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1. Main result. Let

N(R) = #{n ∈ Z3 : |n| ≤ R}

be the number of integral points inside a sphere of radius R centered at the
origin and

F (R) = R−1(N(R)− (4/3)πR3).

We prove in this note the following result:

Theorem 1.1.

(1.1) lim
T→∞

(T log T )−1
T∫

1

|F (R)|2 dR = K

with K = (32/7) (ζ(2)/ζ(3)).

The three-dimensional case is the most difficult one. A version of The-
orem 1.1 is known for a long time for the circle (see [Cra] and [Lan1]) and
for the d-dimensional ball when d ≥ 4 (see [Wal]). In [Ble1] a similar state-
ment was proved for any strictly convex (in the sense that the curvature
of the boundary is positive everywhere) oval in the plane with the origin
inside the oval. Making an analogy to the theory of renormalization group
in statistical mechanics we may say that three is the critical dimension for
the problem under consideration. Namely, the series of squared Fourier am-
plitudes of N(R) converges when d < 3 and diverges when d ≥ 3 (in fact
logarithmically diverges when d = 3). The criticality of d = 3 is reflected
then in the appearance of the log-correction in (1.1).

It is easy to show that

lim
T→∞

T−1
T∫

1

F (R) dR = 0,

[383]
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hence Theorem 1.1 implies that

F (R) = Ω±(log1/2 R)

(which means that lim supR→∞(log R)−1/2(±F (R)) > 0). The estimate
F (R) = Ω−(log1/2 R) was proved long ago by Szegö [Sze], and Nowak [Now]
proved the estimate

F (R) = Ω−(log1/3 R)

for any strictly convex domain in R3 with the origin inside the domain.
The estimate F (R) = Ω+(log1/2 R) is new and it improves the recent re-
sult F (R) = Ω+(log log R) by Adhikari and Pétermann [AP] (the authors
thank Andrzej Schinzel for calling their attention to the works of Szegö and
Adhikari and Pétermann).

See also earlier works [Wal], [CN] and [BK] where somewhat weaker
estimates were obtained.

As concerns O-results, Landau [Lan2] proved that

F (R) = O(Rθ)

with θ = 1/2. Vinogradov [Vin1] strengthened this result to θ = 5/14 + ε,
∀ε > 0, and Chen Jing-Run [Che] and Vinogradov [Vin2] to θ = 1/3 + ε.
Recently Chamizo and Iwaniec [CI] strengthened this further to θ = 7/22+ε.
Randol [Ran] proved the O-estimate with θ = 1/2 for any strictly convex
domain in R3 (for ellipsoids it was known before from the work of Landau
[Lan2]). Recently Krätzel and Nowak [KN] improved the O-estimate of
Randol to θ = 8/17 + ε. For a review and many other results on counting
lattice points in multidimensional spheres see [Wal] and [Gro].

Theorem 1.1 can be reformulated in a probability language, namely,
that the variance of the random variable (log R)−1/2F (R), assuming that
R is uniformly distributed on [1, T ], converges to K > 0 as T → ∞. An
interesting and natural question is then: what is the limiting distribution of
(log R)−1/2F (R) (if the latter exists)? We have no answer to this question,
but the following simple heuristic argument speaks in favor of a Gaussian
limiting distribution.

By formulas (1.12), (1.13) below,

(1.2) F (R) = −π−1
∑

n∈Z3\{0}

ϕ(2π|n|δ)|n|−2 cos(2π|n|R) + ε(R),

where ϕ(x) is a C∞ function fast decreasing at ∞ and ε(R) is an error term.
This represents F (R) as an almost periodic function plus an error. We can
group terms with commensurate frequencies in (1.2) and rewrite (1.2) as

(1.3) F (R) =
∑

square free k

fk(k1/2R) + ε(R),
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where

fk(t) = −π−1k−1
∞∑

l=1

l−2r3(l2k)ϕ(2πlk1/2δ) cos(2πlt)

are bounded periodic functions with period 1 and r3(k) = #{n ∈ Z3 :
|n|2 = k}. The numbers k1/2 with square free k (i.e., k 6= l2k′ with l > 1) are
linearly independent over Z and so the random variables {{k1/2R}, k square
free} are asymptotically independent in the limit T → ∞. Therefore for a
fixed δ > 0, the limiting distribution of the sum in (1.3) is the same as the
limiting distribution of the random series

ξ =
∑

square free k

fk(θk),

where {θk} are independent random variables uniformly distributed on [0, 1].
Observe that

Var fk(θk) =
1∫

0

fk(t)2 dt

is of order of k−2(r3(k))2(ϕ(2πk1/2δ))2. The series
∑

k−2(r3(k))2 is loga-
rithmically divergent (see Section 2 below), hence Var ξ ∼ C|log δ|−1. Thus
ξ is a series of uniformly bounded independent random variables and the
variance of ξ diverges as δ → 0. By the Lindeberg theorem this implies
that (Var ξ)−1/2ξ converges to a standard Gaussian distribution, so that the
limiting distribution of (VarF (R))−1/2F (R) is standard Gaussian as well.

