ACTA ARITHMETICA
LXVIIL4 (1994)
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1. Introduction. Let d(n) denote the number of positive integers di-
viding the positive integer n, and put

w(n) = Z 1, s(n)= Hp.
pln plln

For all integers k > 2, define the k-fold iterated divisor functions d,(n) by
the identity

001>H:00d”(n) Res > 1.
<;ns 7;1 ns ’

For all positive real numbers x and all integers x > 2, define

Dy(x) = #{n <z : ds(n) [n},
and put D(z) = Dy(x); d(n) = d2(n). Earlier, we established the following
three results (cf. Theorems 1, 2, and 5 of [SP1]).

THEOREM. (i) D(z) = z/(v/Tog z(loglog z) o),
(ii) Let k = p®, where « is a positive integer, and p is a prime. Define
{&(i,p)}$2, recursively by

£0,p) =0, £6,p) =€(—1,p) +pH) Jori>1.
Then there exists a constant c(k) > 0 such that

xz&p(x) <loglog loglogx>1_1/“

#{n <z :ds(n)|n} < c(k) (loglog x)r—1 log z

for x > 16, where &,(x) is the number of subscripts i with £(i,p) not exceed-
mg x.
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308 C. Spiro-Silverman

Further history of this and related problems is contained on p. 82 of [SP1].
Numbers n such that d(n) divides n arise in connection with a variety of
iteration problems, including the result of Section 3 of [SP2].

In the present paper, we obtain the following estimate.

THEOREM 1. There are positive constants cy and c1 such that

— 00 1 %
cor(Lan) % g (Gloglogn)
(log ) loglog = — 319w(i)
iodd, quTJarefree
crx(Lyx)3/? i loglog:n
~ (log z)loglog x 112w (s(4))

=1
Here, Lyx denotes the four-fold iterated natural logarithm of . In view
of the facts that as y = % loglog x — oo, the bulk of the contribution to the
series Y 2 y™/n! for ¥ occurs for n near y, and the normal order of both
w(i) and w(s(i)) is loglog i, we can get a heuristic estimate by replacing each
of the functions w(i), w(s(i)) by loglog (5 loglog z) for all i. Thus, we have
the approximations

>, (3 loglog ) ez loglogz
z i19w(7) 2log log(% loglog )’
=1

lOg ]Og T e% loglog x

Mg

— l|2w(s(z)) 2log log(2 loglog )
1=

Simplifying and combining the results with Theorem 1 gives the following
estimate.
HEURISTIC ESTIMATE:
z  (logloglog x)~ 108 2+e(l)
Viog x loglog x
Note. An average-order estimate in place of a normal-order estimate
would yield a somewhat different result.

D(z) =

The results of Theorem 1 generalize to Dy (z). As a corollary of that
generalization, we obtain the following theorem.

THEOREM 2. For all integers k > 2 we have

x
D, (z) = ————(loglog z)(1=®«)+e) g6 2 0.
fi( ) (logx)lfl/”( g log )

2. Notation, basic definitions, and preliminary results. Through-
out this paper, i, j, k, [, m, n, and t are reserved for integers (m, n, and ¢
positive), p and ¢ denote primes, and w, x, y, and z signify sufficiently large
real numbers. A summation of the form ) _  is assumed to extend over all
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positive integers n not exceeding x. A sum or product of the shape Zp or
Hp, respectively, signifies a sum or product over primes: Thus, for example,
Zp|n 1 denotes the number of distinct primes dividing n. We summarize
other notation commonly utilized in this paper in the following table.

Symbol

Meaning

P n
vp(n)
odd(n)
w(n)
log =
L,x

f(x) <ap,.. 9(x)
z-sufficiently large

[a, b, .. .]-sufficiently large

Cp,C1,C2, ...

P |n, but pin

The unique integer j satisfying p’ || n

The greatest odd integer dividing n

The number of distinct prime divisors of n
The natural logarithm of =

These functions are recursively defined for all
integers n > 2 and for appropriate values of x
by Leox =loglogx; Lyi1z =log L,z

There exists a positive constant K for which
|f(z)| < Kg(x) if x is sufficiently large

f(z) = O(g(x))

g(x) < f(z)

f(z)/g(z) tends to 0 as x tends to co

f(z) = O(g(x)). The implied constant possibly
depends on a,b, ...

f(@) = Oap,...(9(x))

Sufficiently large, possibly depending on z
Sufficiently large, possibly depending
ona,b,...

Positive absolute constants

The set of squarefree positive integers

The set of odd, squarefree positive integers
The largest squarefull divisor of odd(n)
(odd(n))/r(n)

The number of primes not exceeding x

The set of squarefull numbers

Unless otherwise specified, all other notation will be identical to that of [SP1].

DEFINITION. We term a positive integer ¢ squarefull if p? divides t for

every prime divisor p of t.
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In both the upper and lower bound arguments of [SP1], the key place
to search for an improvement of the resulting estimate is in lemmas of the
following type (cf. the derivation of equation (15) and Lemma 7 of that

paper).

LEMMA. (i) If d(n) | n, then odd(1 + v2(n))|n.

(ii) Let € > 0 be given and let | > 2 be e-sufficiently large. For every
[e, []-sufficiently large positive integer k coprime to l!, there exists a multiple
k* of k for which k* < k¢, d(k*)|2*k*, and k* | (I'k)*. (Thus, k* has no
large prime divisors which do not divide k.) In our applications, we take
k = 1a(n).

If we could make a better estimate of k* than the bound k* < k',
while retaining the other conclusions of (ii), then we could improve the lower
bound for D(z) given in [SP1]. In addition, if we could choose [ = 2 for
every ¢ > 0 when applying (ii), then we could squeeze the maximal amount
of power from our lemma. For squarefree k, we can obtain the conclusion
of (ii) with £* = k, and [ = 2. The difficulty, then, becomes the problem of
showing that

k ©
(1) S %»Z?ﬁ:ey
1> 2

k odd, squarefree

as y tends to infinity. Our method, an application of a squarefree sieve
(cf. [ER]), is developed in the next three lemmas.

LEMMA 1. For all positive integers k and h, and all real y > 1, we have
DL D DR
1=0 1=0

k|l I=h mod k

ey
< —.

(2) NG

The implied constant is absolute.

