ANNALES POLONICI MATHEMATICI LIX.2 (1994)

Generic properties of generalized hyperbolic partial differential equations

by DARIUSZ BIELAWSKI (Gdańsk)

Abstract. The existence and uniqueness of solutions and convergence of successive approximations are considered as generic properties for generalized hyperbolic partial differential equations with unbounded right-hand sides.

1. Introduction. In this note we consider the Darboux problem

(1)
$$\begin{cases} u_{xy} = f(x, y, u, u_x, u_y, u_{xy}), \\ u(0, y) = \psi(y), \quad u(x, 0) = \phi(x), \end{cases}$$

where $f: [0, a] \times [0, b] \times \mathbb{R}^4 \to \mathbb{R}$ is a continuous function, $\phi: [0, a] \to \mathbb{R}$ and $\psi: [0, b] \to \mathbb{R}$ are continuously differentiable on [0, a] and [0, b] respectively and satisfy $\phi(0) = \psi(0)$. The family of all pairs of functions (ϕ, ψ) satisfying the above conditions is denoted by \mathcal{Z} .

By a solution of the problem (1) we mean a continuous function u: $[0,a] \times [0,b] \rightarrow \mathbb{R}$ with continuous derivatives u_x , u_y , $u_{xy} = u_{yx}$ which satisfies (1) for $x \in [0,a]$ and $y \in [0,b]$.

The problem (1) was investigated by Goebel [6]. Using Darbo's fixed point theorem for α -contractions [4] and Bielecki's norms [2] he showed that under the additional assumptions that f is bounded and satisfies the Lipschitz condition

$$|f(x, y, u, p, q, s) - f(x, y, u, \overline{p}, \overline{q}, \overline{s})| \le M|p - \overline{p}| + N|q - \overline{q}| + k|s - \overline{s}|,$$

where k < 1, the problem (1) has at least one solution.

Much attention was paid to the quasilinear hyperbolic equation

(2)
$$\begin{cases} u_{xy} = f(x, y, u, u_x, u_y), \\ u(0, y) = \psi(y), \quad u(x, 0) = \phi(x), \end{cases} \quad x \in [0, a], \ y \in [0, b],$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 35L20.

 $Key\ words\ and\ phrases:$ Darboux problem, generic property, existence and uniqueness of solutions, Bielecki's norms.

D. Bielawski

where $(\phi, \psi) \in \mathbb{Z}$ (see [2] and [7]). It is well known that the continuity of f is not sufficient to guarantee the existence of solution of the problem (2). However, Costello [3] proved that the existence, uniqueness, and continuous dependence of the solution for the problem (2) is a generic property in the space \mathcal{H} of all continuous bounded $f : [0, a] \times [0, b] \times \mathbb{R}^3 \to \mathbb{R}$ endowed with the norm of uniform convergence. This result is a generalization of an earlier paper of Alexiewicz and Orlicz [1]. Costello's method of proof is similar to that of Lasota and Yorke [8]. His result was strengthened by De Blasi and Myjak [5] who proved that the convergence of successive approximations is a generic property in \mathcal{H} . In our approach, applying Bielecki's norms, we are able to study generic properties of the problem (1) in two cases: with unbounded right-hand sides under the metric of uniform convergence on bounded sets or with bounded right-hand sides under the norm of uniform convergence.

2. Results. The space of all continuous $v : [0, a] \times [0, b] \to \mathbb{R}$ is denoted by \mathcal{C} . The family of Bielecki's norms in \mathcal{C} for $\lambda \geq 0$ is defined by

$$\|v\|_{\lambda} = \sup\{\exp(-\lambda(x+y))|v(x,y)| : x \in [0,a], \ y \in [0,b]\}.$$

Note that all these norms are equivalent.

We associate with every continuous $f : [0, a] \times [0, b] \times \mathbb{R}^4 \to \mathbb{R}$ and $(\phi, \psi) \in \mathcal{Z}$ the continuous mapping $\widehat{f}^1_{\phi, \psi} : \mathcal{C} \to \mathcal{C}$ and its successive approximations given as follows:

$$\begin{split} \widehat{f}_{\phi,\psi}^{1}(v)(x,y) &= f\Big(x,y, \int_{0}^{x} \int_{0}^{y} v(\xi,\eta) \, d\xi \, d\eta + \phi(x) + \psi(y) - \phi(0) \,, \\ &\int_{0}^{y} v(x,\eta) \, d\eta + \phi'(x), \int_{0}^{x} v(\xi,y) \, d\xi + \psi'(y), v(x,y) \Big) \,, \\ &\widehat{f}_{\phi,\psi}^{i+1}(v) = \widehat{f}_{\phi,\psi}^{1}(\widehat{f}_{\phi,\psi}^{i}(v)) \,, \quad v \in \mathcal{C} \,. \end{split}$$

Putting $v(x, y) = u_{xy}(x, y)$ we can now write the problem (1) in an equivalent form

(3)
$$\widehat{f}^{1}_{\phi,\psi}(v) = v, \quad v \in \mathcal{C}.$$

By (\mathcal{F}, d) we denote the complete metric space of all continuous $f : [0, a] \times [0, b] \times \mathbb{R}^4 \to \mathbb{R}$ satisfying the condition

$$|f(x, y, u, p, q, s) - f(x, y, u, p, q, \overline{s})| \le |s - \overline{s}|$$

for $x \in [0, a]$, $y \in [0, b]$, $u, p, q, s, \overline{s} \in \mathbb{R}$, endowed with the metric of uniform convergence on bounded sets given by

Generalized hyperbolic equations

$$d(f,g) = \sum_{n=1}^{\infty} 2^{-n} \sup \left\{ \frac{|f(x, y, u, p, q, s) - g(x, y, u, p, q, s)|}{1 + |f(x, y, u, p, q, s) - g(x, y, u, p, q, s)|} : x \in [0, a], \ y \in [0, b], \ |u|, |p|, |q|, |s| \le n \right\}.$$

Recall that a subset of a metric space is said to be residual if its complement is of the first category.

