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1. Introduction. Let d(n) denote the number of positive integers di-
viding the positive integer n, and put

ω(n) =
∑
p|n

1, s(n) =
∏
p‖n

p.

For all integers κ ≥ 2, define the κ-fold iterated divisor functions dκ(n) by
the identity ( ∞∑

n=1

1
ns

)κ

=
∞∑

n=1

dκ(n)
ns

, Re s > 1.

For all positive real numbers x and all integers κ ≥ 2, define

Dκ(x) = #{n ≤ x : dκ(n) |n},

and put D(x) = D2(x); d(n) = d2(n). Earlier, we established the following
three results (cf. Theorems 1, 2, and 5 of [SP1]).

Theorem. (i) D(x) = x/(
√

log x(log log x)1+o(1)).
(ii) Let κ = pα, where α is a positive integer , and p is a prime. Define

{ξ(i, p)}∞i=0 recursively by

ξ(0, p) = 0, ξ(i, p) = ξ(i− 1, p) + pξ(i−1,p) for i ≥ 1.

Then there exists a constant c(κ) > 0 such that

#{n ≤ x : dκ(n) |n} ≤ c(κ)
xξp(x)

(log log x)κ−1

(
log log log log x

log x

)1−1/κ

for x ≥ 16, where ξp(x) is the number of subscripts i with ξ(i, p) not exceed-
ing x.
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Further history of this and related problems is contained on p. 82 of [SP1].
Numbers n such that d(n) divides n arise in connection with a variety of
iteration problems, including the result of Section 3 of [SP2].

In the present paper, we obtain the following estimate.

Theorem 1. There are positive constants c0 and c1 such that

c0x(L4x)−3/4

(log x) log log x

∞∑
i=1

i odd, squarefree

(
1
2 log log x

)i

i!2ω(i)
≤ D(x)

≤ c1x(L4x)3/2

(log x) log log x

∞∑
i=1

(
1
2 log log x

)i

i!2ω(s(i))
.

Here, L4x denotes the four-fold iterated natural logarithm of x. In view
of the facts that as y = 1

2 log log x→∞, the bulk of the contribution to the
series

∑∞
n=0 y

n/n! for ey occurs for n near y, and the normal order of both
ω(i) and ω(s(i)) is log log i, we can get a heuristic estimate by replacing each
of the functions ω(i), ω(s(i)) by log log

(
1
2 log log x

)
for all i. Thus, we have

the approximations
∞∑

i=1

(
1
2 log log x

)i

i!2ω(i)
≈ e

1
2 log log x

2log log( 1
2 log log x)

,

∞∑
i=1

(
1
2 log log x

)i

i!2ω(s(i))
≈ e

1
2 log log x

2log log( 1
2 log log x)

.

Simplifying and combining the results with Theorem 1 gives the following
estimate.

Heuristic Estimate:

D(x) =
x√
log x

(log log log x)− log 2+o(1)

log log x
.

N o t e. An average-order estimate in place of a normal-order estimate
would yield a somewhat different result.

The results of Theorem 1 generalize to Dκ(x). As a corollary of that
generalization, we obtain the following theorem.

Theorem 2. For all integers κ ≥ 2 we have

Dκ(x) =
x

(log x)1−1/κ
(log log x)(1−κ)ω(κ)+o(1) as x→∞.

2. Notation, basic definitions, and preliminary results. Through-
out this paper, i, j, k, l, m, n, and t are reserved for integers (m, n, and t
positive), p and q denote primes, and w, x, y, and z signify sufficiently large
real numbers. A summation of the form

∑
n≤x is assumed to extend over all
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positive integers n not exceeding x. A sum or product of the shape
∑

p or∏
p, respectively, signifies a sum or product over primes: Thus, for example,∑
p|n 1 denotes the number of distinct primes dividing n. We summarize

other notation commonly utilized in this paper in the following table.

Symbol Meaning

pj ‖n pj |n, but pj+1 -n
νp(n) The unique integer j satisfying pj ‖n

odd(n) The greatest odd integer dividing n
ω(n) The number of distinct prime divisors of n
log x The natural logarithm of x
Lnx These functions are recursively defined for all

integers n ≥ 2 and for appropriate values of x
by L2x = log log x; Ln+1x = logLnx

f(x) = O(g(x)) There exists a positive constant K for which
|f(x)| ≤ Kg(x) if x is sufficiently large

f(x) � g(x) f(x) = O(g(x))
f(x) � g(x) g(x) � f(x)

f(x) = o(g(x)) f(x)/g(x) tends to 0 as x tends to ∞
f(x) = Oa,b,...(g(x)) f(x) = O(g(x)). The implied constant possibly

depends on a, b, . . .
f(x) �a,b,... g(x) f(x) = Oa,b,...(g(x))
z-sufficiently large Sufficiently large, possibly depending on z

[a, b, . . .]-sufficiently large Sufficiently large, possibly depending
on a, b, . . .

c0, c1, c2, . . . Positive absolute constants
S The set of squarefree positive integers
S ′ The set of odd, squarefree positive integers

r(n) The largest squarefull divisor of odd(n)
s(n) (odd(n))/r(n)
π(x) The number of primes not exceeding x
T The set of squarefull numbers

Unless otherwise specified, all other notation will be identical to that of [SP1].

Definition. We term a positive integer t squarefull if p2 divides t for
every prime divisor p of t.
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In both the upper and lower bound arguments of [SP1], the key place
to search for an improvement of the resulting estimate is in lemmas of the
following type (cf. the derivation of equation (15) and Lemma 7 of that
paper).

Lemma. (i) If d(n) |n, then odd(1 + ν2(n)) |n.
(ii) Let ε > 0 be given and let l ≥ 2 be ε-sufficiently large. For every

[ε, l]-sufficiently large positive integer k coprime to l!, there exists a multiple
k∗ of k for which k∗ < k1+ε, d(k∗) | 2kk∗, and k∗ | (l!k)k. (Thus, k∗ has no
large prime divisors which do not divide k.) In our applications, we take
k = ν2(n).

If we could make a better estimate of k∗ than the bound k∗ < k1+ε,
while retaining the other conclusions of (ii), then we could improve the lower
bound for D(x) given in [SP1]. In addition, if we could choose l = 2 for
every ε > 0 when applying (ii), then we could squeeze the maximal amount
of power from our lemma. For squarefree k, we can obtain the conclusion
of (ii) with k∗ = k, and l = 2. The difficulty, then, becomes the problem of
showing that

(1)
∑

k odd, squarefree

yk

k!
�

∞∑
j=0

yj

j!
= ey

as y tends to infinity. Our method, an application of a squarefree sieve
(cf. [ER]), is developed in the next three lemmas.

Lemma 1. For all positive integers k and h, and all real y ≥ 1, we have

(2)
∣∣∣∣ ∞∑

l=0
k|l

yl

l!
−

∞∑
l=0

l≡h mod k

yl

l!

∣∣∣∣ � ey

√
y
.

The implied constant is absolute.

P r o o f. For fixed y, the function yl/l! of l increases in the interval
0 ≤ l ≤ y, and decreases in the interval y ≤ l. Now, define the sequence
{a(j)} by

a(2j) = kj, a(2j + 1) = kj + h,

for all nonnegative integers j. Then the left-hand side of (2) is∣∣∣∣ ∞∑
j=0

(−1)jya(j)

a(j)!

∣∣∣∣ =
∣∣∣∣ ∞∑

j=0
a(j)≤y

(−1)jya(j)

a(j)!
+

∞∑
j=0

a(j)>y

(−1)jya(j)

a(j)!

∣∣∣∣.
By applying the Alternating Series Inequality to each of the sums on the
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right, we obtain the upper bounds∣∣∣∣ ∞∑
j=0

a(j)≤y

(−1)jya(j)

a(j)!

∣∣∣∣ ≤ yA

A!
,

∣∣∣∣ ∞∑
j=0

a(j)>y

(−1)jya(j)

a(j)!

∣∣∣∣ ≤ yB

B!
,

where A = max{j : a(j) ≤ y}, and B = min{j : a(j) > y}. It therefore
follows from the Triangle Inequality that the left-hand side of (2) is at most
yA/A!+yB/B!. Now yA/A! = yA/Γ (A+1). Moreover, yA/Γ (A+1) has its
maximum, as a function of A, at a value A between y − 1 and y + 1. Thus,
we can conclude from Stirling’s Formula that yA/A! ≤ (1 + o(1))ey/

√
2πy.