Proof. For fixed y, the function y'/I! of [ increases in the interval
<[ < y, and decreases in the interval y < [. Now, define the sequence

0
{a(4)} by
a(2j) = kj, a(2j+1) =kj+h,
for all nonnegative integers j. Then the left-hand side of (2) is
O (=12 > (Z1)iqel@) 0 (—1)qe@)
S| £ e, 5 coo
j=0 2 j=0 J): j=0 J):
a(§)<y a(§)>y

By applying the Alternating Series Inequality to each of the sums on the
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right, we obtain the upper bounds

o (L1)igal)| A © (L1)igal) | oB
5 | S ) s
= a(y)! Al = a(y)! B!
a(j)<y a(4)>y

where A = max{j : a(j) < y}, and B = min{j : a(j) > y}. It therefore
follows from the Triangle Inequality that the left-hand side of (2) is at most
yA /Al +yB /B! Now yA /A! = yA/I'(A+1). Moreover, y*/I'(A+1) has its
maximum, as a function of A, at a value A between y — 1 and y + 1. Thus,
we can conclude from Stirling’s Formula that y4/A! < (14 o(1))eY/\/27y.
Similarly, we deduce that y®/B! < (1 + o(1))e¥/+/27y, and the lemma
follows. m

LEMMA 2.

The implied constant is absolute.

Proof. Partitioning the sum according to the residue class of I mod-
ulo k, and then applying Lemma 1, yields

oo 00 ! oo Y
y y v €
T > = o> ( z!+0<\/y>>‘
=0 h mod k =0 h mod k =0
I=h mod k [l

Since the hth summand in the sum on the right is independent of h, we have

1
Y ke¥
P o()
P ! NG

k|l

A
Al

Solving for the sum on the right now gives the lemma. =

LEMMA 3. Let S and S’ respectively denote the sets of squarefree and
odd squarefree numbers. Then

o
- Y _ 2w .
(i) Z T JrO(logy)7
(3) les’

o
R DN
(i) 2] = 3¢ +O(logy>'

Proof. The proof of (i) is very similar to the proof of (ii). Ergo, we
present the proof of (ii) only, and leave the proof of (i) to the reader. The
method is to sieve by squares of large primes first, and then to sieve by
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squares composed only of the remaining small prime divisors. For brevity
of exposition, write P(y) for the product of all primes not exceeding logy,
and S(y) for the left side of (3). By partitioning the last sum according to
whether [ exceeds 10y, we obtain

l l
Y Y
Sw)= Y, “+o< > u)'
0<i<10y I>10y
I squarefree

Now the sequence {y'/I!} decreases geometrically in [ for [ > 10y. Indeed,
Y+ D) = (/1) (y/(1 + 1)) < .1y' /1. Thus, the error is of the order of
the first term of the series. By Stirling’s Formula,

(4) S(y) = +O<<> )
0<i<10p l! 10 VY
I squarefree

Now the condition that [ be squarefree is equivalent to the following pair
of constraints: no prime p > logy satisfies p? |, and no prime p < logy
satisfies p? | 1. If we ignore the first condition, we make an error of

l
)
0 >
!
0<I<10y
p?|l for some p>log y

in the sum in (4). Now, we note that if [ contributes to this error, then we
have p? |l for at least one prime p exceeding logy. Hence,
10y 1

l l
Yy Y e
- 2 (2 2 g)ol(n) @)
0<i<10y p>logy 0<I<10y, p2|l
ipr\lthenp>logy

If the final sum on [ is not void, then p cannot exceed /10y, since p? |l.
Thus, that error is

l
Y
0( > > z'>
log y<p<+/10y 0<I<10y, p2|l
It therefore follows from Lemma 2 that
Yy
G Sw= > L

0<i<10y
if p?|l then p>logy

o 2 Grm) o))

We can restate the last condition beneath the first sum as the condition
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that P(y) be coprime to the maximal perfect square dividing I. So, the

main term is
l
Y
X 2. uld).

0<I<10y  d|P(y), d2|l
Interchanging the order of summation gives the expression
!

Sou@d Y5

d|P(y) 0<1<10y, d2|1

for this quantity. We now apply the methods of the derivation of (4) to
replace the inner sum by

>
7'-
— [!
d2|l
Thus,
l 1 l S/ 10y
Yy Yy Yy Yy e 1
N2 40 IV=NZ o) —).
> oneyiro( ) -xheo((5) %)
0§l§10y,d2|l =0 1>10y =0
|l d>|l |l

Here, we have ignored the condition that d? divide [ in the last sum. Hence,
Lemma 2 implies that the main term in (5) is

o) ol(5)" )

The second error term can be absorbed into the first. Thus,

St = 3 u@ (F+o(%))
+ O(ey > % + i7r(\/@) + ({B)loyl).

log y<p<+/10y \/y \/y
According to the Chebyshev estimate for 7(z), we have

Sy=e S “C(lf)+o<j 3 1)

d|P(y) d|P(y)
ol Y L)iofZ
p? logy )

log y<p<+/10y
Since > ..p7? < 3,..n" 7 < 1/logz, we can ignore the inequality
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p < /10y, and thus, arrive at the estimate
_ u(d) Cd 1 e¥
Sy)=e" Y 5 0 IZ +0 oy )
dlP(y) d|P(y)

Now p(d)/d? is a multiplicative function of d. Hence, the definition of P(y)

gives
Sy =¢ [] (1—p2)+0<\€/yy2”(10gy)> +O< ¢’ )

p<logy logy

A second application of the Chebyshev estimate implies that the penulti-
mate error term can be absorbed into the final remainder term. Now if the
product were infinite, it would be the Euler product for 1/{(2). Ergo,

S(y):%ey I (1—p_2)_1—|—0< ¢’ )

p>logy log 4

And, from the inequality

o< J[ @-p»'-1

1 1 1
= Z ﬁ—lg Zﬁ<< )

n=1
if p|n then p>logy

we conclude that

11 (1—p2)1:1+0( ! )

p>logy
of which the lemma is an immediate consequence. m

LEMMA 4. Let 6 be a real number with 0 < 6 < 1/2, and let

© —1 n—1,n
Qly) =—-(1+y)log(l+y) = Z(n(i_fé for 0 <y <1.
n=2
Then i
(i) #{n <z : |w(n) — Lox| > 0Lax} < \(5/L27xer(5)L2x'

The implied constant is absolute.
(ii) For é-sufficiently large n, we have w(n) < (1 + 6)(logn)/Lan.

Proof. The first inequality follows from Theorems (3.18) and (3.20)
of Karl Norton’s paper [NO2]. In Theorem (3.18), we take E = P. In
Theorem (3.20), we choose F = P, and § = 1/2. Then, we combine the
estimates. For a very detailed history of this and related results, as well as
a discussion of the importance of the techniques applied to them, see [NO2].
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The second inequality is a result of the discussion in [HW], beginning with
the last sentence on p. 354. =

3. Technical lemmas

LEMMA 5. If k is an odd, squarefree positive integer, then d(n) divides
n for all integers n of the form n = 2F~1km, with u(m) # 0, (m,2k) = 1,
and w(m) <k—1—w(k).

