) when y/ log2 x is

large, we need to take advantage of the full strength of Lemma 2.2. We
begin by combining that lemma with (1.40), after which we replace zt by a
new variable w for simplicity. The result is

(2.4) ∆∗z(x, z
y)

≤ x exp{−y logw + E(x,w)− w logw − w log2(3w) + c14(z log2(3z) + w)}
for x ≥ 1, y > 0, z > 1, and w ≥ 1. We would like to minimize the right-hand
side of (2.4) by choosing w appropriately as a function of x, y, and z. This
is not an easy task. First we replace E(x,w) by a simpler function. To do
this, we use the inequality log(1 + u) ≤ u to get

(2.5) log(α+ β) ≤ logα+ r if α, β, r are positive and β ≤ rα.
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Applying (2.5) to (2.1) with α = log x, β = w log(3w), we get

(2.6) E(x,w) < (w − 1) log2 x+ rw

if r > 0, x ≥ c16(r), and 1 ≤ w ≤ r(log x)(log2 x)−1.
If we combine (2.6) with (2.4), the result is

(2.7) ∆∗z(x, z
y) ≤ x(log x)−1 exp{Gr(w) + c14z log2(3z)}

for r > 0, x ≥ c16(r), y > 0, z > 1, and 1 ≤ w ≤ r(log x)(log2 x)−1, where
Gr is defined by

Gr(w) = Gr(w;x, y)(2.8)

= −y logw + w{log2 x− logw − log2(3w) + r + c14}.
Before investigating (2.7) further, we observe that an alternative ap-

proach would be to apply (2.5) to (2.1) with α = w log(3w), β = log x. It is
easy to see that (2.4) thus yields

(2.9) ∆∗z(x, z
y) ≤ x exp{−y logw + w(2r−1 + c14) + c14z log2(3z)}

if r > 0, x ≥ c17(r), y > 0, z > 1, and w ≥ r(log x)(log2 x)−1. The right-
hand side of (2.9) is approximately minimized by taking w = y, and this
yields (1.18) under the assumption (1.17) if we take r = 1/3 in (2.9). (This
choice of r in (2.9) is motivated by the fact that the upper bound for y in
(1.15) turns out to be convenient in deriving (1.16) and (1.24).)

We note in passing that one can derive a lower bound similar to the
upper bound (1.18) when y is not too close to (log x)(log2 x)−1. In fact, if
ε > 0, x ≥ c18(ε), z > 1, and y = α(log x)(log2 x)−1 with 1/3 ≤ α ≤ 1− ε,
then

∆z(x, zy) ≥ S(x, y;ω) ≥ x exp{−y log y +Oε(y)}.
This follows easily from (1.42) and [22, Theorem 5.1]. For somewhat larger
values of y, there is a weaker lower bound for S(x, y;ω) given in [20, Theorem
1.11].

For the remainder of this section, we shall concentrate on proving (1.16)
and Corollary 1.19. Our primary task is to find the approximate minimum
of the function Gr(w) (defined by (2.8)) on the w-interval specified after
(2.7). Until further notice (just after (2.31)), we shall make the following
assumptions for convenience:

(2.10) r is fixed, positive, and sufficiently small;

(2.11) x ≥ c19(r) (sufficiently large);

(2.12) log2 x+ log3 x ≤ y ≤ r(log x)(log2 x)−1.

From (2.8), we calculate the derivative

G′r(w) = − yw−1 + log2 x− logw − log2(3w) + r(2.13)

+ c14 − 1− {log(3w)}−1
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for w > 1, and

(2.14) G′′r (w) = w−2{y − f(w)}, w > 1,

where f is defined by

(2.15) f(w) = w(1 + {log(3w)}−1 − {log(3w)}−2), w ≥ 1.

Clearly

(2.16) f(y) > y.

Also, the function w/ log(3w) increases for w ≥ 1, so if w∗ = y− y/ log(3y),
we have

w∗/ log(3w∗) < y/ log(3y).

Thus by (2.15),

(2.17) f(w∗) < w∗ + w∗/ log(3w∗) < y.

By (2.16) and (2.17), there is a number w1 such that

(2.18) f(w1) = y and y − y/ log(3y) < w1 < y.

A simple calculation shows that f ′(w) > 0 for w > 1. Hence w1 = w1(y) is
the unique solution of the equation f(w) = y. Combining this information
with (2.14), we see that

(2.19) G′′r (w) > 0 for 1 < w < w1 = w1(y), G′′r (w) < 0 for w > w1.

This will help us to locate a zero of G′r.
By the mean-value theorem for derivatives,

(2.20) log2 u− log2 v < (u− v)(v log v)−1 if 1 < v < u.

