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Regular and biregular functions in the sense
of Fueter—some problems

by W. Królikowski ( Lódź) and R. Michael Porter (México, D.F.)

Abstract. The biregular functions in the sense of Fueter are investigated. In par-
ticular, the class of LR-biregular mappings (left regular with a right regular inverse) is
introduced. Moreover, the existence of non-affine biregular mappings is established via
examples. Some applications to the quaternionic manifolds are given.

Introduction. A basic question in the development of quaternionic
analysis is the proper generalization of the notion of holomorphicity. At
the outset it may not be clear which of several conditions, equivalent for
holomorphic mappings of complex numbers, can best be generalized to the
quaternionic skew field H. It is well known (see [12]) that the notions of
quaternionic differentiability and of arbitrary quaternionic power series do
not lead to interesting classes of functions.

In the 1930’s, R. Fueter [3] and others investigated a notion of “regu-
larity” for quaternionic functions defined via an analogue of the Cauchy–
Riemann equations. The class of Fueter regular functions expresses in many
ways the spirit of complex analysis in the quaternionic context, as many clas-
sical results (e.g., Cauchy’s integral formula, Morera’s theorem, the Laurent
expansion) carry over in a more or less natural way [11], [12]. This theory
is still being developed, both over the quaternionic field and over Clifford
algebras in general.

In this paper we begin an investigation of biregular functions, that is,
invertible regular functions with regular inverse. One conclusion is that the
composition of two biregular mappings need not be biregular. Section 1 con-
tains various formulations of the Fueter derivative while Section 2 develops
families of Chain Rules. Section 3 begins the study of biregular mappings;
a pointwise criterion is given for local biregularity in terms of the Jacobian
differential, and the existence of non-affine biregular mappings is established
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via examples. The class of LR-biregular mappings (left regular with a right
regular inverse) is introduced, and its pointwise criterion is found to be
considerably simpler. In Section 4 we apply the above to define regular
and LR-biregular functions on affine quaternionic manifolds, and to justify
the assertion that a quaternionic manifold admitting a notion of regular
quaternion-valued function is necessarily affine.

M. Shapiro and N. Vasilevski [9] have investigated an extended family of
differential operators which are “equally good” as the one studied by Fueter.
Since the basic theory for each of these operators is essentially equivalent,
we will not work in such generality here.

The manifold point of view suggests that the notion of LR-biregularity
is more natural than biregularity. It is hoped that this work may serve
as a starting point for investigation of properties of such mappings. We
warmly thank E. Ramı́rez de Arellano for numerous discussions regarding
quaternionic functions, and to the referee who made valuable suggestions
for improving a previous version of this paper.

1.Fueter derivative and regular functions. Well known facts about
quaternions and regular functions which are not cited specifically in this
article may be found, for example, in the general references [11], [12].

Let

(1) q = x0 + ix1 + jx2 + kx3 ∈ H

be a quaternion, where xα ∈ R, α = 0, 1, 2, 3, and where the standard
quaternionic units satisfy i2 = j2 = k2 = ijk = −1. Write ∂α = ∂/∂xα and
form the following symbolic differential expressions:

D+ = 1
4 (∂0 + i∂1 + j∂2 + k∂3) ,

D = 1
4 (∂0 − i∂1 − j∂2 − k∂3) .

Definition. A function f = f0 + if1 + jf2 + kf3 : Ω → H is said to be
(left) regular in the domain Ω ⊆ H if f is differentiable in the usual sense
as a mapping of an open set in R4 to R4, and D+ · f = 0 in Ω; it is (left)
antiregular if D ·f = 0. Similarly, f is right regular (resp. right antiregular)
if f ·D+ = 0 (resp. f ·D = 0). (By notational convention, g∂α = ∂αg for
any real function g.) If f is invertible and both f and f−1 are regular, then
f is said to be biregular.