Similarly, we deduce that yB/B! ≤ (1 + o(1))ey/
√

2πy, and the lemma
follows.

Lemma 2.
∞∑

l=0
k|l

yl

l!
=

1
k
ey +O

(
ey

√
y

)
.

The implied constant is absolute.

P r o o f. Partitioning the sum according to the residue class of l mod-
ulo k, and then applying Lemma 1, yields

∞∑
l=0

yl

l!
=

∑
h mod k

∞∑
l=0

l≡h mod k

yl

l!
=

∑
h mod k

( ∞∑
l=0
k|l

yl

l!
+O

(
ey

√
y

))
.

Since the hth summand in the sum on the right is independent of h, we have
∞∑

l=0

yl

l!
= k

∞∑
l=0
k|l

yl

l!
+O

(
key

√
y

)
.

Solving for the sum on the right now gives the lemma.

Lemma 3. Let S and S ′ respectively denote the sets of squarefree and
odd squarefree numbers. Then

(3)

(i)
∞∑

l=1
l∈S′

yl

l!
=

2
π2
ey +O

(
ey

log y

)
;

(ii)
∞∑

l=1
l∈S

yl

l!
=

6
π2
ey +O

(
ey

log y

)
.

P r o o f. The proof of (i) is very similar to the proof of (ii). Ergo, we
present the proof of (ii) only, and leave the proof of (i) to the reader. The
method is to sieve by squares of large primes first, and then to sieve by
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squares composed only of the remaining small prime divisors. For brevity
of exposition, write P (y) for the product of all primes not exceeding log y,
and S(y) for the left side of (3). By partitioning the last sum according to
whether l exceeds 10y, we obtain

S(y) =
∑

0≤l≤10y
l squarefree

yl

l!
+O

( ∑
l>10y

yl

l!

)
.

Now the sequence {yl/l!} decreases geometrically in l for l ≥ 10y. Indeed,
yl+1/(l + 1)! = (yl/l!)(y/(l + 1)) < .1yl/l. Thus, the error is of the order of
the first term of the series. By Stirling’s Formula,

(4) S(y) =
∑

0≤l≤10y
l squarefree

yl

l!
+O

((
e

10

)10y 1
√
y

)
.

Now the condition that l be squarefree is equivalent to the following pair
of constraints: no prime p > log y satisfies p2 | l, and no prime p ≤ log y
satisfies p2 | l. If we ignore the first condition, we make an error of

O

( ∑
0≤l≤10y

p2|l for some p>log y

yl

l!

)

in the sum in (4). Now, we note that if l contributes to this error, then we
have p2 | l for at least one prime p exceeding log y. Hence,

S(y) =
∑

0≤l≤10y

if p2|l then p>log y

yl

l!
+O

( ∑
p>log y

∑
0≤l≤10y, p2|l

yl

l!

)
+O

((
e

10

)10y 1
√
y

)
.

If the final sum on l is not void, then p cannot exceed
√

10y, since p2 | l.
Thus, that error is

O

( ∑
log y<p≤

√
10y

∑
0≤l≤10y, p2|l

yl

l!

)
.

It therefore follows from Lemma 2 that

S(y) =
∑

0≤l≤10y

if p2|l then p>log y

yl

l!
(5)

+O

( ∑
log y<p≤

√
10y

(
ey

p2
+

ey

√
y

))
+O

((
e

10

)10y 1
√
y

)
.

We can restate the last condition beneath the first sum as the condition
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that P (y) be coprime to the maximal perfect square dividing l. So, the
main term is ∑

0≤l≤10y

yl

l!

∑
d|P (y), d2|l

µ(d).

Interchanging the order of summation gives the expression∑
d|P (y)

µ(d)
∑

0≤l≤10y, d2|l

yl

l!

for this quantity. We now apply the methods of the derivation of (4) to
replace the inner sum by

∞∑
l=0
d2|l

yl

l!
.

Thus, ∑
0≤l≤10y, d2|l

yl

l!
=

∞∑
l=0
d2|l

yl

l!
+O

( ∑
l>10y

d2|l

yl

l!

)
=

∞∑
l=0
d2|l

yl

l!
+O

((
e

10

)10y 1
√
y

)
.

Here, we have ignored the condition that d2 divide l in the last sum. Hence,
Lemma 2 implies that the main term in (5) is∑

d|P (y)

µ(d)
(
ey

d2
+O

(
ey

√
y

)
+O

((
e

10

)10y 1
√
y

))
.

The second error term can be absorbed into the first. Thus,

S(y) =
∑

d|P (y)

µ(d)
(
ey

d2
+O

(
ey

√
y

))

+O

(
ey

∑
log y<p≤

√
10y

1
p2

+
ey

√
y
π(

√
10y) +

(
e

10

)10y 1
√
y

)
.

According to the Chebyshev estimate for π(x), we have

S(y) = ey
∑

d|P (y)

µ(d)
d2

+O

(
ey

√
y

∑
d|P (y)

1
)

+O

(
ey

∑
log y<p≤

√
10y

1
p2

)
+O

(
ey

log y

)
.

Since
∑

p>z p
−2 <

∑
n>z n

−2 � 1/ log z, we can ignore the inequality
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p ≤
√

10y, and thus, arrive at the estimate

S(y) = ey
∑

d|P (y)

µ(d)
d2

+O

(
ey

√
y

∑
d|P (y)

1
)

+O

(
ey

log y

)
.

Now µ(d)/d2 is a multiplicative function of d. Hence, the definition of P (y)
gives

S(y) = ey
∏

p≤log y

(1− p−2) +O

(
ey

√
y
2π(log y)

)
+O

(
ey

log y

)
.

A second application of the Chebyshev estimate implies that the penulti-
mate error term can be absorbed into the final remainder term. Now if the
product were infinite, it would be the Euler product for 1/ζ(2). Ergo,

S(y) =
6
π2
ey

∏
p>log y

(1− p−2)−1 +O

(
ey

log y

)
.

And, from the inequality

0 <
∏

p>log y

(1− p−2)−1 − 1

=
∞∑

n=1
if p|n then p>log y

1
n2
− 1 ≤

∑
n>log y

1
n2
� 1

log y
,

we conclude that ∏
p>log y

(1− p−2)−1 = 1 +O

(
1

log y

)
,

of which the lemma is an immediate consequence.

Lemma 4. Let δ be a real number with 0 < δ ≤ 1/2, and let

Q(y) = −(1 + y) log(1 + y) =
∞∑

n=2

(−1)n−1yn

n(n− 1)
for 0 ≤ y ≤ 1.

Then

(i) #{n ≤ x : |ω(n)− L2x| > δL2x} �
δ−1x√
L2x

eQ(δ)L2x.

The implied constant is absolute.
(ii) For δ-sufficiently large n, we have ω(n) ≤ (1 + δ)(logn)/L2n.

P r o o f. The first inequality follows from Theorems (3.18) and (3.20)
of Karl Norton’s paper [NO2]. In Theorem (3.18), we take E = P . In
Theorem (3.20), we choose E = P , and β = 1/2. Then, we combine the
estimates. For a very detailed history of this and related results, as well as
a discussion of the importance of the techniques applied to them, see [NO2].
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The second inequality is a result of the discussion in [HW], beginning with
the last sentence on p. 354.

3. Technical lemmas

Lemma 5. If k is an odd , squarefree positive integer , then d(n) divides
n for all integers n of the form n = 2k−1km, with µ(m) 6= 0, (m, 2k) = 1,
and ω(m) ≤ k − 1− ω(k).

P r o o f. By the multiplicativity of d(n) and the pairwise coprimality of
2, k, and m, we have d(n) = kd(k)d(m). Since k and m are squarefree, we
deduce that d(n) = 2ω(k)+ω(m)k. Hence, if ω(m) does not exceed k−1−ω(k),
then d(n) divides 2ω(k)+k−1−ω(k)k = 2k−1k, which completes the proof.

We use the last lemma to derive a lower bound for D(x), and the next
lemma to derive an upper bound for this function. In the next lemma and
thereafter, we will let

T = {n : if p |n, then p2 |n}
denote the set of powerful, or squarefull, positive integers.