Using this in (2.13) with v = w, u = 3w, and recalling (2.10), we get

(2.21) G′r(w) = −yw−1 + L(x,w) +O(1 + 1/ logw) for w > 1,

where L(x,w) is defined by (1.12). Now we need the following simple lemma
(proof omitted):

Lemma 2.22. Let 0 < δ ≤ 1. If v ≥ 16 (> ee) and 1 < w ≤ δ(log v) ×
(log2 v)−1, then L(v, w) ≥ log(1/δ).

Keeping (2.10)–(2.12) and (2.18) in mind and assuming that

w1 = w1(y) ≤ w ≤ r(log x)(log2 x)−1,

we can use (2.21) and Lemma 2.22 to show that

G′r(w) = L(x,w) +O(1) ≥ log(1/r) +O(1) > 0.

Hence our search for the minimum of Gr(w) on the interval 1 ≤ w ≤
r(log x)(log2 x)−1 may be restricted to the subinterval 1 ≤ w ≤ w1(y). On
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this subinterval, we use a crude heuristic method to locate an approximate
zero of G′r. Observe that by (2.13), G′r(w) is “near 0” if

(2.23) yw−1 = log2 x− logw − log2(3w),

so we attempt to solve (2.23) for w under the assumption 1 ≤ w ≤ w1(y).
It is clear that this assumption and (2.23) imply yw−1 < log2 x, so w >
y/ log2 x. On the other hand, w < y by (2.18). Now if, for example, y >
(log2 x)β for a fixed large β > 0, then log(y/ log2 x) is almost as large as
log y, so logw is nearly equal to log y. It follows that for “most” values of y in
the interval (2.12), any number w which satisfies (2.23) and the inequalities
1 ≤ w ≤ w1(y) must be an approximate solution of the equation

yw−1 = log2 x− log y − log2 y = L(x, y) = L.

Thus we obtain the heuristic approximate solution w = yL−1 of the equation
G′r(w) = 0 under the assumptions (2.10)–(2.12). These assumptions and
Lemma 2.22 also show that L(x, y) is large, so it follows from (2.12) and
(2.18) that 1 < yL−1 < w1(y). Thus our heuristic solution does lie in the
desired w-interval.

We still have not proved that G′r(y/L) is near 0 or that Gr(y/L) is near
the minimum of the function Gr(w). In order to do some further calculations
of G′r(w), we need the following two technical lemmas:

Lemma 2.24. Define

H(u, v) = log2 u− log2(u/v) for u > v > 1.

Let θ be real , θ > 0. Then

0 < H(u, v) ≤ log(1 + θ−1) if v > 1 and u ≥ v1+θ,(2.25)

0 < H(u, v) ≤ log2 v + c20(θ) if v ≥ 1 + θ and u ≥ (1 + θ)v.(2.26)

P r o o f. The identity

(2.27) H(u, v) = log
{

1 +
log v

log(u/v)

}
for u > v > 1

shows that for fixed v > 1, H(u, v) decreases as u increases (u > v), and the
results follow.

Lemma 2.28. Assume that (2.10)–(2.12) hold and that 0 ≤ α ≤ 2 logL,
where L = L(x, y). Then

G′r(y(L+ α)−1) = logL− α+O(log2 L).

P r o o f. Lemma 2.22 shows that L is large. Since L < log2 x, we have

L+ α < (log2 x− log y) + 2 log3 x < log2 x+ log3 x ≤ y,
so y(L+ α)−1 > 1. Using (2.13) and the definition of L(x, y), we get

G′r(y(L+ α)−1) = log(L+ α)− α+ log2 y − log2(3y(L+ α)−1) +O(1).
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Now apply (2.26) with θ = 1, u = y, v = (L+ α)/3. This yields

G′r(y(L+ α)−1) = log(L+ α)− α+O(log2 L),

and the result follows from (2.5).

Lemmas 2.28 and 2.22 show that

G′r(y(L+ 2 logL)−1) < 0 < G′r(yL
−1),

so there exists a number w0 such that

(2.29) G′r(w0) = 0 and 1 < y(L+ 2 logL)−1 < w0 < yL−1.

Since L is large, it follows from (2.18) that w0 < w1(y). By (2.19), G′r(w) is
strictly increasing for 1 < w ≤ w1(y). Using this fact together with (2.29)
and the remark just after Lemma 2.22, we see that Gr(w0) is the absolute
minimum of Gr(w) in the interval 1 ≤ w ≤ r(log x)(log2 x)−1.

While we could take w = w0 in (2.7) and (2.8), this is unsatisfactory
because we know neither the value of w0 nor the value of Gr(w0) in terms
of simple functions of x, y, and r. However, since w0 is near yL−1 by (2.29),
it is natural to attempt to show that Gr(yL−1) is a good approximation to
Gr(w0). By the mean-value theorem for derivatives,

(2.30) Gr(yL−1)−Gr(w0) = (yL−1 − w0)G′r(u)

for some u satisfying w0 < u < yL−1. Writing α = yu−1 − L, we have
u = y(L + α)−1, and it follows from (2.29) that 0 < α < 2 logL. Hence by
Lemma 2.28, G′r(u)� logL, and by (2.29) and (2.30),

(2.31) Gr(yL−1)−Gr(w0)� y(L−1 logL)2.