Proof. By the multiplicativity of d(n) and the pairwise coprimality of
2, k, and m, we have d(n) = kd(k)d(m). Since k and m are squarefree, we

deduce that d(n) = 2¢F)+«(m)k Hence, if w(m) does not exceed k—1—w(k),
then d(n) divides 2«(*F)+k=1-w(k)} — 9k=1% which completes the proof. m

We use the last lemma to derive a lower bound for D(z), and the next
lemma to derive an upper bound for this function. In the next lemma and
thereafter, we will let

T = {n:if p|n, then p?|n}
denote the set of powerful, or squarefull, positive integers.

LEMMA 6. Let k be a given positive integer. If vo(n) = k — 1, and d(n)
divides n, then n has the form

n = 28" (odd(kl))mt,
wherem € S, t € T, m and t are odd, any prime divisor of | also divides k,
and
w(m) <k —1—w(k) — v2(d(odd(kl))).
Clearly, we can take [ to be odd, here.

Proof. Since d(n) is multiplicative, and 2*~! | n, we have k|d(n),
whence k is a divisor of n. Thus, 2871 odd(k) divides n. Let

= H pr(n/k)’

plodd(k)

so that n/(2¥~!odd(kl)) is an integer coprime to 2k. Since any positive
integer can be written as the product of a squarefull and a squarefree in-
teger by separating its canonical decomposition accordingly, we can write
n/(2¥"Lodd(kl)) = mt, with m € S, t € T, (m,t) = (m,2k) = (¢,2k) = 1.
Hence, n = 2~ (odd(kl))mt. Since d is a multiplicative function, we find
that kd(odd(kl))2¢(™d(t) | n. We deduce the lemma by evaluating the func-
tion v5 at both sides.

LEMMA 7. Let
Wj(.I,k:) = #{TL <xz: w(n) =7, :U’(n) 7£ 0, (’I’L, k) = 1}7
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for all integers j > 0 and k > 1, and real numbers x > 0. Further, define

0= I (-5) (+5)

and

for all positive real z. Let A and B be fized positive real numbers. Then

mi(z, k) . . ] .
= g7 ((szf)i)! (f <]L;:c1 > . <]L;:c1> Honr <W> ) |
uniformly in

(6) 1<j<BLyx, k<exp((logz)?), [[p< (logz)?.
plk

Moreover, we have
j—1

@ 1z (1

uniformly in the range (6).

> > fr(B) >p (La(3k)) P

Proof. The first conclusion follows at once from Theorem 2 of [SP3].
For more information, see the first paragraph on p. 85 of [SP1]. We deduce
the remaining conclusion from the first conclusion of Lemma 2 of [SP1], with

b=DB.

LEMMA 8. For any constant B, we have 1 <p f(z) < 1 uniformly in
the interval 0 < z < B.

Proof. The function is nonvanishing on the compact interval 0 < z < B,
and can be shown to be continuous thereon (see [SE]). m

In view of Lemma 6, we need to control the size of the largest squarefull
divisor of an integer n, with perhaps some exceptional integers. We do so
with the following result.

LEMMA 9. For 1 <y < x, we have
(8)  #{n < x: the largest squarefull divisor of n exceeds y} < x/\/y.
The implied constant is absolute.

Proof. If we partition the set of integers n on the left according to the
value of the largest squarefull divisor ¢ of n, we find that the quantity on
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the left is at most

o) 1

t>y,teT n<z,t|n

Now the inner sum is trivially at most x/¢t. Thus, the left side of (8) does

not exceed
x Z 1/t.

t>y, teT
If we sum by parts, and apply the result that the number of squarefull
integers not exceeding any real number w > 1 is O(y/w), we obtain the
lemma. The estimate O(y/w) follows from an estimate of Erdés and Szekeres
[ES]. =

Also, in view of Lemma 6, we need a precise result analogous to Lemma 9
when we are concerned with powers of 2, and not with all squarefull numbers.

LEMMA 10. For 1 < w < x we have
#{n <z:wva(n) >w} <K x/2%.

Proof. If we partition the set on the left according to the value of v5(n),
we find that the quantity on the left-hand side is

SN SIEED S I}

k>w nSz,Zk”n k>w nS$,2k‘TL

The last sum on 7 is, trivially, at most z/2. So,
x
#{n <z:v3(n)>w} < Z*<<f

since the last sum is a geometric series. m

Note that Lemma 10 does not follow directly from Lemma 9.

We also require a result which allows us to take the series Z;io v /!
= ¢e¥, perturb some of the subscripts j with |j — y| sufficiently small, and
still have a series whose value is approximable by eY. An estimate of this
type, sufficient for our purposes, is the next lemma.

LEMMA 11. For |j —y| <y/logy, and for 1 <m < 10logy, we have

= (o)
— =140 .
(j-—m)  j! logy

The implied constant is absolute.

Proof. We have

y " :Mﬁlj—i:wﬁl(l+j—i—y)

G=mt !
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For y sufficiently large,

9 L 5
A for all i, j.
logy (0 logy

J ) m Jj—m J 2 \™
y,'<1 - ) < yi' < y'<1 + > .
J! logy (j—m)!t — j! logy

The lemma is now an immediate consequence of the Binomial Theorem. m

Thus,

LEMMA 12.

n x

e

X
) DA
n! vzlogx
n, |n—xz|>4/x logx &

Proof. This is Lemma 5 of [SP1]. For much more precise estimates of
this sort, we refer the reader to [NO1]. m

The next lemma allows us to bound f,(z) and related products, for
some z.

LEMMA 13. Let B and C be fixed real numbers with B > 0 and with
0<C<2,andlet0<b<Band0<c<C. We have

b
(i) I | <1 + ) < (Lo(3K))° uniformly in b and k;
p
plk

~1

(ii) H (1 - C) < (L2(3k))¢  uniformly in ¢ and k.
plk P

Proof. This lemma follows from Lemma 2 of [SP1]. m

4. A lower bound for D(z). If we partition the set of positive integers
n such that d(n) divides n according to the value k — 1 of v5(n), we obtain

D(z) > > o1z > > oL

tLox<k<3L,z n<z fLoz<k<3Lp,z n<z
k—1 k-1
2" In kes’ 2" In
d(n)|n d(n)|n

In view of Lemma 5, we have

D(x) > Z Z 1.

1Lox<k<2Lsx meS, 28 tkm<ax
kes’ (m72k):17w(m)§k_1_w(k)

First, we solve the inequality 2*~1km < x for m. Then we partition the set
of integers m contributing to the last sum, according to the value of w(m).
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Ergo,

D) > Y > >, L

ILox<k<3 Loz 1<j<k—1-w(k) meS,m<2' Fz/k
kes’ (m,2k)=1,w(m)=j

We deduce from Lemma 7, with A = B = 1, that the innermost sum is
-1 . . . 3
o oo U )+ ) - o(eiw )
where v = 217 %z /k. Now
(9) logv=logz+ (1—Fk)log2—logk = (logz)(1+ O((L2x)/logx))
for k < Lox. Hence,

Lyv = Low + log(1 + O((Lsx)/ log ) = Lo + O((Law)/ log 7).