We will occasionally use the “ · ” as above to stress that quaternionic
multiplication is performed. For clarity, some statements about the left op-
erators will be accompanied by the symmetric results for the corresponding
right sided operators. From the definition it follows that the linear mapping
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with matrix A = (aαβ) ∈ R4×4 = {4×4 real matrices} is regular if and only
if the four real Fueter equations

(2)

ε00a00 + ε11a11 + ε22a22 + ε33a33 = 0 ,
ε01a01 + ε10a10 + ε23a23 + ε32a32 = 0 ,
ε02a02 + ε13a13 + ε20a20 + ε31a31 = 0 ,
ε03a03 + ε12a12 + ε21a21 + ε30a30 = 0

are satisfied, where εαβ = ±1, the signs being given by the first of the
following matrices:

+ + + +
+ − − +
+ + − −
+ − + −

 ,


+ − − −
+ + + −
+ − + +
+ + − +

 ,


+ + + +
+ − + −
+ − − +
+ + − −

 ,


+ − − −
+ + − +
+ + + −
+ − + +

 .

The remaining three sets of signs correspond to Df = 0, fD+ = 0, fD = 0
respectively.

Write F = FR = {A ∈ R4×4 : A is regular}. Observe that A1, A2 ∈ F
does not imply A1A2 ∈ F , and that the identity matrix I is not in F .
A smooth function f is regular if its real Jacobian differential df lies in F
at every point of its domain.

Complex notation. As is well known, the quaternion q can be expressed
uniquely as q = u + vj where u = x0 + ix1, v = x2 + ix3 ∈ R + iR. Note
that jv = vj, so

(3) (u1 + v1j)(u2 + v2j) = (u1u2 − v1v2) + (u1v2 + v1u2)j .

Similarly we can write

2D+ =
1
2

(∂0 + i∂1) +
1
2

(∂2 + i∂3)j =
∂

∂u
+

∂

∂v
j ,

2D =
∂

∂u
− ∂

∂v
j and f(q) = φ(q) + ψ(q)j .

Then a formal calculation analogous to (3) yields

D+f = 1
2 (φū − ψv̄) + 1

2 (ψū + φv̄)j, Df = 1
2 (φu + ψv̄) + 1

2 (ψu − φv̄)j ,

an expression of the quaternionic operators in complex coordinates, where
the subscripts indicate formal complex derivatives. The following conse-
quence is immediate.
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Proposition 1.1. Let f : Ω → H be differentiable. Then D+f = 0 if
and only if

(4) φv = −ψu , ψv = φu .

Similarly , Df = 0 if and only if φv = ψū, ψv = −φū.

We will refer to (4) as the “complex Fueter equations”.
The following 4 × 4 matrix notation will prove convenient for our pur-

poses. For f as above define

JC(f) =


φu φū φv φv̄
φu φū φv φv̄
ψu ψū ψv ψv̄
ψu ψū ψv ψv̄

 ∈M ,

where M ⊆ C4×4 is the collection of matrices with block form B =
(B00, B01; B10, B11), with each Bαβ of the form (a, b; b, a), a, b ∈C. The
second and fourth columns of matrices in M are redundant; this nota-
tion permits expressing the Chain Rule as JC(f ◦ g) = JC(f) ◦ JC(g),
JC(f−1) = (JCf)−1. The complex Fueter equations (4) say that D+f = 0
is equivalent to JC(f) ∈ FC, where

(5) FC = {(bαβ) ∈M : b02 = −b30, b22 = b10} .
Similarly, Df = 0 corresponds to the conditions b02 = b20, b22 = −b00, while
fD+ = 0 corresponds to b12 = −b20, b22 = b10 and fD = 0 corresponds to
b12 = b30, b22 = −b00.

2. Quaternionic partial derivatives and chain rules. We describe
one further way of expressing the Fueter equations. Introduce the following
“conjugations”:

(6)

q = x0 − ix1 − jx2 − kx3 ,

q(1) = x0 − ix1 + jx2 + kx3 ,

q(2) = x0 + ix1 − jx2 + kx3 ,

q(3) = x0 + ix1 + jx2 − kx3 ,

in terms of which we may express the real coordinates,

x0 = 1
4 (q + q(1) + q(2) + q(3)) ,

x1 = 1
4 (q + q(1) − q(2) − q(3))i ,

x2 = 1
4 (q − q(1) + q(2) − q(3))j ,

x3 = 1
4 (q − q(1) − q(2) + q(3))k .