Lemma 6. Let k be a given positive integer. If ν2(n) = k − 1, and d(n)
divides n, then n has the form

n = 2k−1(odd(kl))mt,

where m ∈ S, t ∈ T , m and t are odd , any prime divisor of l also divides k,
and

ω(m) ≤ k − 1− ν2(k)− ν2(d(odd(kl))).
Clearly, we can take l to be odd, here.

P r o o f. Since d(n) is multiplicative, and 2k−1 ‖n, we have k | d(n),
whence k is a divisor of n. Thus, 2k−1 odd(k) divides n. Let

l =
∏

p| odd(k)

pνp(n/k),

so that n/(2k−1 odd(kl)) is an integer coprime to 2k. Since any positive
integer can be written as the product of a squarefull and a squarefree in-
teger by separating its canonical decomposition accordingly, we can write
n/(2k−1 odd(kl)) = mt, with m ∈ S, t ∈ T , (m, t) = (m, 2k) = (t, 2k) = 1.
Hence, n = 2k−1(odd(kl))mt. Since d is a multiplicative function, we find
that kd(odd(kl))2ω(m)d(t) |n. We deduce the lemma by evaluating the func-
tion ν2 at both sides.

Lemma 7. Let

πj(x, k) = #{n ≤ x : ω(n) = j, µ(n) 6= 0, (n, k) = 1},
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for all integers j ≥ 0 and k ≥ 1, and real numbers x ≥ 0. Further , define

f(z) =
1

Γ (1 + z)

∏
p

(
1− 1

p

)z(
1 +

z

p

)
,

and

fn(z) =
∏
p|n

(
1 +

z

p

)−1

,

for all positive real z. Let A and B be fixed positive real numbers. Then

πj(x, k)

=
x

log x
(L2x)j−1

(j − 1)!

(
f

(
j − 1
L2x

)
fk

(
j − 1
L2x

)
+OA,B

(
j(L3(16k))3

(L2x)2

))
,

uniformly in

(6) 1 ≤ j ≤ BL2x, k ≤ exp((log x)A),
∏
p|k

p ≤ (log x)A.

Moreover , we have

(7) 1 ≥ fk

(
j − 1
L2x

)
≥ fk(B) �B (L2(3k))−B

uniformly in the range (6).

P r o o f. The first conclusion follows at once from Theorem 2 of [SP3].
For more information, see the first paragraph on p. 85 of [SP1]. We deduce
the remaining conclusion from the first conclusion of Lemma 2 of [SP1], with
b = B.

Lemma 8. For any constant B, we have 1 �B f(z) � 1 uniformly in
the interval 0 ≤ z ≤ B.

P r o o f. The function is nonvanishing on the compact interval 0 ≤ z ≤ B,
and can be shown to be continuous thereon (see [SE]).

In view of Lemma 6, we need to control the size of the largest squarefull
divisor of an integer n, with perhaps some exceptional integers. We do so
with the following result.

Lemma 9. For 1 ≤ y ≤ x, we have

(8) #{n ≤ x : the largest squarefull divisor of n exceeds y} � x/
√
y.

The implied constant is absolute.

P r o o f. If we partition the set of integers n on the left according to the
value of the largest squarefull divisor t of n, we find that the quantity on
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the left is at most ∑
t>y, t∈T

∑
n≤x, t|n

1.

Now the inner sum is trivially at most x/t. Thus, the left side of (8) does
not exceed

x
∑

t>y, t∈T

1/t.

If we sum by parts, and apply the result that the number of squarefull
integers not exceeding any real number w ≥ 1 is O(

√
w), we obtain the

lemma. The estimate O(
√
w) follows from an estimate of Erdős and Szekeres

[ES].

Also, in view of Lemma 6, we need a precise result analogous to Lemma 9
when we are concerned with powers of 2, and not with all squarefull numbers.

Lemma 10. For 1 ≤ w ≤ x we have

#{n ≤ x : ν2(n) > w} � x/2w.

P r o o f. If we partition the set on the left according to the value of ν2(n),
we find that the quantity on the left-hand side is∑

k>w

∑
n≤x, 2k‖n

1 ≤
∑
k>w

∑
n≤x, 2k|n

1.

The last sum on n is, trivially, at most x/2k. So,

#{n ≤ x : ν2(n) > w} ≤
∑
k>w

x

2k
� x

2w
,

since the last sum is a geometric series.

Note that Lemma 10 does not follow directly from Lemma 9.
We also require a result which allows us to take the series

∑∞
j=0 y

j/j!
= ey, perturb some of the subscripts j with |j − y| sufficiently small, and
still have a series whose value is approximable by ey. An estimate of this
type, sufficient for our purposes, is the next lemma.

Lemma 11. For |j − y| ≤ y/ log y, and for 1 ≤ m ≤ 10 log y, we have

yj−m

(j −m)!
=
yj

j!

(
1 +O

(
m

log y

))
.

The implied constant is absolute.

P r o o f. We have

yj−m

(j −m)!
=
yj

j!

m−1∏
i=0

j − i
y

=
yj

j!

m−1∏
i=0

(
1 +

j − i− y
y

)
.
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For y sufficiently large,

−2
log y

≤ j − i− y
y

≤ 2
log y

for all i, j.

Thus,
yj

j!

(
1− 2

log y

)m

<
yj−m

(j −m)!
<
yj

j!

(
1 +

2
log y

)m

.

The lemma is now an immediate consequence of the Binomial Theorem.

Lemma 12. ∑
n, |n−x|≥

√
x log x

xn

n!
� ex

√
x log x

.

P r o o f. This is Lemma 5 of [SP1]. For much more precise estimates of
this sort, we refer the reader to [NO1].

The next lemma allows us to bound fn(z) and related products, for
some z.

Lemma 13. Let B and C be fixed real numbers with B > 0 and with
0 < C < 2, and let 0 ≤ b ≤ B and 0 ≤ c ≤ C. We have

(i)
∏
p|k

(
1 +

b

p

)
� (L2(3k))b uniformly in b and k;

(ii)
∏
p|k

(
1− c

p

)−1

� (L2(3k))c uniformly in c and k.

P r o o f. This lemma follows from Lemma 2 of [SP1].

4. A lower bound for D(x). If we partition the set of positive integers
n such that d(n) divides n according to the value k − 1 of ν2(n), we obtain

D(x) ≥
∑

1
4 L2x<k≤ 3

4 L2x

∑
n≤x

2k−1‖n
d(n)|n

1 ≥
∑

1
4 L2x<k≤ 3

4 L2x

k∈S′

∑
n≤x

2k−1‖n
d(n)|n

1.

In view of Lemma 5, we have

D(x) ≥
∑

1
4 L2x<k≤ 3

4 L2x

k∈S′

∑
m∈S, 2k−1km≤x

(m,2k)=1, ω(m)≤k−1−ω(k)

1.

First, we solve the inequality 2k−1km ≤ x for m. Then we partition the set
of integers m contributing to the last sum, according to the value of ω(m).
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Ergo,

D(x) ≥
∑

1
4 L2x<k≤ 3

4 L2x

k∈S′

∑
1≤j≤k−1−ω(k)

∑
m∈S, m≤21−kx/k
(m,2k)=1,ω(m)=j

1.

We deduce from Lemma 7, with A = B = 1, that the innermost sum is

v

log v
(L2v)j−1

(j − 1)!

(
f

(
j − 1
L2v

)
fk

(
j − 1
L2v

)
+O

(
j(L4x)3

(L2x)2

))
,

where v = 21−kx/k. Now

(9) log v = log x+ (1− k) log 2− log k = (log x)(1 +O((L2x)/ log x))

for k ≤ L2x. Hence,

L2v = L2x+ log(1 +O((L2x)/ log x)) = L2x+O((L2x)/ log x).

From the Binomial Theorem, we can conclude that

(L2v)j−1

(j − 1)!
=

(L2x)j−1

(j − 1)!

(
1 +O

(
1

log x

))j−1

=
(L2x)j−1

(j − 1)!

(
1 +O

(
jL2x

log x

))
uniformly in k ≤ L2x, j ≤ L2x. It now follows from (7) and Lemma 8 that
the last sum on m is

x

2k−1k log x
(L2x)j−1

(j − 1)!

(
f

(
j − 1
L2v

)
fk

(
j − 1
L2v

)
+O

(
j(L4x)3

(L2x)2

))
,

uniformly in k ≤ L2x, j ≤ L2x. Thus, we can deduce from Lemma 8 and
from (7), with B = 3/4, that

(10) D(x) � x(L4x)−3/4

log x

∑
1
4 L2x<k≤ 3

4 L2x

k∈S′

1
2kk

∑
1≤j≤k−1−ω(k)

(L2x)j−1

(j − 1)!
.