From the Binomial Theorem, we can conclude that

6o = (e oims)) =5 (oo (i2)

uniformly in k < Loz, j < Lox. It now follows from (7) and Lemma 8 that
the last sum on m is

e 2 (102 () o (B,

uniformly in & < Loz, j < Lox. Thus, we can deduce from Lemma 8 and
from (7), with B = 3/4, that

x(Lyx)—3/4 1 (Loz)?—t
10) D e — .
(10) (z) > log 2 ok ‘ Z (G —1)!
Lloa<k<3Lox 1<j<k—1-w(k)

keSS’

Next, we replace the inner sum by the last summand, to obtain

SU(L4$C)_3/4 Z 1 (Lgx)k_Q_w(k)

D(z) > R
) |
log x L het e 2kk (k —2 —w(k))!
kes’
. $(L4$)73/4 Z 1 (%sz)k—Z—w(k)
(log z) Lox 20(k) (k-2 —w(k)!

k|3 Lox—k|<%(Lox)/Lsx
kes’

Here, the replacement of the range iLgx <k < %Lg.’L‘ by the inequality

5Lox — k:’ < 1(Low)/Lsz just makes the sum on k tinier. Now, we want to

apply Lemma 11 to replace k — 2 — w(k) by k twice, on the right-hand side.

To do so, we first use Lemma 4(i) to deduce that 2 + w(k) < 3(logk)/ L2k
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< %Lgx. Then we apply the aforementioned Lemma 11 to get

(L) =3/ Z : (%Lﬂ)k
. k) gl
(log ) Low k=1 Lox|<2(Low)/Lax

kes’

D(z) >

When we rewrite the sum on the right as

=1 (3Le)’ 1 (3Lar)"
Z wk) kI Z wk) |l

k=1 |k—1Lox|>1(Lex)/Lax
’ 2 2
keS kes’

and observe that the last sum will increase if we omit the condition k& € &’
from beneath it, we are able to deduce that

x(Lyx) =3/ i 1 (%Lgfﬂ)k
(logz)Lox £~ 2w(k) k!
kes’

(11) D(z) >

+ E(x),

where

k
@(Lyz)=3/* 1 (3Lex)
E(z) = O Bxat) 12728 )
() ( (log z)Low Z 2w(k) k!
|k—3Lox|>3(Laz)/Lsx

We majorize 1/2¢(%) by 1/2 < 1, in the last summation. Then we deduce
from Lemma 12 that

x(Lyx)~3/%
Viog x(Lox)3/2Lax’
To show that E(x) is of smaller order than the main term on the right of (11),
we restrict the sum on k in (11) to the range |k — § Loz| < \/(Laz) L3, and
then apply Lemma 4(i) to bound 1/2¢®) from below in that range. Thus,

(12) E(x) <

k k
i L (3Le7)” S $ 1 (3Lox)
ow(k) k! 92(log k) / L2k B
hes k-3 Laa|<\/(Lan) Las
kes’

Now for k contributing to the right-hand side, the exponent 2(log k)/ Lok is
less than .1L3x. Ergo,

1

22(log B)/Lak (Laa) 1182 > (Loa) 7.

So, upon using the identity

> =2 .- >
|k—3Lox|<y/(L2z)L3z all k |k— 3 Lox|>+/(Laz)Lax
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we find that
=1 (3a)'

Z w(k |
2 20 gl
keSS’

sy (S G oy Gl
e k=3 Loa|>/(Tan) Loz

By Lemma 3, the penultimate sum is
2 1. 1 1
— 1+0| — —+/logx.
7T2€2 < + <L3x>> > 10 ogx
The ultimate sum is estimated with the aid of Lemma 12. Accordingly,
) k
1 (3Lex) _orf 1 log z
= > (L S —=/1 Oy ——
> =R (Lox) | g Viogz + (Lox)Laa

k=1
kes’

> (Loz) %" \/log x.
Consequently, (12) implies that
L) 34 & 1 (LLoa)”
E(;E):O(x( 47) Z (2 Qx) >

(logz)Lox &= 2¢k)

The first inequality of Theorem 1 now follows from (11), for a sufficiently
small constant cg.

Note. With more effort, we can replace the factor (Lyz)™3/4 by 1/v/Lyx.
The main idea is to restrict the sum on k to the range %Lgac <k< %Lgac
+g(z), for an appropriate function g(x), prior to the application of the lower
bound in (7).

5. An upper bound for D(z). In view of Lemma 6, we have
OESEED D ¢
n=2k=1(odd(kl))mt<x
where the double dashes imply that m € S, t € T, Hp‘ ,p|k, and
(13) w(im) <k —1—wvy(k) — va(d(odd(kl))).

Now, we apply Lemma 9 with y = (log z)?, to restrict the size of the divisor
t of n. We simultaneously constrain the size of the largest squarefull divisor
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r(kl) of odd(kl). This application yields

D(z) < S 1+O<1ozx>‘

n=2F"1(odd(kl))mt<z
t<(log z)*
r(kl)<(log x)?

When we similarly apply Lemma 10 with w = %Lgx to restrict the range
of k, and note that [],, p|k if and only if [| k!, we find that

Wwoowe Y Y Y %
t<(logz)? 1<k<3Lsx 1, 1|k mﬁm
teT r(kl)<(log z)? (13) holds
L
(log z)-501"
Assume that [ contributes to the penultimate sum in (14). If p is a prime
divisor of odd(kl), then p makes a positive contribution to w(s(k)) — w(l) if

and only if we have

(15) pllk and ptl.

If (15) holds, then p contributes 1 to the additive function
(16) vo(d(odd(kl)))

of kl. In any case, p contributes not less than 0 to (16). So,
(17) va(d(odd (k1)) > w(s(k)) — wll).

Combining (17) with (13) yields
wim) <k —1—w(k) —w(s(k)) +w(l).
Furthermore, w(m) < k — 1 — va(k), by (13). It therefore follows that
(18) w(m) < min{k — 1 —wa(k),k — 1 — (k) —w(s(k)) + w(l)} := h(k,1).
So, we can conclude from our last estimate for D(z) that

(199 D)< > > > > 1

t<(logz)? 1<k<3Lsx 1, 1|k mﬁm

teT r(kl)<(log z)? (18) holds

O Gagayn)

Upon partitioning the set of m contributing to the last sum according
to the value of w(m), and applying Lemmas 7 and 8, we find that this last

sum is of order
w (Low)i~1 i— 1
R S fk<JLQw),
1< <h(k,l) '
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where w = x/(28~Yodd(klt)). Since w < x, we have Loyw < Loz, and
(j —1)/Law > (j — 1)/Lax. By definition, fi(z) is a decreasing function
of z, so that fr((j — 1)/Low) < fr((j — 1)/Laz). To bound 1/logw, we
further observe that the constraint 7(kl) < (logx)? forces [ not to exceed
(log )2, inasmuch as any prime divisor of [ must also divide odd(k). Hence,
we can deduce from the inequalities ¢ < (logz)? and 1 < k < %LQ:U that
log w > log z. Consequently, the innermost sum in (19) is of order