To define symbolic partial derivatives with respect to the q(α), consider
more generally any four R-linear isomorphisms σ0, σ1, σ2, σ3 : H → H with
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the property that one may solve for the xα uniquely in terms of the σα(q);
that is, the expressions ∂xα/∂σβ(q) are defined uniquely by the condition

(7) xα =
∑
β

σβ(q) · ∂xα
∂σβ(q)

for 0 ≤ α ≤ 3. For any quaternionic function f define

(8)
∂f

∂σα(q)
:=
∑
β

∂xβ
∂σα(q)

· ∂f
∂xβ

.

Lemma 2.1. Assume f is linear. Then

f(q) =
∑
α

σα(q) · ∂f

∂σα(q)
.

P r o o f. By (8) and then (7),∑
α

σα(q)
∂f

∂σα(q)
=
∑
α

∑
β

σα(q)
∂xβ
∂σα(q)

∂f

∂xβ
=
∑
β

xβ
∂f

∂xβ
= f(q) .

Proposition 2.2. Let p 7→ q 7→ f be smooth mappings. Then

∂f

∂σα(p)
=
∑
β

∂σβ(q)
∂σα(p)

· ∂f

∂σβ(q)
.

P r o o f. It suffices to prove the statement assuming both maps are linear.
Then by two applications of Lemma 2.1,

f(q(p)) =
∑
β

σβ(q)
∂f

∂σβ(q)
=
∑
β

(∑
α

σα(p)
∂σβ(q)
∂σα(p)

)
∂f

∂σβ(q)

while by Lemma 2.1 again,

f(q(p)) =
∑
α

σα(p) · ∂f

∂σα(p)
.

Comparison of the coefficients of σα(q) gives the desired result.

Returning to the specific conjugations (6), we see that ∂xα/∂q =
∂xα/∂σ0(q) takes the values 1/4, i/4, j/4, k/4 for α = 0, 1, 2, 3. There-
fore according to (8) we have defined ∂f/∂q =

∑
α(∂xa/∂q)∂αf = D+f .

If we take instead σ0(q), σ1(q), σ2(q), σ3(q) equal to

(9)

q = x0 + ix1 + jx2 + kx3 ,

q(1) = x0 + ix1 − jx2 − kx3 ,

q(2) = x0 − ix1 + jx2 − kx3 ,

q(3) = x0 − ix1 − jx2 + kx3 ,
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respectively (thus q(1) = iqi−1, etc.), then it will be found easily that
∂f/∂q = D · f .

It must be stressed that ∂/∂q, ∂/∂q are not intrinsically determined by
the definitions of q, q but depend on the complete system of four conjuga-
tions used. It is not difficult to find systems other than (6) for which ∂/∂q
is still equal to the left operator D, but with the remaining symbolic partial
derivatives ∂/∂q(1), ∂/∂q(2), ∂/∂q(3) turning out quite different.

Further, it should be noted that if the order of multiplication in defini-
tions (7), (8) is reversed, giving

xα =
∑
β

∂xα
∂σβ(q)

σβ(q) ,
∂f(q)
∂σα(q)

=
∑
β

∂f

∂xβ

∂xβ
∂σα(q)

,

then Proposition 2.2 will need to be adjusted in the obvious way, and the
two sets of conjugations (6), (9) will cause ∂f/∂q, ∂f/∂q to evaluate the
right-sided operators f · D+, f · D respectively. From Proposition 2.2 one
may derive various “Chain Rules” such as the following.