Next, we replace the inner sum by the last summand, to obtain

D(x) � x(L4x)−3/4

log x

∑
1
4 L2x<k≤ 3

4 L2x

k∈S′

1
2kk

(L2x)k−2−ω(k)

(k − 2− ω(k))!

� x(L4x)−3/4

(log x)L2x

∑
k,| 12 L2x−k|≤ 1

2 (L2x)/L3x

k∈S′

1
2ω(k)

(
1
2L2x

)k−2−ω(k)

(k − 2− ω(k))!
.

Here, the replacement of the range 1
4L2x < k ≤ 3

4L2x by the inequality∣∣ 1
2L2x− k

∣∣ ≤ 1
2 (L2x)/L3x just makes the sum on k tinier. Now, we want to

apply Lemma 11 to replace k− 2−ω(k) by k twice, on the right-hand side.
To do so, we first use Lemma 4(i) to deduce that 2 + ω(k) ≤ 3(log k)/L2k
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≤ 1
2L2x. Then we apply the aforementioned Lemma 11 to get

D(x) � x(L4x)−3/4

(log x)L2x

∑
|k− 1

2 L2x|≤ 1
2 (L2x)/L3x

k∈S′

1
2ω(k)

(
1
2L2x

)k

k!
.

When we rewrite the sum on the right as
∞∑

k=1
k∈S′

1
2ω(k)

(
1
2L2x

)k

k!
−

∑
|k− 1

2 L2x|> 1
2 (L2x)/L3x

k∈S′

1
2ω(k)

(
1
2L2x

)k

k!
,

and observe that the last sum will increase if we omit the condition k ∈ S ′
from beneath it, we are able to deduce that

(11) D(x) � x(L4x)−3/4

(log x)L2x

∞∑
k=1
k∈S′

1
2ω(k)

(
1
2L2x

)k

k!
+ E(x),

where

E(x) = O

(
x(L4x)−3/4

(log x)L2x

∑
|k− 1

2 L2x|> 1
2 (L2x)/L3x

1
2ω(k)

(
1
2L2x

)k

k!

)
.

We majorize 1/2ω(k) by 1/2 ≤ 1, in the last summation. Then we deduce
from Lemma 12 that

(12) E(x) � x(L4x)−3/4

√
log x(L2x)3/2L3x

.

To show that E(x) is of smaller order than the main term on the right of (11),
we restrict the sum on k in (11) to the range

∣∣k− 1
2L2x

∣∣ ≤ √
(L2x)L3x, and

then apply Lemma 4(i) to bound 1/2ω(k) from below in that range. Thus,
∞∑

k=1
k∈S′

1
2ω(k)

(
1
2L2x

)k

k!
>

∑
|k− 1

2 L2x|≤
√

(L2x)L3x

k∈S′

1
22(log k)/L2k

(
1
2L2x

)k

k!
.

Now for k contributing to the right-hand side, the exponent 2(log k)/L2k is
less than .1L3x. Ergo,

1
22(log k)/L2k

> (L2x)−.1 log 2 > (L2x)−.07.

So, upon using the identity∑
|k− 1

2 L2x|≤
√

(L2x)L3x

=
∑
all k

−
∑

|k− 1
2 L2x|>

√
(L2x)L3x

,
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we find that
∞∑

k=1
k∈S′

1
2ω(k)

(
1
2L2x

)k

k!

> (L2x)−.07

( ∞∑
k=0
k∈S′

(
1
2L2x

)k

k!
+O

( ∑
|k− 1

2 L2x|>
√

(L2x)L3x

(
1
2L2x

)k

k!

))
.

By Lemma 3, the penultimate sum is

2
π2
e

1
2 L2x

(
1 +O

(
1
L3x

))
>

1
10

√
log x.

The ultimate sum is estimated with the aid of Lemma 12. Accordingly,

∞∑
k=1
k∈S′

1
2ω(k)

(
1
2L2x

)k

k!
> (L2x)−.07

(
1
10

√
log x+O

(√
log x

(L2x)L3x

))

� (L2x)−.07
√

log x.

Consequently, (12) implies that

E(x) = o

(
x(L4x)−3/4

(log x)L2x

∞∑
k=1

1
2ω(k)

(
1
2L2x

)k

k!

)
.

The first inequality of Theorem 1 now follows from (11), for a sufficiently
small constant c0.

N o t e. With more effort, we can replace the factor (L4x)−3/4 by 1/
√
L4x.

The main idea is to restrict the sum on k to the range 1
4L2x < k ≤ 1

2L2x
+g(x), for an appropriate function g(x), prior to the application of the lower
bound in (7).

5. An upper bound for D(x). In view of Lemma 6, we have

D(x) ≤
∑′′

n=2k−1(odd(kl))mt≤x

1,

where the double dashes imply that m ∈ S, t ∈ T ,
∏

p|l p | k, and

(13) ω(m) ≤ k − 1− ν2(k)− ν2(d(odd(kl))).

Now, we apply Lemma 9 with y = (log x)2, to restrict the size of the divisor
t of n. We simultaneously constrain the size of the largest squarefull divisor
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r(kl) of odd(kl). This application yields

D(x) ≤
∑′′

n=2k−1(odd(kl))mt≤x

t≤(log x)2

r(kl)≤(log x)2

1 +O

(
x

log x

)
.

When we similarly apply Lemma 10 with w = 3
4L2x to restrict the range

of k, and note that
∏

p|l p | k if and only if l | kl, we find that

(14) D(x) �
∑

t≤(log x)2

t∈T

∑
1≤k≤ 3

4 L2x

∑
l, l|kl

r(kl)≤(log x)2

∑
m≤ x

2k−1(odd(kl))t

(13) holds

1

+
x

(log x).501
.

Assume that l contributes to the penultimate sum in (14). If p is a prime
divisor of odd(kl), then p makes a positive contribution to ω(s(k))− ω(l) if
and only if we have

(15) p ‖ k and p - l.
If (15) holds, then p contributes 1 to the additive function

(16) ν2(d(odd(kl)))

of kl. In any case, p contributes not less than 0 to (16). So,

(17) ν2(d(odd(kl))) ≥ ω(s(k))− ω(l).

Combining (17) with (13) yields

ω(m) ≤ k − 1− ν2(k)− ω(s(k)) + ω(l).

Furthermore, ω(m) ≤ k − 1− ν2(k), by (13). It therefore follows that

(18) ω(m) ≤ min{k − 1− ν2(k), k − 1− ν2(k)− ω(s(k)) + ω(l)} := h(k, l).

So, we can conclude from our last estimate for D(x) that

(19) D(x) ≤
∑

t≤(log x)2

t∈T

∑
1≤k≤ 3

4 L2x

∑
l, l|kl

r(kl)≤(log x)2

∑
m≤ x

2k−1(odd(kl))t

(18) holds

1

+O

(
x

(log x).501

)
.

Upon partitioning the set of m contributing to the last sum according
to the value of ω(m), and applying Lemmas 7 and 8, we find that this last
sum is of order

1 +
∑

1≤j≤h(k,l)

w

logw
(L2w)j−1

(j − 1)!
fk

(
j − 1
L2w

)
,
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where w = x/(2k−1 odd(klt)). Since w < x, we have L2w < L2x, and
(j − 1)/L2w > (j − 1)/L2x. By definition, fk(z) is a decreasing function
of z, so that fk((j − 1)/L2w) ≤ fk((j − 1)/L2x). To bound 1/ logw, we
further observe that the constraint r(kl) ≤ (log x)2 forces l not to exceed
(log x)2, inasmuch as any prime divisor of l must also divide odd(k). Hence,
we can deduce from the inequalities t ≤ (log x)2 and 1 ≤ k ≤ 3

4L2x that
logw � log x. Consequently, the innermost sum in (19) is of order

(20) 1 +
∑

1≤j≤h(k,l)

x

log x
fk

(
j−1
L2x

)
2k−1 odd(klt)

(L2x)j−1

(j − 1)!
.

Now

(21)
yj+1

(j + 1)!
=
yj

j!
y

j + 1
.