- '
(20) 1+ Z X fk:(]L2fL') <L2x>3_1
< log x 2F—1odd(kit) (j—1)!
Now
J+1 J
(21) Y _y Yy

G+ jli+1
Since 1 < fr((j —1)/Lox) < 1 for 1 < j < k < 4Lsz, Equation (21)
suggests that the function

j-1>(L2xV1

(22) h(Lﬂ? (G —1)!

might be increasing geometrically in the range j < k < %sz. To show
that this is indeed the case, we use the definition of fi(z) to compute
fe(j/Laz)/ fr((j — 1)/Lax), and show that this quantity is not too small.
We get

J

2 (1+ J ) <1+J )
f j—1 ik pLox pLox
k LQJ}
j i\ i\ j—1
= 1- + 1- 1+
g( pLox (PLﬂ) < pszL“) )( PLzl“)
J J—1
> 1- 1+
10 -522) (0 z)
(- ot
P pLox  pLox pLox

But for j < k < %Lga}, we have (j — 1)/Lox < j/Lox < %. Accordingly,

f<L]> >H<1— I _9/16)
L2$
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If p < .03Lox, we bound —1/(pLax) from below by .03/p?. Otherwise, we

observe that since p |k, and k < %sz, we have p < %ng, so that
1 .34
Loz — p

Thus, —1/(pLax) > (3/4)/p? if p > .03Lax. So, we have

SEL e )

plk, p<.04Lox plk,p>.04Lox
LQZE

Ifk < %Lgx, and x is sufficiently large, then there can be at most one prime
p > .03Lox with p|k. So, the last product exceeds 1 — 1.3175/(.03Lyx)?
> .9999, for x large enough. Thus, if we omit the constraints on p from the
penultimate product, we can conclude that

J
j—1

It therefore follows from (21) that the function (22) grows geometrically (or

faster) for j, k in this range. In this event, the sum (20) has the same order of
magnitude as the term of the sum with j as large as possible. Consequently,

1 1
> t 2 261 odd (k)

9/16 3
2.9999H<1— ]/32 >>0.76 for j <k < 7 Low.
p

(23) D(z) <

logxté(logxf 1<k<3Low
teT
Ly B0 )/La) (G
odd(l) (h(k,1) —1)! * (logx)-501

LUK
r(kl)<(log x)?
Since 1/0dd(l) < 2/l, we replace odd(l) by I. Then we interchange the
order of summation to make the sum on ¢ the innermost sum. (Note that
the constraint r(kl) < (logz)? implies that our iterated sum is finite.) Then
we apply the fact that the sum of the reciprocals of the squarefull integers
converges (see Erdds and Szekeres’ paper [ES]) to obtain the bound

x 1
D@ <r 2 g odd (k)
1<k<2Lox
1 h(k,1) — 1\ (Lox)FD-1 x
DS zf’“( Lo > (h(k,1) —1)! + (log z)-501"

1,1k
r(kl)<(log a:)2
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Upon multiplying and dividing by 2"*)~1 we find that

9—w(s(k))
(24) D)< logz 1§k§§;Lﬂ 202 (k) odd (k)
Y 2w(l)fk<h(k;l )(5 pa) "0~ 1+ z
e Toz ) (k) —1)! " (loga)o0L
r(kl)<(log )2

Next, we substitute & for 2V2(%) odd (k). Then we partition the sum on k
accordmg to whether or not !k: — ngx’ Lgsc)/Lgas So,

(25) log:lc(Z Z ) logx (log x)-501”
where )
9—w(s k
> = 2 2
k,|k—3Lox|<}(Laz)/Lsx l
9—w(s(k))
>, = > —
k<3 Lox !

k, ‘k*%L2$‘>%(L2$)/L3m

and the sum over [ is as in (24). Now by (18),

k— (h(k, 1) —1) <2+ (k) +w(k),
and k — (h(k,l) — 1) > 0 for k sufficiently large. Thus, Lemma 4(ii) implies
that
logk 2logk
26 0<k—(h(k1)—1)<2
for k sufficiently large. Consequently, we can apply Lemma 11 with m =
k — (h(k,1) — 1), and y = 3 Lox, to obtain

20 Y
9-w(s(k) (LLy1)" 2@ h(k,1)—1
< Z k : k! Z I fk( Lox >

k, |k—1Lox|<1(Loz)/Lax ' 1,1k

Here, we have omitted the condition that r(kl) < (logw)?, and thereby
increased the right-hand side.

Utilize Lemma 7 to replace fi((h(k,l) —1)/Lsx) by 1 in the definition
of 5. Then let J = J(x) be the smallest integer exceeding 2Lsz, so that
J > 2+ va(k) + w(s(k)) — w(l), provided that k < 3 Loz, and that z is
sufficiently large. Moreover, the function (%Lgx)]/ j! of j is increasing for
7 < %Lgx — 1, and decreasing for j > %sz. We partition the sum ),
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according to whether k£ exceeds %ng. If k does exceed %LQ(IZ, we replace
h(k,l) by k— J+ 1, and otherwise we replace h(k,l) by k — 1. Accordingly,

(28) 2,52,

where

9w (1Lyz)"  2¢0)
(29) >, = 2 TP DA

1<k<iLoz—31(Lax)/Lsx 1,1k

9—w(s(k)) %Lﬂ k—J(x)
B0 >.,= 2 P ((k - ?J(@)!

TLox+3(Lox)/Lya<k<2Lox

2w(l)

11|k

Again, we have deleted the constraint r(kl) < (logx)2.

Since w(n) is additive, and takes the value 1 at nontrivial prime powers,
we have

2¢() > 2
SE I+ 5
1,1k plk h=1
Ergo, we can conclude from Lemma 13 with ¢ = 2 that
2w(1) =< /2\" 2\ !
DS Z<H2(>:HQ_) < (Loh)?.
I,k plk h=0 p plk p
When we combine this estimate with the inequality k < Loz, we find that
guw(l)
Z < (L4l’)2.

11|k

When we apply this bound to estimate the innermost sum in each of (29)
and (30), we find that

k
3 Q—w(s(k)) (1L2x)
(32) Y, < (Luz) > N

1<k<}Lyz—3i(Lax)/Lsx

(33) 24 < (L4.ZC)3 Z 9—w(s(k)) (%Lgx)

_ e
%L2z+%(L2w)/L3w<k§%L2x k (k J(CU))

k—J(x)

Next, we bound 2~“((*) by 1 in (32) and (33), and majorize 1/k by 1/Lox
in (33). In (32), we observe that

k k41

ko k! Lyx k  (k+1)!
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So,
k1
Z <« (Laz)? Z (5Lo7) "
3 LQIE (k+1)' ’
1<k‘< sz—f(L2$)/L3$
(Lyx)?
DI e >

%L2x+%(L2x)/L3x<k§%L2m

(3220) "
(k= J@)!