Proposition 2.3. Let f : Ω2 → H, g : Ω1 → Ω2 be differentiable map-
pings of domains in H. Let ∂/∂q(α), ∂/∂q(α) be determined by the systems
(6), (9) respectively. Then

D+(f ◦ g) = (D+g) · ((D+f) ◦ g) +
3∑

α=1

(D+g(α)) ·
(

∂f

∂q(α)
◦ g
)
,

D(f ◦ g) = (Dg) · ((Df) ◦ g) +
3∑

α=1

(Dg(α)) ·
(

∂f

∂q(α)
◦ g
)
,

D+(f ◦ g) =
3∑

α=0

(D+gα) · (∂αf) ◦ g ,

D(f ◦ g) =
3∑

α=0

(Dgα) · (∂αf) ◦ g ,

where in the latter two formulas, g = g0 + ig1 + jg2 + kg3.

P r o o f. The first two rules are an application of Proposition 2.2 with
∂f/∂q = D+f , ∂f/∂q = Df respectively. To verify the other two, use σα(q)
= xα and deduce from Proposition 2.2 that ∂β(f ◦g) =

∑
α(∂βgα)((∂αf)◦g).

As an application of the Chain Rules we have the following elementary
formulas.

Corollary 2.4. Let g(q) = aq+ b, h(q) = qc+ d be left and right affine
quaternionic mappings, a, b, c, d ∈ H. Then

D+(f ◦ g) = a(D+f) ◦ g ,
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D(f ◦ g) =
(
a0Df + ia1

∂f

∂q(1)
+ ja2

∂f

∂q(2)
+ ka3

∂f

∂q(3)

)
◦ g ,

D+(f ◦ h) =
(
c0D

+f − ic1
∂f

∂q(1)
− jc2

∂f

∂q(2)
− kc3

∂f

∂q(3)

)
◦ h ,

D(f ◦ h) = c(Df) ◦ h ,

where a = a0 +ia1 +ja2 +ka3, c = c0 +ic1 +jc2 +kc3. Further , D+(h◦f) =
(D+f)c, D(h ◦ f) = (Df)c.

P r o o f. Observe that D+g = a, Dh = c, D+g(α) = 0 = Dh(α) for
α = 1, 2, 3. Thus the formulas for D+(f ◦ g), D(f ◦ h) follow from the first
two Chain Rules of Proposition 2.3. The formulas for D(f ◦g), D+(f ◦h) are
obtained similarly. Finally, since ∂0h = c, ∂1h = ic, etc., the formulas for
D+(h ◦ f), D(h ◦ f) follow from the last two Chain Rules of Proposition 2.3
(or directly from the definitions of D, D+).

Theorem 2.5. Let A : H → H be R-linear. If ∂A/∂q(1) = ∂A/∂q(2) =
∂A/∂q(3) = 0, then A is a left multiplication mapping. If ∂A/∂q(1) =
∂A/∂q(2) = ∂A/∂q(3) = 0, then A is a right multiplication mapping.

P r o o f. The system of conjugations (6) gives 4∂/∂q(1) = ∂0 +i∂1−j∂2−
k∂3, 4∂/∂q(2) = ∂0− i∂1 + j∂2−k∂3, 4∂/∂q(3) = ∂0− i∂1− j∂2 +k∂3. From
this a simple calculation shows that ∂A/∂q(γ) = 0 precisely when A = (aαβ)
satisfies (2) with the signs εαβ given by

+ + − −
+ − + −
+ + + +
+ − − +

 ,


+ − + −
+ + − −
+ − − +
+ + + +

 ,


+ − − +
+ + + +
+ − + −
+ + − −

 ,

for γ = 1, 2, 3 respectively. If these hold simultaneously, then it follows
easily that A is of the form


a b c d
b −a −d c
c d −a −b
d −c b −a

 ,

which is the real matrix corresponding to the left multiplication q 7→ (a +
bi+ cj+ dk) · q. The statement regarding ∂A/∂q(γ) is proved similarly with
the aid of the system (9).

The following dual statement may be verified in the same way.