Since 1 � fk((j − 1)/L2x) � 1 for 1 ≤ j ≤ k ≤ 4L2x, Equation (21)
suggests that the function

(22) fk

(
j − 1
L2x

)
(L2x)j−1

(j − 1)!

might be increasing geometrically in the range j ≤ k ≤ 3
4L2x. To show

that this is indeed the case, we use the definition of fk(z) to compute
fk(j/L2x)/fk((j − 1)/L2x), and show that this quantity is not too small.
We get

fk

(
j

L2x

)
fk

(
j − 1
L2x

) =
∏
p|k

(
1 +

j

pL2x

)−1(
1 +

j − 1
pL2x

)

=
∏
p|k

(
1− j

pL2x
+

(
j

pL2x

)2(
1− j

pL2x

)−1)(
1 +

j − 1
pL2x

)

>
∏
p|k

(
1− j

pL2x

)(
1 +

j − 1
pL2x

)

=
∏
p|k

(
1− 1

pL2x
− j

pL2x

j − 1
pL2x

)
.

But for j ≤ k ≤ 3
4L2x, we have (j − 1)/L2x < j/L2x ≤ 3

4 . Accordingly,

fk

(
j

L2x

)
fk

(
j − 1
L2x

) ≥
∏
p|k

(
1− 1

pL2x
− 9/16

p2

)
.
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If p < .03L2x, we bound −1/(pL2x) from below by .03/p2. Otherwise, we
observe that since p | k, and k ≤ 3

4L2x, we have p ≤ 3
4L2x, so that

− 1
L2x

≥ 3/4
p
.

Thus, −1/(pL2x) ≥ (3/4)/p2 if p ≥ .03L2x. So, we have

fk

(
j

L2x

)
fk

(
j − 1
L2x

) ≥
( ∏

p|k, p<.04L2x

(
1− 9/16

p2

))( ∏
p|k, p≥.04L2x

(
1− 18/16

p2

))
.

If k ≤ 3
4L2x, and x is sufficiently large, then there can be at most one prime

p ≥ .03L2x with p | k. So, the last product exceeds 1 − 1.3175/(.03L2x)2

> .9999, for x large enough. Thus, if we omit the constraints on p from the
penultimate product, we can conclude that

fk

(
j

L2x

)
fk

(
j − 1
L2x

) ≥ .9999
∏
p

(
1− 9/16

p2

)
> 0.76 for j ≤ k ≤ 3

4
L2x.

It therefore follows from (21) that the function (22) grows geometrically (or
faster) for j, k in this range. In this event, the sum (20) has the same order of
magnitude as the term of the sum with j as large as possible. Consequently,

(23) D(x) � x

log x

∑
t≤(log x)2

t∈T

1
t

∑
1≤k≤ 3

4 L2x

1
2k−1 odd(k)

×
∑
l, l|kl

r(kl)≤(log x)2

fk((h(k, l)− 1)/L2x)
odd(l)

(L2x)h(k,l)−1

(h(k, l)− 1)!
+

x

(log x).501
.

Since 1/ odd(l) < 2/l, we replace odd(l) by l. Then we interchange the
order of summation to make the sum on t the innermost sum. (Note that
the constraint r(kl) ≤ (log x)2 implies that our iterated sum is finite.) Then
we apply the fact that the sum of the reciprocals of the squarefull integers
converges (see Erdős and Szekeres’ paper [ES]) to obtain the bound

D(x) � x

log x

∑
1≤k≤ 3

4 L2x

1
2k−1 odd(k)

×
∑
l, l|kl

r(kl)≤(log x)2

1
l
fk

(
h(k, l)− 1

L2x

)
(L2x)h(k,l)−1

(h(k, l)− 1)!
+

x

(log x).501
.
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Upon multiplying and dividing by 2h(k,l)−1, we find that

(24) D(x) � x

log x

∑
1≤k≤ 3

4 L2x

2−ω(s(k))

2ν2(k) odd(k)

×
∑
l, l|kl

r(kl)≤(log x)2

2ω(l)

l
fk

(
h(k, l)− 1

L2x

)(
1
2L2x

)h(k,l)−1

(h(k, l)− 1)!
+

x

(log x).501
.

Next, we substitute k for 2ν2(k) odd(k). Then, we partition the sum on k
according to whether or not

∣∣k − 1
2L2x

∣∣ ≤ 1
2 (L2x)/L3x. So,

(25) D(x) � x

log x

(∑
1

+
∑

2

)
+

x

(log x).501
,

where ∑
1

=
∑

k, |k− 1
2 L2x|≤ 1

2 (L2x)/L3x

2−ω(s(k))

k

∑
l

,

∑
2

=
∑

k≤ 3
4 L2x

k, |k− 1
2 L2x|> 1

2 (L2x)/L3x

2−ω(s(k))

k

∑
l

,

and the sum over l is as in (24). Now by (18),

k − (h(k, l)− 1) ≤ 2 + ν2(k) + ω(k),

and k − (h(k, l)− 1) ≥ 0 for k sufficiently large. Thus, Lemma 4(ii) implies
that

(26) 0 ≤ k − (h(k, l)− 1) ≤ 2 +
log k
log 2

+
2 log k
L2k

for k sufficiently large. Consequently, we can apply Lemma 11 with m =
k − (h(k, l)− 1), and y = 1

2L2x, to obtain

(27)
∑

1

�
∑

k, |k− 1
2 L2x|≤ 1

2 (L2x)/L3x

2−ω(s(k))

k

(
1
2L2x

)k

k!

∑
l, l|kl

2ω(l)

l
fk

(
h(k, l)− 1

L2x

)
.

Here, we have omitted the condition that r(kl) ≤ (log x)2, and thereby
increased the right-hand side.

Utilize Lemma 7 to replace fk((h(k, l) − 1)/L2x) by 1 in the definition
of

∑
2. Then let J = J(x) be the smallest integer exceeding 2L3x, so that

J > 2 + ν2(k) + ω(s(k)) − ω(l), provided that k ≤ 3
4L2x, and that x is

sufficiently large. Moreover, the function
(

1
2L2x

)j
/j! of j is increasing for

j < 1
2L2x − 1, and decreasing for j > 1

2L2x. We partition the sum
∑

2
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according to whether k exceeds 1
2L2x. If k does exceed 1

2L2x, we replace
h(k, l) by k− J + 1, and otherwise we replace h(k, l) by k− 1. Accordingly,

(28)
∑

2
≤

∑
3

+
∑

4

where

(29)
∑

3
=

∑
1≤k≤ 1

2 L2x− 1
2 (L2x)/L3x

2−ω(s(k))

k

(
1
2L2x

)k

k!

∑
l, l|kl

2ω(l)

l
,

(30)
∑

4
=

∑
1
2 L2x+ 1

2 (L2x)/L3x<k≤ 3
4 L2x

2−ω(s(k))

k

(
1
2L2x

)k−J(x)

(k − J(x))!

∑
l, l|kl

2ω(l)

l
.

Again, we have deleted the constraint r(kl) ≤ (log x)2.
Since ω(n) is additive, and takes the value 1 at nontrivial prime powers,

we have ∑
l, l|kl

2ω(l)

l
=

∏
p|k

(
1 +

∞∑
h=1

2
ph

)
.

Ergo, we can conclude from Lemma 13 with c = 2 that

(31)
∑
l, l|kl

2ω(l)

l
<

∏
p|k

∞∑
h=0

(
2
p

)h

=
∏
p|k

(
1− 2

p

)−1

� (L2k)2.

When we combine this estimate with the inequality k < L2x, we find that∑
l, l|kl

2ω(l)

l
� (L4x)2.

When we apply this bound to estimate the innermost sum in each of (29)
and (30), we find that

(32)
∑

3
� (L4x)3

∑
1≤k≤ 1

2 L2x− 1
2 (L2x)/L3x

2−ω(s(k))

k

(
1
2L2x

)k

k!
,

(33)
∑

4
� (L4x)3

∑
1
2 L2x+ 1

2 (L2x)/L3x<k≤ 3
4 L2x

2−ω(s(k))

k

(
1
2L2x

)k−J(x)

(k − J(x))!
.