By (2.8), we know the magnitude of Gr(yL−1) only to within an unspecified
constant multiple of yL−1, and yL−1 is larger than y(L−1 logL)2. Thus
(2.31) shows that for our purposes, there is no practical distinction between
Gr(yL−1) and Gr(w0). We now have ample motivation to choose w = yL−1

in (2.7) and (2.8), and we know that this choice will approximately minimize
the right-hand side of (2.7) under the assumptions (2.10)–(2.12). Of course,
we are not bound by those assumptions; we are free to take w = yL−1 in
(2.7) whenever the hypotheses of (2.7) are satisfied. In particular, if one
chooses r = 1/3 and assumes that log2 x ≤ y ≤ (log x)(3 log2 x)−1, then it
is easy to see that the choice w = yL−1 in (2.7) leads to a slightly weaker
version of (1.16) in which the error term is O(z log2(3z) + yL−1). In order
to obtain (1.16) under the slightly stronger hypothesis (1.15), we need the
following improvement of Lemma 2.2 for t ≥ 1 + ε (recall (1.39)):

Lemma 2.32. Let x ≥ 1, ε > 0, z > 1, and t ≥ 1 + ε. Then

Dz(x, t) ≤ x exp{E(x, zt)− J(zt) +Oε(zt/ log(3zt))},
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where E(x,w) is defined by (2.1) and

(2.33) J(w) = w logw + w log2(3w)− (1− γ)w (w ≥ 1),

γ being Euler’s constant.

This estimate is proved in [21]. Combining Lemma 2.32 with (1.40), then
replacing zt by a new variable w as before, we get

(2.34) ∆∗z(x, z
y) ≤ x exp{−y logw + E(x,w)− J(w) +Oε(w/ log(3w))}

for x ≥ 1, y > 0, z > 1, ε > 0, and w ≥ z1+ε. The estimate (2.6) for E(x,w)
is no longer satisfactory here; we must have something more precise. Since
log(1 + u) ≤ u for u > −1, we can factor log x out of log x + w log(3w) in
(2.1) to obtain

(2.35) E(x,w) ≤ (w − 1) log2 x+
w2 log(3w)

log x
for x ≥ 3, w ≥ 1.

Observing that (1.12) and Lemma 2.22 imply

(2.36) log 3 ≤ L < log2 x

if x ≥ c21 and log2 x ≤ y ≤ (log x)(3 log2 x)−1,

we are now in a position to prove (1.16) under the assumption (1.15). We
combine (2.34) and (2.35), then choose w = yL−1 as before (so w > z1+ε

by (1.15) and (2.36)). In the resulting estimate for ∆∗z(x, z
y), we substitute

L + log y + log2 y for log2 x and simplify to obtain (1.16). This completes
the proof of Theorem 1.14.

To derive Corollary 1.19 from (1.16), first note that

(2.37)
log2 x

L log(3y/L)
� 1 if x ≥ c22 and log2 x ≤ y ≤

log x
3 log2 x

(consider the cases y ≤ (log x)1/2, y > (log x)1/2). Now if L ≤ 3, then the
term (y/L){log2 y−log2(3y/L)} is nonpositive and can be omitted in (1.16).
If L > 3, then (1.20) and (2.36) allow us to apply Lemma 2.24 with u = y,
v = L/3, and (2.25) shows that

(2.38) log2 y − log2(3y/L)�ε 1.

Corollary 1.19 follows from (1.16) and (2.36)–(2.38).

Finally, it is interesting to note that if y(log2 x)−1 → ∞ and y =
o((log x)(log2 x)−1) as x → ∞, then by (2.36) and (2.37), the error term
in (1.16) is o(y/L). Thus (1.16) and (1.43) give a more precise version of an
upper bound of Pomerance for π(x, y) [22, Theorem 4.1].

3. Estimates for π(x, y). In this section, we shall frequently refer to
the papers of Pomerance [22] and Hensley [11]. For consistency with their
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notation, we shall always use the letter y (without subscripts) to denote a
positive integer in this section only. We have already defined the function
π(x, y) by (1.41). We define also

(3.1) π′(x, y) = #{n ≤ x : n is squarefree and ω(n) = y},
so that

(3.2) π(x, y) ≥ π′(x, y) for x ≥ 1, y = 1, 2, . . .