Theorem 2.6. If D+A(1) = D+A(2) = D+A(3) = 0, then A is a left
multiplication; if DA(1) = DA(2) = DA(3) = 0, then A is a right multipli-
cation.
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3. Biregular mappings in the sense of Fueter

Biregular linear mappings. From the real Fueter equations (2) the set
F of real regular matrices is seen to be a 12-dimensional R-linear subspace
of R4×4. The collection of biregular linear mappings is thus F∗ = F∗R =
{A ∈ F : detA 6= 0, A−1 ∈ F}. If we write Φ(A) = A−1, we see that
F∗ = F ∩ Φ(F ∩ GL(4,R)), which is a real algebraic variety evidently of
dimension no less than 8.

Inasmuch as the equations defining F∗ are exceedingly cumbersome, we
will turn to the complex formulation. Define F∗C = {B ∈ FC : detB 6= 0,
B−1 ∈ FC}. There is a natural one-to-one correspondence F∗ ↔ F∗C. By (5),
an invertible B ∈ FC is in F∗C precisely when (B−1)0,2 = −(B−1)3,0 and
(B−1)2,2 = (B−1)1,0. These elements of the inverse matrix can be easily ob-
tained via expansion by minors, and we have the following characterization
of biregular matrices.

Theorem 3.1. Let B = (bαβ) ∈ M. Then B ∈ F∗C if and only if
detB 6= 0, b02 = −b30, b22 = b10, and

(10)

∣∣∣∣∣∣
b10 −b30 b12

b00 b12 −b30

b20 b32 b10

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b10 b00 b12

b20 b30 b10

b30 b20 b32

∣∣∣∣∣∣ ,∣∣∣∣∣∣
b00 b10 b12

b10 b00 −b30

b30 b20 b10

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
b10 b12 −b30

b20 b10 b32

b30 b32 b10

∣∣∣∣∣∣ .
From this formulation, some simple solutions may be obtained by inspec-

tion. For example, (10) is satisfied when b10 = b30 = b20 +b12 = 0. Allowing
the remaining parameters to vary freely, we obtain a few particular cases of
biregular maps:

Corollary 3.2. Let t1, t2, t3 ∈ C with t1t2 + t23 6= 0. Then
t1 0 0 −t3
0 t1 −t3 0
t3 0 0 t2
0 t3 t2 0

 ∈ F∗C .
From this it may be seen that the composition of two biregular mappings

is not, in general, biregular.

Existence of nonlinear biregular mappings. Thus far all of the biregular
mappings considered have been linear. We now give examples of biregular
mappings with nonconstant differential. Corollary 3.2 implies that f =φ+
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ψj will be locally biregular wherever it is nonsingular when its complex
coefficient functions satisfy, for example,

φū = ψū = 0 , φv = ψv = 0 , φv̄ = −ψu .

This is solved by φ(u, v) = λ′(u)v + µ(u), ψ(u, v) = −λ(u) + ν(u), where
λ, µ are holomorphic and ν is antiholomorphic. Here t1 = λ′′(u)v + µ′(u),
t2 = 0, t3 = −λ′(u) so t1t2 + t23 = λ′(u)2 is nonzero whenever λ′(u) 6= 0.
This provides many nontrivial examples of biregular mappings; we will not
investigate the general solution here.

LR-biregular mappings. One may define numerous classes of mappings
by requiring f , f−1 to have any desired properties related to regularity. We
will say that the invertible mapping f is left-right biregular (LR-biregular)
when f is (left) regular and f−1 is right regular. Let FLR

C ⊆ M denote
the set of matrices corresponding to LR-biregular mappings. By the same
reasoning as above, one finds that if B ∈ F∗C is invertible, then B−1 is
right regular if and only if (B−1)1,2 = −(B−1)2,0, (B−1)2,2 = (B−1)1,0;
that is,

(11)

−

∣∣∣∣∣∣
b00 −b30 b12

b10 b12 −b30

b30 b32 b10

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
b10 b00 −b30

b20 b30 b32

b30 b20 b10

∣∣∣∣∣∣ ,∣∣∣∣∣∣
b00 b10 b12

b10 b00 −b30

b30 b20 b10

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
b10 b12 −b30

b20 b10 b32

b30 b32 b10

∣∣∣∣∣∣ .
Although it might not appear so at first sight, equations (11) are consid-

erably simpler than (10). After expansion of these determinants and some
rearranging, we have the following characterization of LR-biregular matri-
ces.