Next, we bound 2−ω(s(k)) by 1 in (32) and (33), and majorize 1/k by 1/L2x
in (33). In (32), we observe that

1
k

(
1
2L2x

)k

k!
=

1
L2x

k + 1
k

(
1
2L2x

)k+1

(k + 1)!
.
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So, ∑
3
� (L4x)3

L2x

∑
1≤k≤ 1

2 L2x− 1
2 (L2x)/L3x

(
1
2L2x

)k+1

(k + 1)!
,

∑
4
� (L4x)3

L2x

∑
1
2 L2x+ 1

2 (L2x)/L3x<k≤ 3
4 L2x

(
1
2L2x

)k−J(x)

(k − J(x))!
.

Since J(x) < 2L3x + 1, the quantity k + J(x) runs through only integers
exceeding 1

2L2x+ 1
2 (L2x)/L3x− 2L3x− 1. Thus,

∑
3

+
∑

4
≤ (L4x)3

L2x

∑
|k− 1

2 L2x|≥
√

1
2 (L2x) log( 1

2 L2x)

(
1
2L2x

)k

k!
.

By Lemma 13, ∑
3

+
∑

4
� (L4x)3

(L2x)3/2

√
log x.

Recalling (25) and (28) gives

(34) D(x) � x

log x

∑
1

+
x√
log x

(L4x)3

(L2x)3/2
.

It therefore remains to estimate
∑

1. Toward that end, we note that (23)
and (26) insure that

h(k, l)− 1
L2x

=
1
2

+O

(
1
L3x

)
.

So, we can conclude from (27) that∑
1
�

∑
|k− 1

2 L2x|≤ 1
2 (L2x)/L3x

fk

(
1
2

+O

(
1
L3x

))

× 2−ω(s(k))

k

(
1
2L2x

)k

k!

∑
l, l|kl

2ω(s(l))

l
.

By (31),∑
1
�

∑
|k− 1

2 L2x|≤ 1
2 (L2x)/L3x

fk

(
1
2

+O

(
1
L3x

))

×
∏
p|k

(
1− 2

p

)−1 2−ω(s(k))

k

(
1
2L2x

)k

k!
.
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Now in view of our notation, we have

(35) fk

(
1
2

+O

(
1
L3x

)) ∏
p|k

(
1− 2

p

)−1

=
∏
p|k

(
1 +

1/2
p

+O

(
1

pL3x

))−1(
1− 2

p

)−1

=
∏
p|k

(
1− 3/2

p

)−1(
1 +O

(
1

pL3x

))−1(
1 +O

(
1
p2

))
.

Since k ≤ 2L2x, it follows from Lemma 13(ii) that

(36)
∏
p|k

(
1 +O

(
1

pL3x

))−1

� (L4x)O(1/L3x) � 1.

Furthermore,

(37)
∏

p|s(k)

(
1 +

O(1)
p2

)
�

∏
p

(
1 +

O(1)
p2

)
,

and the last product converges. Finally, another application of Lemma 13(ii)
yields

(38)
∏
p|k

(
1− 3/2

p

)−1

� (L2k)3/2 � (L2x)3/2.

Combining (35)–(38), and substituting the result into our last bound for
∑

1,
yields the inequality∑

1
� (L4x)3/2

∑
|k− 1

2 L2x|≤ 1
2 (L2x)/L3x

2−ω(s(k))

k

(
1
2L2x

)k

k!
.

Clearly, we can replace the first k in the denominator by L2x. When we
substitute the result into (34), we arrive at

D(x) � x

log x
(L4x)3/2

L2x

∑
|k− 1

2 L2x|≤ 1
2 (L2x)/L3x

2−ω(s(k))

(
1
2L2x

)k

k!
(39)

+
x√
log x

(
L4x

L2x

)3/2

.

Next, we show that the term (x/
√

log x)(L4x/L2x)3/2 is of smaller order
than the other part of the right-hand side. By Lemma 4(i), any k contribut-
ing to the sum satisfies

2−ω(s(k)) ≥ 2−ω(k) ≥ 2−2(log k)/L2k > 2−3(L3x)/L4x.
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Therefore, the other part is of order at least

x

log x
1
L2x

2−3(L3x)/L4x
∑

|k− 1
2 L2x|≤ 1

2 (L2x)/L3x

(
1
2L2x

)k

k!
.

In the same manner as we argued at the end of Section 4, we utilize Lemma 12
to obtain ∑

|k− 1
2 L2x|≤ 1

2 (L2x)/L3x

(
1
2L2x

)k

k!

=
∞∑

k=0

(
1
2L2x

)k

k!
+O

( ∑
|k− 1

2 L2x|> 1
2 (L2x)/L3x

(
1
2L2x

)k

k!

)

=
√

log x+O

( √
log x√

(L2x)L3x

)
.

Consequently, the other part is of order at least
x√
log x

1
L2x

2−3(L3x)/L4x,

which is of greater order than (x/
√

log x)(L4x/L2x)3/2. It follows that

(40) D(x) � x

log x
(L4x)3/2

L2x

∑
|k− 1

2 L2x|≤ 1
2 (L2x)/L3x

2−ω(s(k))

(
1
2L2x

)k

k!
.

Upon removal of the inequality below the sum, the upper bound part of
Theorem 1 follows, for a sufficiently large constant c1.

N o t e. If we merely want to establish the weaker result obtained by
replacing the extreme right-hand side of the inequality in Theorem 1 by its
product with

√
L4x, we can shorten the proof by bounding fk by 1 in (20).

Then we observe that (L2x)j−1/(j − 1)! is geometrically increasing.

6. The proof of Theorem 2. Concluding remarks. We state the
generalization of the lower estimate in Theorem 1 to the κ-fold iterated
divisor functions dκ(n), as the next theorem.

Theorem 3.

Dκ(x) �κ
x

(log x)(L2x)κ−1

∞∑
i=1

i≡1 mod (κ!)2

(i+κ−2
κ−1 ) squarefree

(
1
κL2x

)i

i!κω(i)
for κ ≥ 2.

The proof requires the following generalization of Lemma 3(i).
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Lemma 14. If κ ≥ 2, then there exists a constant c1(κ) > 0 for which
∞∑

n=0
n≡1 mod (κ!)2

(n+κ−2
κ−1 ) squarefree

yn

n!
= c1(κ)ey +O

(
ey

√
y

)
for y ≥ 1.

The proof of Lemma 14 is similar to the proof of Lemma 13(ii). We
omit the details. We remark that the binomial coefficient

(
n+κ−2

κ−1

)
can be

replaced by any integer-valued polynomial ψ(n) and the congruence n ≡
1 mod (κ!)2 can be replaced by any finite set of congruences in n. (Of course,
the constant c1(κ) is replaced by a constant depending upon the system of
congruences in n, and upon the polynomial.) Moreover, the constant will
be positive if and only if ψ(n) assumes at least one squarefree value.

The details of the proof of Theorem 3 are analogous to the arguments of
Section 4. First, we let S ′′ = S ′′(κ) denote the set of positive integers k for
which

k ≡ 1 mod (κ!)2 and
(
k + κ− 2
κ− 1

)
is squarefree.

Then we partition the set of positive integers n such that dκ(n) divides n
according to the integer k such that κk |n, but κk+1 -n. Here, κ = dκ(p) for
any prime p, so that κ plays the role of 2. Thus,

Dκ(x) ≥
∑

1
2κ L2x<k≤ 3

4 L2x

∑
n≤x

κk|n, κk+1 - n
dκ(n)|n

1 ≥
∑

1
2κ L2x<k≤ 3

4 L2x

k∈S′′

∑
n≤x

κk|n
(κ,n/κk)=1

dκ(n)|n

1.

The rest of the argument is almost identical to that of Section 4, the main
differences being the application of Lemma 14 in lieu of Lemma 3(i), and
that in (10), the quantity 1/(2kk) is replaced by

1

κk
(
k+κ−2

κ−1

)ω(κ)
.

Then we immediately note that

1(
k+κ−2

κ−1

) =
(κ− 1)!

(k + 1)(k + 2) . . . (k + κ− 2)
� 1

(L2x)κ−1
.

We leave the remainder of the details to the reader.

The bulk of the contribution to the sum in Theorem 3 occurs for k near
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1
κL2x. Indeed, it follows from Theorem 3 that

Dκ(x) � x

(log x)(L2x)κ−1

∑
|k− 1

κ L2x|< 1
κ (L2x)/L3x

k∈S′′

1
κω(k)

(
1
κL2x

)k

k!
.

Let ε > 0 be given. For integers k contributing to the sum, we can deduce
from Lemma 4(ii) that

1
κω(k)

≥ 1
κ(1+ε/2)(log k)/L2k

>
1

κ(1+ε)(L3x)/L4x
.