The functions π(x, y) and π′(x, y) are both of considerable classical interest
(see the references listed after (1.42)). Our first objective in this section is
to derive an elementary lower bound for π′(x, y) when y ≥ log2 x (and y
is not too large). This lower bound (Theorem 3.39) will later be applied to
obtain Theorem 1.22. Our approach to π′(x, y) will be based on an ingenious
method devised by Pomerance [22, §§2, 3] to deal with π(x, y). We shall go
to some extra effort to clarify his argument and to indicate its extremely
elementary nature. In particular, we shall avoid Pomerance’s use of a strong
form of the prime number theorem and shall show that the elementary
estimates of Chebyshev and Mertens are sufficient to get results as good as
his in a slightly larger y-interval.

In this section, we shall use the notation
∑′ to mean summation over

squarefree numbers only. Thus we can write

(3.3) π′(x, y) =
∑′

n≤x,ω(n)=y

1 =
∑

n≤x,ω(n)=y

|µ(n)|,

where µ is the Möbius function. We shall also need the auxiliary function

(3.4) s′(x, y) =
∑′

n≤x,ω(n)=y

n−1.

Lemma 3.5. For x ≥ 1 and y = 1, 2, . . . , we have

yπ′(x, y) =
∑′

m≤x,ω(m)=y−1

∑

p≤x/m,p -m
1.

P r o o f. Let A be the set of squarefree n ≤ x with ω(n) = y, and let B
be the set of ordered pairs (p,m) with p prime, m squarefree, pm ≤ x, p -m,
and ω(m) = y − 1. If n ∈ A, let q1(n) < . . . < qy(n) be the prime factors of
n, and for 1 ≤ j ≤ y, let fj(n) be the ordered pair (qj(n), n/qj(n)). Then
the images f1[A], . . . , fy[A] are disjoint, each has cardinality π′(x, y), and
their union is B.

Lemma 3.6. If x ≥ c23 and y ≥ 2, then (compare (3.4))

π′(x, y) ≥ x

6y log x
s′
(

x

3 log x
, y − 1

)
.
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P r o o f. We need to estimate from below the double sum appearing in
Lemma 3.5. While we could use the prime number theorem, it is interesting
that an easier result suffices. As usual, define

π(z) =
∑

p≤z
1, ψ(z) =

∑

pk≤z
log p =

∑

p≤z
[(log z)/ log p] log p

for z ≥ 1, so ψ(z) ≤ π(z) log z for z ≥ 1. By the classical elementary method
of Chebyshev [10, p. 342],

ψ(2n) ≥ log
(

2n
n

)
for n ≥ 1.

Since
(2n
n

)
is the largest term in the binomial expansion of (1+1)2n, we have

22n = 2 +
2n−1∑

k=1

(
2n
k

)
≤ 2n

(
2n
n

)
for n ≥ 1,

so

ψ(2n) ≥ 2n log 2− log(2n) for n ≥ 1.

Assuming that z is real with z ≥ 2 and writing n = [z/2], we find that

π(z) ≥ ψ(z)/ log z ≥ ψ(2n)/ log z ≥ z log 2
log z

+O(1)

and hence

(3.7) π(z) > 2z/(3 log z) for z ≥ c24.

Now, it is well known and easy to prove that for any ε > 0, we have

ω(n) < (1 + ε)(log n)(log2 n)−1 if n ≥ c25(ε).

(See [20, p. 38]. The result can also be derived from [10, Theorem 317]
and the inequality 2ω(n) ≤ d2(n).) Hence if x ≥ c26 and y > (3 log x) ×
{2 log(3 log x)}−1, then

π′(x, y) = 0 = s′
(

x

3 log x
, y − 1

)
.

Thus we may assume x ≥ c23 (sufficiently large) and

2 ≤ y ≤ (3 log x){2 log(3 log x)}−1.

It follows from this assumption and (3.7) that if 1 ≤ m ≤ x(3 log x)−1, then

π(x/m) ≥ π(3 log x) > (4/3)y

and

π(x/m) > 2x/(3m log x).
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Hence by Lemma 3.5,

yπ′(x, y) ≥
∑′

m≤x/(3 log x)
ω(m)=y−1

{π(x/m)− (y − 1)}

≥ 1
4

∑′

m≤x/(3 log x)
ω(m)=y−1

2x
3m log x

,

the desired result.

Our proof of Lemma 3.6 corrects two errors in the proof of [22, Propo-
sition 2.1], the analogous result for π(x, y).

Lemma 3.8. If x ≥ c27 and

log2 x− log3 x ≤ y ≤ (log x)(2.9 log2 x)−1,

then

s′(x, y) ≥ 1
y!

exp
{
y

(
logL+

logL
L

)
+O

(
y

L
+ (logL) log

3y
L

)}
,

where L = L(x, y) is defined by (1.12).