Since J(x) < 2L3x + 1, the quantity k + J(x) runs through only integers
exceeding 2L2x + 5 (Lg:U)/Lg:L‘ — 2Ls3x — 1. Thus,

L4:[; (lLQJJ)k
SRS HEICC D S
|k—%L2m|2\/%(Lgm)log(%Lzz)

By Lemma 13,

Z +Z << 3/2\/10gx.

Recalling (25) and (28) gives

r  (Lax)
34
(34) logafZ Viogx (Lox)3/2

It therefore remains to estimate ) ;. Toward that end, we note that (23)
and (26) insure that
h(k,1)—1 1 1
L =_4+0(—.
Lgx 2 Lgm

So, we can conclude from (27) that
1 1
Ik—%LgCEIS%(LgI)/Lg:E
9-w(s(k) (1L,2)"

X

11|k

gw(s(D))

By (31),

S v )
k1 Loz|<1(Loz)/Laz 3%
] (

plk

—1o—w(s(k)) (%Lﬂ)k
> k kL
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Now in view of our notation, we have

o (o) 6-2)

plk

me2eofi)) ()
T2 (o) ol

plk
Since k < 2Ly, it follows from Lemma 13(ii) that

—1
(36) H <1 + O<le x)) < (L4x)0(1/L3x) < 1.
plk s
Furthermore,
O(1 O(1
(37) 11 <1+ (2)><<H<1+(2)>,
pls(k) P v b

and the last product converges. Finally, another application of Lemma 13(ii)
yields

~1

(38) 11 (1 - 3/2> < (Lok)?? < (Lax)3/2.
plk P

Combining (35)—(38), and substituting the result into our last bound for ) _,,

yields the inequality

k
i 269 (1Ly7)
>, < (Laa)” 2 P

|k— 3 Lox|<3$(Laz)/Lsx

Clearly, we can replace the first k£ in the denominator by Lox. When we
substitute the result into (34), we arrive at

L 3/2 lL *
(39) D(z) < J(f) > 2_W(S(k))(2k:2'$)
T x '

g 2 |k—1Lox|<3(Low)/Law

T Lix 3/2
Next, we show that the term (z/v/log ) (L2 /Lox)?/? is of smaller order
than the other part of the right-hand side. By Lemma 4(i), any & contribut-
ing to the sum satisfies
g—w(s(k) > g—w(k) > 9—2(logk)/Lak < 9—3(Lsx)/Laz_
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Therefore, the other part is of order at least

T 1
2—3(L3$)/L4a: Z
logz Lyx k=3 Low|<1(Low)/ Lo

(3L22)"
kL

In the same manner as we argued at the end of Section 4, we utilize Lemma 12
to obtain

|k—2%Lox|<%(L2x)/Lsx

k=0 |k7%L2I|>%(L2$)/L3$

Consequently, the other part is of order at least

T L o-3ten)/Lan
Viogx Lox ’
which is of greater order than (x/v/logz)(Lyx/Lyx)?/?. Tt follows that

k

x  (Lyx)/? ~wtsti (3127)
(40)  D(z) < TTIoa 2 S
logz  Low k=3 Laz|< 3 (Lax)/ Lz :

Upon removal of the inequality below the sum, the upper bound part of
Theorem 1 follows, for a sufficiently large constant c;.

Note. If we merely want to establish the weaker result obtained by
replacing the extreme right-hand side of the inequality in Theorem 1 by its
product with \/Lsx, we can shorten the proof by bounding f; by 1 in (20).
Then we observe that (Loxz)?~1/(j — 1)! is geometrically increasing.

6. The proof of Theorem 2. Concluding remarks. We state the
generalization of the lower estimate in Theorem 1 to the k-fold iterated
divisor functions d,(n), as the next theorem.

THEOREM 3.

: < (i)
Dn K Hi > 2.
(z) > (logx)(Lox)r—1 ; A Jor x

i=1 mod (x!)?
(i+ra—2

A ) squarefree

The proof requires the following generalization of Lemma 3(i).
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LEMMA 14. If k > 2, then there ezists a constant ¢1(k) > 0 for which

0o Y oY
Z i c1(k)e¥ + O(ﬁ) for y > 1.
n=1 1?1?((1) (k)2
("tf;g) squarefree

The proof of Lemma 14 is similar to the proof of Lemma 13(ii). We
omit the details. We remark that the binomial coefficient (”:EIQ) can be
replaced by any integer-valued polynomial 1(n) and the congruence n =
1 mod (x!)? can be replaced by any finite set of congruences in n. (Of course,
the constant c; (k) is replaced by a constant depending upon the system of
congruences in n, and upon the polynomial.) Moreover, the constant will

be positive if and only if ¢)(n) assumes at least one squarefree value. m

The details of the proof of Theorem 3 are analogous to the arguments of
Section 4. First, we let S” = S§”(k) denote the set of positive integers k for
which

k+rx—2

=1 1?2
k mod (x!)* and < .1

) is squarefree.

Then we partition the set of positive integers n such that d,(n) divides n
according to the integer k such that x* | n, but k*T1{n. Here, x = d,(p) for
any prime p, so that k plays the role of 2. Thus,

Dy (z) > > o1z > > oL

= Lox<k<3%Lox n<x 5= Loz<k<3Lox n<x
r k k41 r 7 k
k7|n, Kk tn keS K" |n
d.(n)|n (kyn/kF)=1
d(n)|n

The rest of the argument is almost identical to that of Section 4, the main
differences being the application of Lemma 14 in lieu of Lemma 3(i), and
that in (10), the quantity 1/(2%k) is replaced by

1
/{k (k+f1;2)w(’<’) ’
Then we immediately note that
1 _ (k—1)! . 1
(S T ket Dk +2)... (h+r—2) ~ (Lax)s 1

We leave the remainder of the details to the reader. =

The bulk of the contribution to the sum in Theorem 3 occurs for k near
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%Lgx. Indeed, it follows from Theorem 3 that

k
- 1 (LLyx)
Dy (z) > 1 Z EC R
p— (k) !
(log z)(Lax) lk—1Loz|<L(Laz)/Laz & &
k:ES//

Let € > 0 be given. For integers k contributing to the sum, we can deduce
from Lemma 4(ii) that

1 1 1
kw(k) = (1+e/2)(logk)/Lak > k(1+e)(Lsx)/Laz”

We deduce that
(41)  Dy(=)
x —(14€)(Lsz)/Lax (,ﬁ
> " 5 (lar)

1 L r—1
0g ) (L) =
|[k—L1Lox|<i(Lyz)/Lsz

Now we can conclude from Lemma 12 that
1 k
(;Laz)