We deduce that

(41) Dκ(x)

� x

(log x)(L2x)κ−1
κ−(1+ε)(L3x)/L4x

∑
k∈S′′

|k− 1
κ L2x|≤ 1

κ (L2x)/L3x

(
1
κL2x

)k

k!
.

Now we can conclude from Lemma 12 that∑
k∈S′′

|k− 1
κ L2x|≤ 1

κ (L2x)/L3x

(
1
κL2x

)k

k!

=
∞∑

k=0
k∈S′′

(
1
κL2x

)k

k!
+O

( ∞∑
k=0

|k− 1
κ L2x|> 1

κ (L2x)/L3x

(
1
κL2x

)k

k!

)

=
∞∑

k=0
k∈S′′

(
1
κL2x

)k

k!
+O

(
e

1
κ L2x

√
L2x

√
L3x

)
.

Furthermore, by Lemma 14, this quantity is

c1(κ)(log x)1/κ +O((log x)1/κ/
√

(L2x)(L3x)) � (log x)1/κ.

Combining this bound with (41) yields

(42) Dκ(x) �ε,κ
x

(log x)1−1/κ(L2x)κ−1
κ−(1+ε)(L3x)/L4x.

When κ is a nontrivial prime power, Theorem 2 follows from (42) and
the older upper bound for Dκ(x) stated in the introduction. We remark that
we can now prove that upper bound with the function ξp(x) omitted. When
κ is not a prime power, we can obtain Theorem 2 either by generalizing the
older upper bound for Dκ(x), or by generalizing the argument in Section 5.
We take the latter approach.
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Let the prime decomposition of κ be κ =
∏u

i=1 p
αi
i . If n is any positive

integer such that dκ(n) |n, then it follows from the relation

(43) dκ(pj) =
(
j + κ− 1
κ− 2

)
,

and the multiplicativity of dκ(n) that
u∏

i=1

(
νpi(n) + κ− 1

κ− 2

)
= d

( u∏
i=1

p
νpi

(n)

i

)∣∣∣ d(n),

whence
u∏

i=1

(
νpi(n) + κ− 1

κ− 2

)∣∣∣∣n.
So, if ki = νpi

(n) for i = 1, . . . , u, then

H :=
(( u∏

i=1

pki
i

)
oddκ(β(k1, . . . , ku))

)−1

n

is an integer, where oddκ(j) denotes the maximal divisor of j which is co-
prime to κ, and where

β(k1, . . . , ku) = βκ(k1, . . . , ku) =
u∏

i=1

(
ki + κ− 2
κ− 1

)
.

Clearly, (H,κ) = 1. Let l be the largest divisor of H such that every prime
divisor of l also divides β(k1, . . . , ku), let t be the largest squarefull divisor
of H/l, and let m = H/(lt). Then in view of our notation, we have

(44) m ∈ S, t ∈ T, (t, κβ(k1, . . . , ku)) = (t,m) = (m,κβ(k1, . . . , ku)) = 1,

(45) n = (oddκ(β(k1, . . . , ku)))
( u∏

i=1

pki
i

)
ltm,

(46) (l, κ) = 1,
∏
p|l

p
∣∣∣β(k1, . . . , ku).

Next, we compare the exact power of pi dividing both n and d(n), and
utilize the relation dκ(n) |n to obtain an upper bound on the number of
prime divisors of m. From (44)–(46), the multiplicativity of dκ(n), and the
fact that

(47) dκ(p) = κ

for every prime p, we can conclude that

dκ(n) = dκ(l oddκ(β(k1, . . . , ku))β(k1, . . . , ku))dκ(t)κω(m).

Now since dκ(n) |n, we must have νpi(dκ(n)) ≤ ki for all i. Ergo,

νpi(dκ(l oddκ(β(k1, . . . , ku))))+νpi(β(k1, . . . , ku))+νpi(dκ(t))+αiω(m) ≤ ki
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for all i. Hence,

(48) ω(m) ≤ (ki − νpi
(dκ(l oddκ(β(k1, . . . , ku))))− νpi

(β(k1, . . . , ku)))/αi

for all i. Denote the product of all primes exactly dividing β(k1, . . . , ku),
and not dividing κ, by sκ(k1, . . . , ku), and denote the largest squarefull
divisor of oddκ(β(k1, . . . , ku)) by rκ(k1, . . . , ku). Then the number of primes
exactly dividing oddκ(lβ(k1, . . . , ku)) is at least ω(sκ(k1, . . . , ku))−ω(s(l)).
Therefore, it follows from (47) that

κω(sκ(k1,...,ku))−s(l) | dκ(oddκ(lβ(k1, . . . , ku))).

Accordingly,

νpi
(dκ(oddκ(lβ(k1, . . . , ku)))) ≥ (ω(sκ(k1, . . . , ku))− ω(s(l)))αi.

We deduce from (48) that

(49) ω(m) ≤ ki/αi − ω(sκ(k1, . . . , ku)) + ω(s(l))− νpi
(β(k1, . . . , ku))/αi

for all i. Since ω(s(l)) ≤ ω(l), we deduce that any m satisfying (48) must
also satisfy

(50) ω(m) ≤ ki/αi − ω(sκ(k1, . . . , ku)) + ω(l)− νpi
(β(k1, . . . , ku))/αi

for all i.
For the next part of the proof, we simultaneously partition the set of

n ≤ x for which dκ(n) |n according to the value of each ki. We then partition
each of the resulting subsets according to the value of t. Then we subdivide
each of the new subsets resulting from the last partition according to the
value of l. Thus, we obtain

(51) Dκ(x) ≤
∑

(k1,...,ku)∈(Z≥0)(u)

∑
t∈T

∑
l

p|l⇒p|β(k1,...,ku)

×
∑

m≤x(Πu
i=1p

−ki
i

)(lt oddκ(β(k1,...,ku)))−1

(m,κβ(k1,...,ku))=1
(50) holds

1.

As with D(x) = D2(x), we truncate the ranges of the variables ki and the
ranges of t and l to

(52) t ≤ log x,
1

2pi
L2x < kiνpi

(x) ≤ 3
4
L2x,

(53) r(l oddκ(β(k1, . . . , ku))) ≤ (log x)2.

The error made can be neglected—indeed, the bulk of the contribution to
the sum will come from u-tuples (k1, . . . , ku) with ki near p−νpi

(ki)

i L2x,
1 ≤ i ≤ u (see below).
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First, we delete the condition

(54) (m,κβ(k1, . . . , ku)) = 1.

Then, we partition the sum on m according to the value j of ω(m). The
sum on m then becomes

(55) O(1) +
∑

1≤j≤min1≤i≤u

{
ki
αi
−ω(sκ(k1,...,ku))+ω(l)−

νpi
(β(k1,...,ku))

αi

},
where the jth summand is

(56) #
{
m ≤

x
∏u

i=1 p
−ki
i

lt oddκ(β(k1, . . . , ku))
: ω(m) = j

}
.

We briefly sketch the remainder of the argument, since much of the
analysis is extremely similar to the arguments given in Section 5. Let k
denote the greatest integer not exceeding the minimum in (55). So, our last
upper bound for Dκ(x) can be rewritten

Dκ(x) ≤
∞∑

k=1

∑′

(k1,...,ku)∈(Z≥0)(u)

∑
t∈T

∑
l,p|l⇒p|β(k1,...,ku)

∑
1≤j≤k

,

where the jth summand equals the jth summand in (55), and where the
dash indicates that the sum on (k1, . . . , ku) is over u-tuples such that the
greatest integer of the minimum in (55) has the value k. Then we argue
that we can truncate the sums to the ranges

(57)
k ≤ 3

4
L2x;

ki

αi
≤ 3

4
L2x for 1 ≤ i ≤ u;

t ≤ (log x)2; r(kl) ≤ (log x)2.

As in the argument given in Section 5, we show that the jth summand grows
geometrically, so that the sum on j has the same order of magnitude as the
jth summand with j = k. We obtain the upper bound

Dκ(x) � x

log x

∑
k

∑′

(k1,...,ku)

∏u
i=1 p

−ki
i

oddκ(β(k1, . . . , ku))

×
∑
t∈T

(57) holds

1
t

∑
l

p|l⇒p|β(k1,...,ku)

1
l

(L2x)k

k!
+

x√
log x

.