P r o o f. We shall follow rather closely the proof of Pomerance’s Theorem
3.1 [22, pp. 182–185], but we shall make some changes in order to make the
proof clearer and more elementary. To save space, we shall sometimes refer
to Pomerance’s paper for notation and reasoning.

Let L′ = L+ 20 and k = [logL′]− 2. Note that by Lemma 2.22,

(3.9) L ≥ log 2.9 > 1,

so (if c27 is large enough)

(3.10) e3 < 21 < L′ < log2 x− log3 x ≤ y.
Hence k ≥ 1, and by the elementary inequalities

(3.11) w(1 + w)−1 ≤ log(1 + w) ≤ w for real w > −1,

we get

(3.12) logL′ = logL+O(L−1),

(3.13) k = logL+O(1).

Now define the disjoint real intervals Ii (−1 ≤ i ≤ k − 1) as in [22,
p. 183]. Let

T (u, v, i) = {n : n ≤ u, ω(n) = v, and all primes dividing n lie in Ii},
s′i(u, v) =

∑′

n∈T (u,v,i)

n−1 for − 1 ≤ i ≤ k − 1.
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As noted by Pomerance, if u−1, u0, . . . , uk−1 are any positive real numbers
with

(3.14) u−1u0 . . . uk−1 ≤ x,
and if v−1, v0, . . . , vk−1 are any positive integers with

(3.15) v−1 + v0 + . . .+ vk−1 = y,

then

(3.16) s′(x, y) ≥
k−1∏

i=−1

s′i(ui, vi).

We shall apply (3.16) with Pomerance’s choices of ui (which we omit to save
space) and vi (−1 ≤ i ≤ k − 1), so

(3.17) v−1 = y − k[y/L′], vi = [y/L′] for 0 ≤ i ≤ k − 1.

Thus (3.15) obviously holds, and (3.14) is also valid [22, pp. 183–184]. Note
that the maximum of u−1(log u− 2) for u > 0 is e−3, so

(3.18) k ≤ e−3L′,

so v−1 is a large positive integer, and v0, . . . , vk−1 are positive integers by
(3.10).

In order to estimate s′i(ui, vi) from below, we need two preliminary re-
sults which follow easily from the elementary Mertens theorem

(3.19)
∑

p≤z
p−1 = log2 z + c28 +O(1/ log z) for z ≥ 2.

The first of these results is

(3.20)
∑

p∈I−1

p−1 = L− 1 +O(1/ log y),

and the second is

(3.21)
∑

p∈Ii
p−1 = 1 +O(y/ log x) = 1 +O(1/ log2 x) for 0 ≤ i ≤ k − 1.

In this paragraph, keep i fixed with −1 ≤ i ≤ k − 1, write vi = w, and
let p1 < p2 < . . . < pN be all the primes in Ii. By Pomerance’s definition of
Ii, every number in Ii is > y2, so we have the crude estimate∑

p∈Ii
p−1 ≤

∑

p∈Ii
y−2 = Ny−2,

so N � y2 by (3.9), (3.20), and (3.21). In particular, N > w = vi by (3.17).
As shown in [22, p. 183], any product of w primes in Ii is ≤ ui. Hence

(3.22) s′i(ui, vi) = s′i(ui, w) ≥
∑

1≤k1<...<kw≤N
(pk1 . . . pkw)−1.
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The right-hand side of (3.22) is an elementary symmetric function of p−1
1 , . . .

. . . , p−1
N , and this suggests an application of the following lemma of Halber-

stam and Roth [8, p. 147] (we use their notation):

Lemma 3.23. Let N be a positive integer , and let y1, . . . , yN be non-
negative real numbers (not all zero). For each integer d with 1 ≤ d ≤ N ,
write

σd =
∑

1≤k1<...<kd≤N
yk1 . . . ykd

(so σd is the d-th elementary symmetric function of y1, . . . , yN ), and let
σ0 = 1. Then

(3.24)
σd1
d!

{
1− d(d− 1)

2
σ−2

1 Q

}
≤ σd ≤ σd1

d!
for 0 ≤ d ≤ N,

where

(3.25) Q =
N∑
m=1

y2
m.

We apply Lemma 3.23 to the right-hand side of (3.22), taking d = w = vi
and ym = p−1

m for 1 ≤ m ≤ N . Note that by (3.20), (3.21), and (3.9),

σ1 =
∑

p∈Ii
p−1 � 1.

Also, by Chebyshev’s estimate π(z)� z/ log z, we have

Q =
∑

p∈Ii
p−2 <

∑

p>y2

p−2 � (y2 log y)−1.

Since vi < y (for each i) by (3.17), we obtain

(3.26) s′i(ui, vi) ≥ (vi!)−1
(∑

p∈Ii
p−1
)vi{

1− c29

log y

}

for −1 ≤ i ≤ k − 1.
Substituting the estimates (3.26) in (3.16) and using (3.11) and (3.10),

we obtain

(3.27) s′(x, y)�
k−1∏

i=−1

(vi!)−1
(∑

p∈Ii
p−1
)vi

.