Theorem 3.3. Let B = (bαβ) ∈ M. Then B ∈ FLR
C if and only if

detB 6= 0, b22 = b10, b02 = −b30, and

(12)

b12(b00b10 − b12b30) + b10(b00b20 + b12b32)

+ b20(b10b32 + b20b30) = 0 ,

b00(b00b10 − b12b30) + b30(b00b20 + b12b32)

− b32(b10b32 + b20b30) = 0 .

It is difficult to simplify further the system (12) of two equations in 6
unknowns. However, we have the following simple parametrization of an
open set of solutions:
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Corollary 3.4. Let t1, t2, t3, t4 ∈ C with t1t2 + t23 6= 0. Then

(13) B =


t1 t3t4 −t3 t1t4
t3t4 t1 t1t4 −t3
−t2t4 t3 t3t4 t2
t3 −t2t4 t2 t3t4

 ∈ FLR
C .

P r o o f. Since detB = −|t1t2 + t23|2(|t4|2 + 1)2, B is nonsingular. It is
immediate that the entries bαβ of B satisfy the remaining conditions of
Theorem 3.3; indeed, all the terms in parentheses in (12) vanish.

It must be stressed that (13) is by no means the most general LR-
biregular linear mapping. Even so, it would be difficult to find explicitly the
family {f=φ+ψj : JCf is of the form (13)}. We give some examples of non-
affine LR-biregular mappings in this family. Suppose φ and ψ are holomor-
phic functions of u and v; that is, φū=ψu=0, φv̄=ψv=0. Suppose further
that ψu =−φv. (As a simple illustration, consider φ(u, v) = λ(u) + µ(v),
ψ(u, v) = −uµ′(v) for λ, µ holomorphic.) Then for f=φ+ψj, JCf is of the
form (13). The nonsingularity condition φuψv+(ψu)2 6= 0 is easily achieved.

One may easily see that the class FLR
C is also not preserved under com-

position.

4. Regular functions on manifolds. In this section we show that LR-
biregularity is a natural notion to consider on certain quaternionic manifolds.

Let M be a real differentiable manifold of dimension 4. Let x =
(x0, x1, x2, x3) : U → R4 be a smooth local coordinate system in an open set
U in M . Define q ∈ H by (1). Then a function F : M → H is regular with
respect to this coordinate system if f = F ◦ x−1 is a regular function of q.
The following fact limits the manifolds which can admit regular functions
in this sense.

Proposition 4.1. Let g : Ω2 → Ω1 be a diffeomorphism of domains in
H. Suppose f ◦ g is regular in Ω2 for every regular f defined in Ω1. Then g
is a left affine map g(q) = aq + b, a, b ∈ H. Conversely , for any left affine
g , f ◦ g is regular whenever f is.

P r o o f. According to Proposition 2.3, we have

D+g (1)
∂f

∂q (1)
+D+g (2)

∂f

∂q (2)
+D+g (3)

∂f

∂q (3)
= 0

whenever D+f = 0. For this to hold for all regular f , we must have

D+g (1) = D+g (2) = D+g (3) = 0 .

By Theorem 2.6 the differential dg ∈ R4×4 has the form of a left multipli-
cation mapping. It is well known [12] that any quaternionic function whose
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differential is of this form at each point is left affine. Conversely, by Corol-
lary 2.4, pre-composition by such functions preserves regularity.