Again as in the argument given in Section 5, we show that the sum on t can
be omitted; thus,

(58) Dκ(x) � x

log x

∑
k≤ 3

4 L2x

∑′

(k1,...,ku)
ki
αi
≤ 3

4 L2x

∏u
i=1 p

−ki
i

oddκ(β(k1, . . . , ku))
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×
∑

l,p|l⇒p|β(k1,...,ku)

r(kl)≤(log x)2

1
l

(L2x)k

k!
+

x√
log x

.

For any u-tuple, k1, . . . , ku, there is a value of i for which the minimum
referred to in (55) is attained. (There may be more than one such value.)
We partition the sum on k1, . . . , ku, according to which value of i (or values
of i) give(s) that minimum. Thus,

Dκ(x) � x

log x

u∑
h=1

∑′′

k1,...,ku
ki
αi
≤ 3

4 L2x

+
x√
log x

where the (k1, . . . , ku)-summand equals the corresponding summand in (58),
and where the double dash means that (k1, . . . , ku) contributes to the sum
in (58) and that the minimum in (55) is attained for i = h. (Note that once
kh is chosen, the value of k is determined, so that we no longer need that
sum.)

Again as in Section 5, we multiply and divide by a suitable power of k, to
replace (L2x)k by ((1/k)L2x)k. Then we partition the sum on k according
to whether

(59)
∣∣∣∣ kh

αh
− 1
κ
L2x

∣∣∣∣ ≤ 1
κ

(L2x)/L3x.

When (59) holds, we replace (L2x)k/k! by (L2x)[kh/αh]/[kh/αh]!. We show
that the part of the sum with (59) failing to hold can be neglected. In this
way, we get

(60) Dκ(x) �κ
x

log x

u∑
h=1

∑′′

(k1,...,ku)
ki
αi
≤ 3

4 L2x

(59) holds

I(k1, . . . , ku;h)
κω(sκ(k1,...,ku))

×
(

1
κL2x

)[kh/αh]

[kh/αh]!

∑
l

p|l⇒p|β(k1,...,ku)

κω(l)

l
+ E1(x)

where

(61) E1(x) = o

(
x

(log x)1−1/κ

1
(log log x)1−κ+1/4

)
,

and where

I(k1, . . . , ku;h) =
k[kh/αh−νph

(β(k1,...,ku))/αh]

(
∏u

i=1 p
ki
i ) oddκ(β(k1, . . . , ku))

.
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It follows from the Fundamental Theorem of Arithmetic that

(62) I(k1, . . . , ku;h)

�κ
1

β(k1, . . . , ku)

u∏
i=1
i 6=h

p
kh−ki+νpi

(β(k1,...,ku))−νph
(β(k1,...,ku))

i .

By construction, s
((

kh+κ−2
κ−1

))
divides sκ(k1, . . . , ku). Hence,

ω

(
s

((
kh + κ− 2
κ− 1

)))
≤ ω(sκ(k1, . . . , ku)).

Moreover, since (
kh + κ− 2
κ− 1

)
=

1
(κ− 1)!

kh+κ−2∏
v=0

(kh + v),

we have

ω
(
s
( kh+κ−2∏

v=0

(kh + v)
))
− ω((κ− 1)!) ≤ ω(sκ(k1, . . . , ku)).

Hence, κ−ω(sκ(k1,...,ku)) ≤ κ−γ(kh,κ), where

(63) γ(n, κ) = ω
(
s
( n−2∏

v=0

(n+ v)
))
.

Next, we estimate the sum on l in a similar manner to the way we estimated
the sums on l in Section 5. The result is

(64)
∑

l
p|l⇒p|β(k1,...,ku)

κω(l)

l
�κ (L4x)1+κ.

Combining (60) with (62)–(64) yields

Dκ(x) � x(L4x)κ+1

log x

u∑
h=1

κ−γ(kh,κ)

β(k1, . . . , ku)
(65)

×
∑′′

(k1,...,ku)

ki≤ 3
4 L2x

(59) holds

(
1
κL2x

)[kh/αh]

[kh/αh]!
I ′(k1, . . . , ku;h) + E1(x)

where I ′(k1, . . . , ku;h) is the expression on the right of (62). In view of the
meaning of the double dash on the sum over (k1, . . . , ku), we have

(66) ki − νpi(β(k1, . . . , ku)) ≥ kh − νpi(β(k1, . . . , ku))
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for all i. So, ki ≥ (L2x)/(2κ). It follows that

1
β(k1, . . . , ku)

� (L2x)(1−κ)ω(κ).

Next, we rewrite the sum over (k1, . . . , ku) as a u-fold iterated sum, with
kh outside, and each of the other variables inside:∑′′

(k1,...,ku)

=
∑
kh

(59) holds

∑
k1

∑
k2

. . .
ki≤ 3

4 L2x for all i

(66) holds for all i

∑
ku

.

(Here, of course, the second sum on the right is over k2 if h = 1.) Thus, we
have

Dκ(x) �κ
x(L4x)κ+1

(log x)(L2x)(κ−1)ω(κ)

u∑
h=1

∑
kh

(59) holds

κ−γ(kh,κ)

(
1
κL2x

)[kh/αh]

[kh/αh]!

×
u∏

i=1
i 6=h

∑
ki≤ 3

4 L2x

(66) holds

R(kh, ki) + E1(x)

where

R(m,n) = R(m,n, κ; k1, . . . , ku)(67)
= pkh−ki+νpi

(β(k1,...,ku))−νph
(β(k1,...,ku)).

By (66), the exponent on p in (67) is a nonpositive integer. If we write −g
for that exponent, we discover that

R(m,n)
= p−g#{(h, i) : kh − ki + νpi

(β(k1, . . . , ku))− νph
(β(k1, . . . , ku)) = −g}.

Estimating pgR(m,n) is, thus, related to the problem of estimating the
number of positive integers n ≤ y for which n − νp(n) assumes a fixed
value. Solving this related problem immediately yields an upper bound on
pgR(m,n). But, in our earlier paper on the subject (see Lemma 4 of [SP1]),
we showed that

(68) #{n ≤ y : n− ν2(n) = m} ≤ ξ((log y)/ log 2),

where ξ(x) is defined in the introduction to the present paper. A similar
proof yields a comparable result for νp(n), where p is a fixed prime. The
replacement of νp(n) by an expression of the form νp(n+j), where j is fixed,
poses no real additional difficulty. To estimate pgR(m,n), we must replace
νp(n + j) by a finite product of, say, t linear factors n + jl in n. Then, we
argue that for νp(

∏t
l=1(n + jl)) sufficiently large (as a function of the jl),
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we must have
νp

( ∏
l

(n+ jl)
)

= νp(n+ jL) +M,

for some subscript L, where the integer M is bounded in magnitude by t.
The result we get is comparable to (68), but with ≤ replaced by �, and
with ν2 replaced by νp. In particular, we have pgR(m,n) � Lvx for any
integer v ≥ 2. So, by (66), the sum on ki in (67) is of order

∞∑
g=0

Lv

(
3
4L2x

)
pg

� Lvx.

Therefore,

(69) Dκ(x) �κ,v
x(L4x)κ+1(Lvx)ω(κ)

(log x)(L2x)(κ−1)ω(κ)

u∑
h=1

∑
kh

κ−γ(kh,κ)

(
1
κL2x

)[kh/αh]

[kh/αh]!
.

This is our upper bound. The next theorem is an immediate consequence.

Theorem 4. For any integers κ, v exceeding 1, we have

Dκ(x) �κ,v
x(L4x)κ+1(Lvx)

(log x)(L2x)(κ−1)ω(κ)

ω(k)∑
h=1

∞∑
kj=1

κ−γ(kh,κ)

(
1
κL2x

)[kh/αh]

[kh/αh]!
,

where γ(kh, κ) is defined by (63), and

κ =
ω(k)∏
i=1

pαi
i .

Finally, we note that in the inner sum, the expression [kh/αh] has the
same value whenever kh satisfies αhn ≤ kh ≤ αnn+αh−1. So, if we replace
−γ(kh, κ) by 0, and then group together those kh-terms with [kh/αh] the
same, we get the bound

O

( ∞∑
a=1

(
1
κL2x

)a

a!

)
= O(e

1
κ L2x)

for the inner sum. The upper bound implied by Theorem 2 follows, upon
choosing, say, v = 3.
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