The estimate (3.27) is given in [22, p. 184] for s(x, y) instead of s′(x, y),
where s(x, y) is defined as in (3.4) but without restricting the summation
to squarefree integers. The next step in [22] is to estimate the contribution
of the factorials on the right-hand side of (3.27), but there seems to be an
error in the calculation (the error term O(k log(y/L)) is too small), and
some details are missing. Hence we shall do our own calculation as follows.
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In applying (3.27), it suffices to have good upper bounds for the numbers
vi!. We use a crude form of Stirling’s formula:

(3.28) logw! = (w + 1/2) logw − w +O(1) for w = 1, 2, . . .

Write y/L′ = [y/L′] + θ. Thus 0 ≤ θ < 1, and by (3.17),

(3.29) v−1 = y − ky/L′ + kθ,

(3.30) vi = y/L′ − θ for 0 ≤ i ≤ k − 1.

Using the upper bound in (3.11), we get

(3.31) log v−1 ≤ log y − k/L′ + kθ/y,

and similarly (note (3.10))

(3.32) log vi ≤ log(y/L′)− θL′/y for 0 ≤ i ≤ k − 1.

To estimate v−1!, substitute (3.29) and (3.31) in (3.28), carry out the multi-
plication, note two cancellations, and simplify by omitting the terms
−2k2θ/L′,−k/2L′ (since only an upper bound is needed). Since k � logL by
(3.13) and (3.9), and since y−1(logL)2 < y(L−1 logL)2 because L < L′ < y
(see (3.10)), we get

(3.33) log v−1! ≤ log y!− ky(log y)/L′ + kθ log y +O(y(L−1 logL)2 + 1).

Similarly, substitute (3.30) and (3.32) in (3.28) to get

(3.34) log vi! ≤ (y/L′) log(y/L′)− (θ − 1/2) log(y/L′)− y/L′ +O(1)

for 0 ≤ i ≤ k − 1.
From (3.11), it follows that

(3.35) log(1 + u) = Oε(|u|) for u ≥ −1 + ε, ε > 0.

Applying this to (3.20) and recalling (3.9), we get

(3.36) log
∑

p∈I−1

p−1 = logL+O(L−1).

Multiplying (3.36) by v−1 and using first (3.17), then (3.29), we get

v−1 log
∑

p∈I−1

p−1 = v−1 logL+O(y/L)(3.37)

= y logL− ky(logL)/L′ + kθ logL+O(y/L).

Likewise, we can use (3.21), (3.35), and (3.17) to obtain

(3.38) vi log
∑

p∈Ii
p−1 = O(y/(L log2 x)) for 0 ≤ i ≤ k − 1.

Now combine (3.27), (3.33), (3.34), (3.37), and (3.38), note the cancel-
lation of the terms ±kθ log y, and use the estimates (3.12), (3.13) (which
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implies k � log3 x), and

(L′)−1 = L−1 +O(L−2).

The result follows.

Theorem 3.39. If x ≥ c31 and

log2 x ≤ y ≤ (log x)(2.9 log2 x)−1,

then
π(x, y) ≥ π′(x, y)

≥ x

y! log x
exp

{
y

(
logL+

logL
L

)
+O

(
y

L
+ (logL) log

3y
L

)}
.

P r o o f. Combine Lemmas 3.6 and 3.8 and use (3.35).

Theorem 3.39 is our best elementary lower bound for π(x, y) and π′(x, y).
It is a small improvement of an estimate of Pomerance [22, Theorem 3.1]
for π(x, y). On shorter y-intervals, it is possible to obtain lower bounds
which resemble Theorem 3.39 but are more precise. To do this, we appeal
to the work of previous authors who used difficult nonelementary methods
to estimate π(x, y). We shall consider in detail only the following example
of such an estimate:

Lemma 3.40. Let ε > 0. If x ≥ c33(ε) and 1 ≤ y ≤ (log2 x)2−ε, then

(3.41) π(x, y) =
x(log2 x)y−1

(y − 1)! log x

×F
(

y

log2 x

)
exp

{
− y

2

(
log3 x

log2 x

)2}
{1 +O((log3 x)−1/2)},

where F is defined by

(3.42) F (z) =
1

Γ (z + 1)

∏
p

(
1 +

z

p− 1

)(
1− 1

p

)z

and Γ is the gamma function.

This is a combination of results of Sathe [24, Chap. 9] (for y ≤
(2 − ε) log2 x), Selberg [25, Theorem 4] (for y ≤ A log2 x with any fixed
A), and Hensley [11] (for A log2 x ≤ y ≤ (log2 x)2−ε, where A is fixed and
large). Hildebrand and Tenenbaum [12, Corollary 1] gave a result similar to
(3.41) with a better error term, but Hensley’s error term is quite adequate
for our application.