2 a

kes"”
‘k—%LzIIS%(LQIE)/L?,I

k=0

kes” k=1 Loz|>1(Law)/Lax
B i (;Lﬂ)’“w( etlow >
=k VIsavIsz)

keS”

Furthermore, by Lemma 14, this quantity is

c1(k)(log )/ + O((log )'/* /\/(Lax)(Lsx)) > (log z)"/*.
Combining this bound with (41) yields

x —(1+€)(Lsz)/Laz
(42) Dy() > r (logl,)l—l/n(L2x)K—1ﬁ :

When & is a nontrivial prime power, Theorem 2 follows from (42) and
the older upper bound for D, (z) stated in the introduction. We remark that
we can now prove that upper bound with the function &,(x) omitted. When
K is not a prime power, we can obtain Theorem 2 either by generalizing the
older upper bound for D (z), or by generalizing the argument in Section 5.
We take the latter approach.
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Let the prime decomposition of xk be k = [, pi*. If n is any positive
integer such that d,(n)|n, then it follows from the relation

(43) aw= ("1

and the multiplicativity of d,(n) that

I ("2 = a( I ) o

i=1 i=1

= , -1
H<Vpl(n)+; >'n
i=1 R
So, if k; = vp,(n) for i =1,...,u, then

H = ((ﬁpk) odd,. (B(kr, - .. ,ku)))_ln

is an integer, where odd,(j) denotes the maximal divisor of j which is co-
prime to x, and where

Bhnseeov) = Bl =TT (75 7%))

] k—1
=1

whence

Clearly, (H, k) = 1. Let [ be the largest divisor of H such that every prime
divisor of [ also divides B(k1, ..., k), let t be the largest squarefull divisor
of H/l, and let m = H/(It). Then in view of our notation, we have

(44) meS, teT, (t,kB(k1,...,ky)) = ({t,m)=(m,kB(k1,...,ky)) =1,

(45) n = (odd, (B(k1,. . .,ku)))(pri)ztm,

(46) (k) =1, Hp‘ﬁ(k:l,...,k:u).

pll

Next, we compare the exact power of p; dividing both n and d(n), and
utilize the relation d,(n)|n to obtain an upper bound on the number of
prime divisors of m. From (44)—(46), the multiplicativity of d,(n), and the
fact that

(47) du(p) = K
for every prime p, we can conclude that
de(n) = d(10dd, (B(ky, . .. k) Bk, ... ky))dy ()20,

Now since d,(n) | n, we must have v, (d.(n)) < k; for all i. Ergo,
Vp; (dﬁ(l Oddn(ﬁ(kla R ku))))+ypi (ﬁ(kla tee 7ku))+ypi (dﬁ(t))+aiw(m) <k
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for all 7. Hence,

(48)  w(m) < (ki —vp,(du(loddy(B(k1, ..., ku)))) — vp, (B(k1, ..., ky))) /o

for all i. Denote the product of all primes exactly dividing B(k1,..., k),
and not dividing k, by sk(ki1,...,ky), and denote the largest squarefull
divisor of odd, (8(k1, ..., ku)) by r«(k1,...,ky). Then the number of primes
exactly dividing odd,; ({3(k1, ..., ky)) is at least w(sx(k1, ..., ky)) —w(s(l)).
Therefore, it follows from (47) that

g n ke k))=s(O) | g (odd, (18(k1, . . . ka))).
Accordingly,

Vp, (d(0dd, (18(k1, - . Kku)))) = (w(sk(k1,y .. ky)) —w(s(l)))oy.
We deduce from (48) that

(49) w(im) < kj/a; —w(su(ki,... . ky)) +w(s(l) —vp, (B(k1,... . ky)) /o

for all 7. Since w(s(l)) < w(l), we deduce that any m satisfying (48) must
also satisfy

(50)  w(m) < kifa; —w(sk(ki,...,ky)) +w(l) —vp, (B(k1,. .. ku)) /ey
for all 7.

For the next part of the proof, we simultaneously partition the set of
n < z for which d,(n) | n according to the value of each k;. We then partition
each of the resulting subsets according to the value of £. Then we subdivide
each of the new subsets resulting from the last partition according to the
value of [. Thus, we obtain

(51)  Dy(z) < > > >

(klv"'vku)e(z>0)(u) teT !
- pll:plﬁ(klvzku)

X Z 1.

m<z(I%,p; ") (1t odd, (B(k1,....ku))) "
(m,kB(k1,...,kw))=1
(50) holds
As with D(xz) = Dy(x), we truncate the ranges of the variables k; and the
ranges of t and [ to

(52) t <logu,

1 3
Lyx < kivp, (z) < Zsz’

(53) r(lodd.(B(ki, ..., k))) < (logz)?.
The error made can be neglected—indeed, the bulk of the contribution to

the sum will come from wu-tuples (ki,...,k,) with k; near pi_y”i(ki)Lga:,
1 <i < u (see below).
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First, we delete the condition
(54> (mv Hﬁ(klw-'aku)) =1

Then, we partition the sum on m according to the value j of w(m). The
sum on m then becomes

(55)  O(1) + > ,

. . . vp. (B(k1,..., kqy
1< <ming <i <o { 25w (s (b ,en k) () - 2 8Lk

where the jth summand is
u —k;
]jH._ p;, " .
56 < =1 : =je.
(59 #{m S Trodd, (3(kr,. -~ Ry 2™ ‘7}
We briefly sketch the remainder of the argument, since much of the
analysis is extremely similar to the arguments given in Section 5. Let k

denote the greatest integer not exceeding the minimum in (55). So, our last
upper bound for D, (x) can be rewritten

nw<y YOy Y %,

k=1 (k1,....,ku)E(Z>0) ) tET Lp|ll=p|B(k1,....ku) 1<j<k

where the jth summand equals the jth summand in (55), and where the
dash indicates that the sum on (kq,...,k,) is over u-tuples such that the
greatest integer of the minimum in (55) has the value k. Then we argue
that we can truncate the sums to the ranges
k§§L2:L‘; E§§L2x for 1 <i<uw;

4 Qg 4

t < (logz)*  r(kl) < (logz)*.
As in the argument given in Section 5, we show that the jth summand grows
geometrically, so that the sum on j has the same order of magnitude as the
jth summand with j = k. We obtain the upper bound

T / Hy_ p._ki
Dn =117
(@) < gz 2 2 odd, (B(k1, . )
ko (Kiyerku)
1 1 (Lyx)k x
x Z t Z [ k! +\/loga:'

teT
(57)holds  pli=p|B(k1,....ku)

(57)

Again as in the argument given in Section 5, we show that the sum on ¢ can
be omitted; thus,

x ! Huf p,_ki
(58) Dy(z) < S % g
k<2Low (ki,..ku) odd, (B(k1, ..., ku))

ki «3
(TiSZLWU
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1 (Lox)* x
oy Mt s

I Kl
Lpli=plB(ka .. k) log

r(kl)<(logz)?
For any w-tuple, kq,...,k,, there is a value of ¢ for which the minimum
referred to in (55) is attained. (There may be more than one such value.)
We partition the sum on ky, ..., k,, according to which value of i (or values

of i) give(s) that minimum. Thus,

x " x
Dy
(z) < log Z_: Z +\/loga:

h=1 ki,....k
Fi<iLlow
where the (kq, ..., k,)-summand equals the corresponding summand in (58),
and where the double dash means that (kq,...,k,) contributes to the sum

in (58) and that the minimum in (55) is attained for ¢ = h. (Note that once
kp, is chosen, the value of k is determined, so that we no longer need that
sum.)