The weakness of this argument is that we took the limit T →∞ first and
the limit δ → 0 second, while in (1.2) δ = T−1λ(T ) with (log T )−1/2λ(T ) →
0, so that δ → 0 simultaneously with T → ∞. This explains why the
argument is only heuristic.

For the circle problem Heath-Brown [H-B] and Bleher, Cheng, Dyson and
Lebowitz [BCDL] proved that the limiting distribution of (Var F (R))−1/2

× F (R) exists and is non-Gaussian with an analytic density decreasing at
infinity roughly as exp(−cx4).

P r o o f o f T h e o r e m 1.1. Since

(1.4) N(R) =
∑
n∈Z3

χ(n;R),

where χ(x;R) is the characteristic function of the ball {|x| ≤ R}, the Poisson
summation formula implies

N(R)− (4/3)πR3 =
∑′

n

χ̃(2πn;R),
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where
∑′

n =
∑

n∈Z3\{0} and χ̃(ξ;R) is the Fourier transform of χ(x;R),

χ̃(ξ;R) =
∫

|x|≤R

eixξ dx = R3
∫

|x|≤1

eixRξ dx.

Since in addition,∫
|x|≤1

eixη dx = π
1∫

−1

cos(|η|r)(1− r2) dr = 4π|η|−3(sin |η| − |η| cos |η|),

we obtain

(1.5) N(R)− (4/3)πR3 = R3
∑′

n

J(2π|n|R),

with

(1.6) J(t) = 4πt−3(sin t− t cos t).

The series in (1.5) is only conditionally convergent. Define for δ > 0,

(1.7) Nδ(R) =
∑
n∈Z3

χδ(n;R)

with

(1.8) χδ(x;R) = δ−3
∫

|y|≤R

ϕ̃(δ−1(x− y)) dy,

where ϕ̃(x) ≥ 0 is a C∞ isotropic (ϕ̃(x) = ϕ̃0(|x|)) cap with ϕ̃(x) = 0 when
|x| ≥ 1 and

∫
R3 ϕ̃(x) dx = 1. Then again by Poisson’s summation,

(1.9) Nδ(R)− (4/3)πR3 = R3
∑′

n

ϕ(2πnδ)J(2π|n|R)

with a convergent series on the right. Put

(1.10) δ = T−1λ(T ),

where λ(T ) is a slowly increasing function with

(1.11) lim
T→∞

λ(T ) = ∞ and lim
T→∞

(log T )−1/2λ(T ) = 0.

From (1.9) and (1.6),

(1.12) Fδ(R)
:= R−1(Nδ(R)− (4/3)πR3)

= − π−1
∑′

n

ϕ(2πnδ)|n|−2 cos(2π|n|R) + O(R−1T ε), ∀ε > 0.

We will prove the following two lemmas, from which Theorem 1.1 follows.
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Lemma 1.2.

(1.13) lim
T→∞

(T log T )−1
T∫

1

|F (R)− Fδ(R)|2 dR = 0.

Lemma 1.3.

(1.14) lim
T→∞

(T log T )−1
T∫

1

|Fδ(R)|2 dR = K > 0.

P r o o f o f L e m m a 1.2. We follow the proof of Lemma 4.3 in [Ble2].
To simplify notations we denote by c and c0 various constants which can be
different in different estimates. We have

Fδ(R)− F (R) = R−1
∑

n

(χδ(n;R)− χ(n;R)),

so

I ≡ (T log T )−1
T∫

1

|Fδ(R)− F (R)|2 dR =
∑
m,n

I(m,n)

with

I(m,n) = (T log T )−1
T∫

1

(χδ(m;R)− χ(m;R))(χδ(n;R)− χ(n;R))R−2 dR.

Observe that I(m,n) = 0 unless ||m| − |n|| < 2δ and |m|, |n| < T + δ. In
addition, I(m,n) ≤ c(T log T )−1|n|−2δ, for all m, n, hence

(1.15) I ≤ c(T log T )−1δ
∑

n:|n|≤T+δ

|n|−2
∑

m:||m|−|n||≤2δ

1.

Let us estimate
I0 =

∑
n:T/2≤|n|≤T

∑
m:||m|−|n||≤2δ

1.