In spite of its precision, Lemma 3.40 has the drawback that the size
of F (y/ log2 x) is not immediately apparent, and it is not obvious how to
compare (3.41) with Theorem 3.39. To remedy this, we need an estimate
for F (z) in terms of elementary functions. Such an estimate is given in the
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following lemma, which was announced without proof some years ago by the
present author [20, p. 35]:

Lemma 3.43. Defining F (z) by (3.42), we have

F (z) = exp{−z log z − z log2(3z) + (1− γ)z +O(z/ log(3z))}
for z ≥ 1, where γ is Euler’s constant.

P r o o f. We can write

log{Γ (z + 1)F (z)} = S1 + zS2 + S3 for z ≥ 1,

where

S1 =
∑

p≤z
log
(

1 +
z

p− 1

)
, S2 =

∑

p≤z
log
(

1− 1
p

)
,

and

S3 =
∑
p>z

{
log
(

1 +
z

p− 1

)
+ z log

(
1− 1

p

)}
.

By Chebyshev, π(t)� t/ log(3t) for t ≥ 1. Hence for z ≥ 2,

S1 ≤
∑

p≤z
log(4z/p) =

z∫
1

log(4z/t) dπ(t)

= π(z) log 4 +
z∫

1

t−1π(t) dt� z/ log(3z).

Since log(1 + t) = t+O(t2) for t ≥ −1/2, we find that for z ≥ 1,

S3 � z2
∑
p>z

p−2 � z/ log(3z).

Finally, Mertens’s theorem gives

S2 = − log2(3z)− γ +O(1/ log(3z)) for z ≥ 1.

Combining these estimates and using Stirling’s formula, we get the result.

Using Lemma 3.43, we can derive from Lemma 3.40 a (less precise) result
which is more like Theorem 3.39:

Theorem 3.44. Let ε > 0. If x ≥ c34(ε) and log2 x ≤ y ≤ (log2 x)2−ε,
then

π(x, y) =
x

y! log x
exp

{
y

(
logL+

logL
L

)

+
y

L

(
log2 y − log2

(
3y
L

)
+ 1− γ

)
+O

(
y

L log(3y/L)

)}
.
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P r o o f. Write w = y/ log2 x. The definition (1.12) and our hypothesis
on y imply

(3.45) L = log2 x+O(log3 x),

so we have

(3.46) log3 x� log(3w) = log
(

3y
L
· L

log2 x

)
� log

3y
L
.

Combining Lemma 3.40 with Lemma 3.43 and using (3.46), we get

π(x, y) =
x

y! log x
exp

{
y log3 x(3.47)

− w(logw + log2(3w)− 1 + γ) +O

(
w

log(3w)

)}
.

(A less precise version of (3.47) was stated without proof by Hensley [11,
p. 413].) By (1.12),

logL = log3 x−
log y + log2 y

log2 x
+O

((
log3 x

log2 x

)2)
,

logL
L

=
log3 x

log2 x
+O

((
log3 x

log2 x

)2)
.

Combining these with (3.47) and using (3.46) and (3.45) to deal with the
error terms, we get

π(x, y) =
x

y! log x
exp

{
y

(
logL+

logL
L

)
(3.48)

+
y

log2 x

(
log2 y − log2

(
3y

log2 x

)
+ 1− γ

)

+O

(
y

L log(3y/L)

)}
.

Now define

(3.49) g(v, y) = yv−1{log2 y − log2(3yv−1) + 1− γ}
for y ≥ 3, 1 ≤ v ≤ y. A direct calculation of the partial derivative gv =
∂g/∂v yields the estimate

(3.50) gv(u, y)� yu−2 log2 y (y ≥ 3, 1 ≤ u ≤ y).

Using the mean-value theorem for derivatives, we find that if log2 x ≤ y ≤
(log2 x)2−ε, then

(3.51) g(log2 x, y)− g(L, y)� (log y)yL−2 log2 y.
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Since log y � log3 x and L� log2 x, it follows from (3.51) and (3.46) that

(3.52) g(log2 x, y) = g(L, y) +O

(
y

L log(3y/L)

)
.

Inserting (3.52) in (3.48), we get the result.

We note that the estimate given in Theorem 3.44 continues to hold if
x ≥ c35 and log2 x ≤ y ≤ β(log2 x)2, where β is positive and sufficiently
small (the implied constant is still absolute). This can be proved with a little
extra effort by combining our Lemma 3.43 with Corollary 1 of Hildebrand
and Tenenbaum [12]. We omit the details.

It is also possible to obtain a result rather like Theorem 3.44 for consid-
erably larger values of y. The precise statement is as follows:

Theorem 3.53. Suppose that β > 0, δ > 0, x ≥ c36(β, δ), and

(3.54) β(log2 x)2 ≤ y ≤ δ(log x)(log2 x)−2.