There are, of course, contexts in which mappings more general than
affine can preserve regularity in a weaker sense. (For instance, let g(q) =
(aq+ b)(cq+d)−1 (a, b, c, d ∈ H, a−1b− c−1d 6= 0) be a quaternionic Möbius
transformation. Then f is regular if and only if % · (f ◦ g) is regular [12],
where %(q) = (|b− ac−1d|−2|cq + d|−2)(cq + d)−1.) However, the definition
we have given for regular F on M implies that if xα, xβ are compatible local
coordinates, and if fα = F ◦ (xα)−1, fβ = F ◦ (xβ)−1, then fβ = fα ◦ g
where g = xα ◦ (xβ)−1 must satisfy the condition of Proposition 4.1. This
may be summarized as follows.

Corollary 4.2. The only manifolds M modelled locally on H and ad-
mitting a well-defined notion of “regular function” F : M → H are the left
affine manifolds.

Examples of affine quaternionic manifolds are discussed, for example,
in [10]. Associated with a left affine manifold M is its canonical bundle ζM .
This is the bundle with fiber H for which the portions U × H, V × H over
coordinate neighborhoods U, V sharing the transition function g(q) = aq+ b
are identified via (q, p) ≈ (g(q), pa−1). Note that ζM is a right H-bundle.
There are three other natural H-line bundles ζM , ζ−1

M , ζ−1
M obtained by

replacing pa−1 with a−1p, ap, pa respectively. (Due to the noncommutativity
of H, a rule such as pa does not satisfy the cocycle condition for a bundle,
nor can we define higher powers of ζM .) The conjugate manifold M is the
right affine manifold obtained by replacing each chart of M by its conjugate.
One may identify naturally ζM = ζM . Let C∞(M,H) denote the collection
of smooth H-valued functions on M .

Proposition 4.3. Let M be a left affine manifold. The left Fueter oper-
ator f 7→ D+f induces a linear operator C∞(M,H)→ Γ (M, ζM ).

P r o o f. Let F ∈ C∞(M,H). For each chart xα, write fα = F ◦ xα and
σα = D+fα. The coordinate transition functions are gαβ(q) = xα◦x−1

β (q) =
aαβq+ bαβ . By Corollary 2.4, D+fβ = D+(fα ◦ gαβ) = aαβ(D+fα ◦ gαβ), so
σα ◦ gαβ = a−1

αβσβ . Therefore D+F = (σα) is a section of ζM .

A minor extension of Corollary 4.2 shows that in order for regular func-
tions F : M → N to be defined between two manifolds, M must be left
affine and N right affine. Since the natural functions defined on N are the
right regular ones, the natural notion of invertibly regular function in this
context is that of LR-biregular. Corollary 2.4 gives the following.

Theorem 4.4. Let M,M ′ be left affine quaternionic manifolds, and
N,N ′ right affine ones. Let G : M → M ′ and H : N → N ′ be left and
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right affine mappings respectively. Let F : M → N be LR-biregular. Then
H ◦ F ◦G is LR-biregular.

In closing we remark that similar statements hold when “regular” is
replaced by “antiregular” and “right” is exchanged with “left”.

Acknowledgment is made for use of the computing facilities at the
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[6] W. Kr ó l ikowsk i and E. Ramı́rez de Are l lano, Fueter–Hurwitz regular map-

pings and an integral representation, in: Clifford Algebras and their Applications
in Mathematical Physics, Proceedings, Montpellier, 1989, A. Micali et al. (eds.),
Kluwer Acad. Publ., Dordrecht, 1990, 221–237.

[7] —, —, On polynomial solutions of the Fueter–Hurwitz equation, in: Proc. Internat.
Conf. on Complex Analysis, June 1991, University of Wisconsin, Madison, A. Nagel
and E. Lee Stout (eds.), Contemp. Math. 137, Amer. Math. Soc., 1992, 297–305.

[8] R. Naras imhan, Analysis on Real and Complex Manifolds, North-Holland, Ams-
terdam, 1968.

[9] M. V. Shapiro and N. Vas i l evsk i, Quaternionic ψ-hyperholomorphic functions,
singular integral operators and boundary value problems, I , II , Complex Variables
Theory Appl., to appear.

[10] A. J. Sommese, Quaternionic manifolds, Math. Ann. 212 (1975), 191–214.
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