Observe that ||m|2 − |n|2| ≤ ||m| + |n||2δ ≤ 5Tδ = 5λ(T ), so if |n| is fixed
we have not more than 10λ(T ) possibilities for |m|. Therefore

I0 ≤
∑

T/2≤
√

k≤T

r3(k)
∑

|k−l|≤5λ(T )

r3(l),

where r3(k) = #{n ∈ Z3 : |n|2 = k}, and

I0 ≤ cλ(T )
∑

k≤(2T )2

r3(k)2

(use r3(k)r3(l) ≤ r3(k)2 + r3(l)2). Since

(1.16) lim
N→∞

N−2
∑
k≤N

r3(k)2 = K0 =
16
7

π2 ζ(2)
ζ(3)
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(see the next section) we obtain

I0 ≤ cλ(T )T 4.

Applying this estimate for T := 2T, T, T/2, T/4, . . . , we obtain (by (1.15))

(1.17) I ≤ cλ(T )2(log T )−1,

and Lemma 1.2 follows (use the second limit in (1.11)).

P r o o f o f L e m m a 1.3. Let

I = (T log T )−1
T∫

1

∣∣∣ ∑′

n

ϕ(2πnδ)|n|−2 cos(2π|n|R)
∣∣∣2 dR.

We will prove that

lim
T→∞

I = K1 =
32
7

π2 ζ(2)
ζ(3)

.

Then by (1.12), Lemma 1.3 will follow with K = π−2K1.
Since ϕ(ξ) is isotropic, ϕ(ξ) = ϕ0(|ξ|),

I = (T log T )−1
T∫

1

∣∣∣ ∞∑
k=1

r3(k)k−1ϕ0(2π
√

kδ) cos(2π
√

kR)
∣∣∣2 dR.

Hence

I =
∞∑

k,l=1

r3(k)r3(l)k−1l−1ϕ0(2π
√

kδ)ϕ0(2π
√

lδ)A(k, l)

with

A(k, l) = (T log T )−1
T∫

1

cos(2π
√

kR) cos(2π
√

lR) dR.

Since
A(k, k) = (1/2)(log T )−1(1 + O(T−1)), T →∞,

the diagonal contribution to I is

Idiag =
∞∑

k=1

r3(k)2k−2ϕ0(2π
√

kδ)2((1/2)(log T )−1 + O((T log T )−1)).

Since ϕ0(2π
√

kδ) produces a smooth cutoff at the scale δ−2 and

(1.18)
N∑

k=1

r3(k)2k−2 = K1(log N)(1 + o(1)), N →∞,

(see the next section), we obtain

Idiag = K1(log T 2)(1/2)(log T )−1(1 + o(1))(1.19)
= K1(1 + o(1)), T →∞.
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For k 6= l,
|A(k, l)| ≤ c(T log T )−1|

√
k −

√
l|−1,

so the off-diagonal contribution to I is estimated as

|Ioff | ≤
∑
k 6=l

r3(k)r3(l)k−1l−1|ϕ0(2π
√

kδ)ϕ0(2π
√

lδ)|(T log T )−1|
√

k −
√

l|−1.

By symmetry we may consider only l > k. For any p ≥ 1, consider the
block Ioff(p) in Ioff with 2p ≤ k ≤ 2p+1 and 0 < j ≡ l − k ≤ 2p. Since
|ϕ0(2π

√
kδ)| ≤ c(1 + kδ2)−3, this block is estimated as

|Ioff(p)| ≤ c(1 + 2pδ2)−32−2p
2p+1∑
k=2p

2p∑
j=1

r3(k)r3(k + j)(T log T )−12p/2j−1

(use
√

k + j −
√

k = j(
√

k + j +
√

k)−1 ≥ cj2−p/2). Now,

r3(k)r3(k + j) ≤ r3(k)2 + r3(k + j)2

and by (1.16),
2p+1∑
k=2p

r3(k + j)2 ≤ c22p,

hence

|Ioff(p)| ≤ c(1 + 2pδ2)−3(T log T )−12p/2
2p∑

j=1

j−1(1.20)

≤ c0(1 + 2pδ2)−3(T log T )−12p/2p.

Consider now the block Ioff(p, q) in Ioff with 2p ≤ k ≤ 2p+1 and 2p+q ≤ j ≡
l − k ≤ 2p+q+1, where p ≥ 1 and q ≥ 0. This block is estimated as

|Ioff(p, q)| ≤ c(1 + 2pδ2)−32−p2−2p−2q(T log T )−12p/2

×
2p+1∑
k=2p

2p+q+1∑
j=2p+q

r3(k)r3(k + j).