Then

(3.55) π(x, y)

=
x

y! log x
exp

{
y

(
logL+

logL
L

)
+
y

L

(
log2 y − log2

(
3y
L

)
+ 1− γ

)

− y

2

(
logL
L

)2

− y logL
L2

(
log2 y − log2

(
3y
L

)
− γ
)

+Oβ,δ

(
y

L2 +
y

L log y

)}
.

This theorem is essentially a consequence of Corollary 2 of Hildebrand
and Tenenbaum [12]. Their result is stated in a rather complicated notation
and involves an unspecified constant C, so that it bears only a superficial
resemblance to (3.55). By refining their method [12, pp. 479–480] of esti-
mating the series

∑
p−s and its partial sums, it is possible to show that

C = e−γ . Using this fact, one can derive (3.55) from their Corollary 2 after
some tedious calculations (which we omit).

A combination of (1.43) and (1.16) yields an upper bound for π(x, y)
which is not as precise as (3.55) but which holds over a wider y-interval and
has a simpler proof.

4. Proofs of Theorems 1.22 and 1.25. The proofs of these two
theorems have much in common, being derived respectively from Theo-
rem 3.39 and Theorem 3.44 via the inequalities (1.42). In this section, we
shall always assume that x is real and sufficiently large, that y is real and
log2 x ≤ y ≤ (log x)(3 log2 x)−1, that k = [y] + 1, that L = L(x, y) is defined
as usual by (1.12), and that L1 = L(x, k).
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Since L ≥ log 3 > 1 by Lemma 2.22, we have

(4.1) L > L1 = L+O(1/y)

and

(4.2) k

(
logL1 +

logL1

L1

)
= k

(
logL+

logL
L

)
+O

(
1
L

)
.

Define

(4.3) h(u) = (u+ 1/2) log u− u for u > 0.

By Stirling’s formula and Taylor’s theorem,

(4.4) log k! = h(k) +O(1) = h(y) + (k − y) log y +O(1).

In particular,

(4.5) log k! = y log y − y +O(log y).

Theorem 1.22 follows easily from (1.42), Theorem 3.39, (4.5), (4.2), and
(4.1).

The proof of Theorem 1.25 requires somewhat more effort. Assume that
x ≥ c37(ε) and that (1.26) holds. Let g(v, y) be the function defined in
(3.49). We can then state the result of Theorem 3.44 in the form

π(x, k) =
x

k! log x
exp

{
k

(
logL1 +

logL1

L1

)
+ g(L1, k)(4.6)

+O

(
k

L1 log(3k/L1)

)}
.

By (4.1),

(4.7) k/(L1 log(3k/L1))� y/(L log(3y/L)).

Write ∂g/∂v = gv, ∂g/∂y = gy. A direct calculation of gy yields the estimate

(4.8) gy(v, t)� v−1 log2 t for t ≥ 3, 1 ≤ v ≤ t.
Using (4.1), (4.8), and the mean-value theorem for derivatives, we obtain

(4.9) g(L1, k)− g(L1, y)� L−1 log2 y � y/(L log(3y/L)).

Likewise, we can use (3.50) and (4.1) to get

(4.10) g(L1, y)− g(L, y)� L−2 log2 y � y/(L log(3y/L)).

It follows from (4.9), (4.10), and (4.7) that we can replace the term
g(L1, k) in (4.6) by g(L, y). If we do this, then apply (4.4) and (4.2) to the
result and write k = y + (k − y), we get
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π(x, k)x−1 log x = exp
{
− h(y) + y

(
logL+

logL
L

)
(4.11)

− (k − y)
(

log y − logL− logL
L

)

+ g(L, y) +O

(
y

L log(3y/L)

)}
.

But

(k − y)
(

log y − logL− logL
L

)
� log

3y
L

+
logL
L
� y

L log(3y/L)
,

so Theorem 1.25 follows from (4.11) and (1.42).

As we noted after Theorem 1.25, (1.27) continues to be valid if x ≥ c8,
z > 1, and log2 x ≤ y ≤ β(log2 x)2, where β > 0 is sufficiently small (and
the implied constant in (1.27) is still absolute). This can be proved in the
same way as Theorem 1.25 by using the extension of Theorem 3.44 which
we mentioned just before Theorem 3.53.

To prove Theorem 1.28, one again defines k = [y] + 1 and uses (3.55) to
approximate π(x, k), then follows a method like that used to prove Theorem
1.25 (there are some extra terms to be estimated, but this process is fairly
routine). It turns out that under the assumptions of Theorem 1.28, the
right-hand side of (1.30) represents π(x, [y] + 1), and (1.30) follows from
(1.42).
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