Again as in Section 5, we multiply and divide by a suitable power of k, to
replace (Lax)* by ((1/k)Loz)*. Then we partition the sum on k according
to whether

k 1

l — *LQI‘
R, K
When (59) holds, we replace (Lox)¥/k! by (Lox)Fn/erl/[k), /]!, We show
that the part of the sum with (59) failing to hold can be neglected. In this
way, we get

fr— no I(ky,... ky;h)
(60)  Dule) < o Y. D ety
h=1 (k1,....ky)

<3l
(59) holds
1 [kn/cn)
(LLsz) ()
i /en]! l )
pll=plB(k1,....kw)
where
T 1

61 E —
( ) 1(x) 0<(logx)1—1/m (loglogm)1—5+1/4>’
and where

Elkn/an—vp, (B(k1,..sku))/on]

I(k‘l, .. .,k'u;h) = (H?:lpfi)Odd’iQB(kl’ .. 7ku>)
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It follows from the Fundamental Theorem of Arithmetic that

(62)  I(kn,... ku:h)

1 ki —kitvp; (B(k1,ku))—vp, (B(k1,...ku))
Lk o~ D; ' .
Bk, k) 1;[1 i
i£h
By construction, s((kh:ff2)) divides sy (k1, ..., k). Hence,

w(s<<k":_”1_ 2))) < w(snkrse. k).

Moreover, since

kh+li—2
kp+r—2 1
= k
< k—1 ) (k—1)! H (kn + ),

v=0
we have
kp+r—2

w(s( 1:[ (kn, —|—’U)>) —w((k =D <w(sk(kry... k).

Hence, k=@ sk1 k) < g=v(knr) where

(63) v(n, K) :w(s< H(n—i—v)))
v=0
Next, we estimate the sum on [ in a similar manner to the way we estimated
the sums on [ in Section 5. The result is
64 3 0 o (Laz)t+*
( ) l I r \ L4l .
pli=plB(kL,....ku)

Combining (60) with (62)—(64) yields

L k+1 U —v(kp,K)
65)  D(x) < “EaT) "

IOg.CC h=1 ﬁ(khaku)
[kn/on]
v (L Lox)
620 [k, kwih) + E
X (ka [kh/ah]! ( 1, ) )+ l(x)

1yeorku)
]CLS%LQIE
(59) holds

where I'(ky, ..., ky; h) is the expression on the right of (62). In view of the
meaning of the double dash on the sum over (kq,...,k,), we have

(66) ki — Vpi(ﬁ(kla st 7ku)) > kp — Vpi(ﬁ(kl’ s 7ku))
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for all i. So, k; > (Laz)/(2k). It follows that
v
Br, )

Next, we rewrite the sum over (kq,...,k,) as a u-fold iterated sum, with
ky, outside, and each of the other variables inside:

YIRS S DENEND O

(K1, kw) kn k1 ky ki<Z2Lsxforalli ky
(59) holds (66) holds for all

& (Lox)I—mwlx),

(Here, of course, the second sum on the right is over ky if h = 1.) Thus, we
have

L w+l ks lL [kn/an]
D, (x) < ( 41‘)(”_1)w(ﬂ) Z Z ,{—’y(kh,n)&

(10g$)(L2$) he1 "o [k:h/ah]!
(59) holds
< [T Y. Rnki)+ Ei(x)
=1 [, <3,
i#h 6)411101ds
where
(67) R(m,n) = R(m,n,Kk;k1,...,ky)

— pkhfki+’/pi (ﬁ(kl,...,ku))fl/ph (,B(kh,k)u))
By (66), the exponent on p in (67) is a nonpositive integer. If we write —g
for that exponent, we discover that

R(m,n)
=p I#{(h, 1) : kp, — ki + vp, (B(k1, ... k) — vy, (B(k1, ..., ky)) = —g}.

Estimating p9 R(m,n) is, thus, related to the problem of estimating the
number of positive integers n < y for which n — v,(n) assumes a fixed
value. Solving this related problem immediately yields an upper bound on
pIR(m,n). But, in our earlier paper on the subject (see Lemma 4 of [SP1]),
we showed that

(68) #{n <y:n—1a(n) =m} <¢((logy)/log2),

where {(z) is defined in the introduction to the present paper. A similar
proof yields a comparable result for v,(n), where p is a fixed prime. The
replacement of v,(n) by an expression of the form v,(n+j), where j is fixed,
poses no real additional difficulty. To estimate p9 R(m,n), we must replace
vp(n + j) by a finite product of, say, ¢ linear factors n + j; in n. Then, we
argue that for Vp(H}t:l(n + j1)) sufficiently large (as a function of the j;),
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we must have
vo(TIn+ ) = vpln+jn) + M,
1
for some subscript L, where the integer M is bounded in magnitude by t.
The result we get is comparable to (68), but with < replaced by <, and
with v, replaced by v,. In particular, we have p?R(m,n) < L,z for any
integer v > 2. So, by (66), the sum on k; in (67) is of order
> Lv(%Lgx)

D

< Lyzx.

9=0 pe
Therefore,
[kn/cn]
2(Lyx) 1 (Lyz)~ ) k +Low)
69 D, . ~( m/‘é)
(69) Do) € (oo Lo} o HN o fon]

h=1 kp

This is our upper bound. The next theorem is an immediate consequence.

THEOREM 4. For any integers K, v exceeding 1, we have

w(k) oo [kn/an]

2(La2)" (Lo) SOy kot a2 (zL22)
(log z)(Lox) (”" Daw () [kn/an]!

h=1k;=1

D/-c (x) <<l€,’U

where vy (kp, k) is defined by (63), and

Finally, we note that in the inner sum, the expression [kj/ayp] has the
same value whenever kj, satisfies apn < k, < a,n+ap —1. So, if we replace
—v(kn, k) by 0, and then group together those kj-terms with [kj,/ay] the
same, we get the bound

[ee] 1 a

x Loz 1lne

O<Z ( al ) ) =0
a=1

for the inner sum. The upper bound implied by Theorem 2 follows, upon

choosing, say, v = 3.
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