Since ∑
k≤N

r3(k) =
4π

3
N3/2(1 + o(1)),

we have
2p+q+1∑
j=2p+q

r3(k + j) ≤ c2(3/2)(p+q) and
2p+1∑
k=2p

r3(k) ≤ c2(3/2)p,

and thus

(1.21) |Ioff(p, q)| ≤ c(1 + 2pδ2)−32−q/2(T log T )−12p/2.
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Combining this estimate with (1.20) we obtain

|Ioff(p)|+
∞∑

q=0

|Ioff(p, q)| ≤ c(1 + 2pδ2)−3(T log T )−12p/2p,

and summing now in p = 1, 2, . . . we arrive at |Ioff | ≤ c (T log T )−1δ−1|log δ|.
Since δ = T−1λ(T ), this implies |Ioff | ≤ cλ(T )−1. Hence limT→∞ Ioff = 0
and

lim
T→∞

I = lim
T→∞

Idiag = K1

(use (1.19)), which proves Lemma 1.3.

2. Evaluation of N−2
∑N

k=1 |r3(k)|2. Let θ(z) =
∑∞

n=−∞ zn2
. Then

S ≡ (2πi)−1
∫

|z|=e−2πδ

θ3(z)θ3(z)(dz/z) =
∞∑

k=0

e−4πkδ|r3(k)|2.

Assuming δ → 0 we use the singular series of Hardy (see, e.g., [Gro] or
[Vau]). We have (see, e.g., [Gro, p. 151])

θ(e2πih/k−2πz) = (k
√

2z)−1G(h, k) + . . . ,

hence

|θ(e2πih/k−2πz)|6 = (8k6|z|3)−1|G(h, k)|6 + . . . ,

where G(h, k) =
∑k−1

j=0 e2πihj2/k is the Gaussian sum. Now,

(2π)−1
∫
|θ(e2πih/k−2π(δ−i(ξ/2π)))|6 dξ

= (8k6)−1|G(h, k)|6
∫
|δ − iξ|−3 dξ + . . .

= (8k6)−1|G(h, k)|6δ−2
∞∫

−∞
(x2 + 1)−3/2 dx + . . .

= δ−2(4k6)−1|G(h, k)|6 + . . . ,

hence

S = (2δ)−2
∑
h,k

k−6|G(h, k)|6 + . . . ,

so that

(2.1) S = (2δ)−2
∞∑

k=1

Ak + . . .
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with
Ak = k−6

∑
h mod k;(h,k)=1

|G(h, k)|6.

The dots in (2.1) stand for o(δ−2), δ → 0.
Ak is a multiplicative arithmetical function (see [Gro, p. 156]), so that

Ak1k2 = Ak1Ak2 when (k1, k2) = 1. Hence

(2.2)
∞∑

k=1

Ak =
∏
p

(1 + Ap + Ap2 + . . .)

with the product over primes. Now, A2 = 0 and for a > 1, |G(h, 2a)| =
2(a+1)/2 (see [Gro, p. 138]), hence A2a = 2−6a23(a+1)2a−1 = 2−2a+2, a > 1,
and

1 + A2 + A4 + A8 + . . . = 1 + 1/3 = 4/3.

When p > 2, |G(h, pa)| = |(h/pa)| |G(1, pa)| = pa/2 (see [Gro, p. 138]),
hence Apa = p−6ap3a

∑
h 1 = (p− 1)p−2a−1 and

1 + Ap + Ap2 + . . . = 1 + (p(p + 1))−1.

Therefore from (2.1) and (2.2),

S = (2δ)−2 4
3

∏
p>2

{1 + (p(p + 1))−1}+ . . . = δ−2 2
7

∏
p

{1 + (p(p + 1))−1}+ . . .

Now,
∏

p{1 + (p(p + 1))−1} = ζ(2)/ζ(3), hence

(2.3) S = δ−2 2
7

ζ(2)
ζ(3)

+ . . .

Thus

lim
δ→0

δ2
∞∑

k=1

|r3(k)|2 exp(−4πkδ) =
2
7

ζ(2)
ζ(3)

and so

lim
δ→0

δ2
∞∑

k=1

|r3(k)|2 exp(−kδ) =
32
7

π2 ζ(2)
ζ(3)

.

By the tauberian theorem of Hardy and Littlewood [HL] this implies that

lim
N→∞

N−2
N∑

k=1

|r3(k)|2 =
16
7

π2 ζ(2)
ζ(3)

.

Hence by partial summation,

lim
N→∞

(log N)−1
N∑

k=1

|r3(k)|2

k2
=

32
7

π2 ζ(2)
ζ(3)

.
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