THEOREM 1. Let \mathcal{F}_0 be the subset of all $f \in \mathcal{F}$ such that (i) for every $(\phi, \psi) \in \mathcal{Z}$ the problem (1) (or (3)) has exactly one solution; (ii) for every $v \in \mathcal{C}$ and $(\phi, \psi) \in \mathcal{Z}$ the sequence $\widehat{f}^{i}_{\phi,\psi}(v)$ is convergent in \mathcal{C} as $i \to \infty$. Then \mathcal{F}_{0} is a residual set in the space (\mathcal{F}, d) .

Proof. Let \mathcal{G} be the subset of all $g \in \mathcal{F}$ satisfying the following Lipschitz condition:

(4)
$$|g(x, y, u, p, q, s) - g(x, y, \overline{u}, \overline{p}, \overline{q}, \overline{s})| \le L|u - \overline{u}| + M|p - \overline{p}| + N|q - \overline{q}| + k|s - \overline{s}|,$$

for $x \in [0, a], y \in [0, b], u, p, q, s, \overline{u}, \overline{p}, \overline{q}, \overline{s} \in \mathbb{R}$, where L, M, N, k are some constants and k < 1.

We will see that for $g \in \mathcal{G}$ there exist constants K(g) < 1 and $\lambda(g) \ge 0$ such that

(5)
$$\|\widehat{g}^{1}_{\phi,\psi}(v) - \widehat{g}^{1}_{\phi,\psi}(w)\|_{\lambda(g)} \leq K(g)\|v - w\|_{\lambda(g)}, \quad v, w \in \mathcal{C}, \ (\phi,\psi) \in \mathcal{Z}.$$

In fact, from (4) we get

fact, from (4) we get

$$\begin{split} \exp(-\lambda(x+y)) |\widehat{g}_{\phi,\psi}^{1}(v)(x,y) - \widehat{g}_{\phi,\psi}^{1}(w)(x,y)| \\ &\leq \exp(-\lambda(x+y)) \Big(L \int_{0}^{x} \int_{0}^{y} |v(\xi,\eta) - w(\xi,\eta)| \, d\xi \, d\eta \\ &+ M \int_{0}^{y} |v(x,\eta) - w(x,\eta)| \, d\eta \\ &+ N \int_{0}^{x} |v(\xi,y) - w(\xi,y)| \, d\xi + k |v(x,y) - w(x,y)| \Big) \\ &\leq \exp(-\lambda(x+y)) \Big(L \int_{0}^{x} \int_{0}^{y} \exp(\lambda(\xi+\eta)) \, d\xi \, d\eta + M \int_{0}^{y} \exp(\lambda(x+\eta)) \, d\eta \\ &+ N \int_{0}^{x} \exp(\lambda(\xi+y)) \, d\xi + k \exp(\lambda(x+y)) \Big) \|v - w\|_{\lambda} \\ &\leq (2L\lambda^{-2} + (M+N)\lambda^{-1} + k) \|v - w\|_{\lambda} \,, \end{split}$$

D. Bielawski

so it suffices to set $\lambda(g) = (1-k)^{-1}(2L+M+N)+1$ and $K(g) = \lambda(g)^{-1}(2L+M+N)+k$.

Observe that \mathcal{G} is dense in \mathcal{F} . To show this suppose that $f \in \mathcal{F}$. For $n = 1, 2, \ldots$ let continuously differentiable functions $\gamma_n : \mathbb{R}^4 \to [0, \infty)$ be such that $\int_{\mathbb{R}^4} \gamma_n d\mu = 1$ and $\sup\{|z| : \gamma_n(z) > 0\} \to 0$ as $n \to \infty$. For $n = 1, 2, \ldots$ consider the nonexpansive retractions $r_n : \mathbb{R} \to [-n, n]$ given by

$$r_n(u) = \begin{cases} u & \text{if } |u| \le n\\ nu|u|^{-1} & \text{if } |u| > n \end{cases}$$

Define $g_n: [0,a] \times [0,b] \times \mathbb{R}^4 \to \mathbb{R}$ by

 $g_n(x, y, u, p, q, s)$

$$=\frac{n}{n+1}\int_{\mathbb{R}^4} f(x,y,r_n(\overline{u}),r_n(\overline{p}),r_n(\overline{q}),r_n(\overline{s}))\gamma_n(u-\overline{u},p-\overline{p},q-\overline{q},s-\overline{s})\,d\mu\,.$$

One checks that $d(f, g_n) \to 0$ as $n \to \infty$ and g_n satisfies (4) with some constants L, M, N, and k = n/(n+1).

We denote by \mathcal{Z}_n (n = 1, 2, ...) the subset of all pairs $(\phi, \psi) \in \mathcal{Z}$ such that $|\phi(x)|, |\phi'(x)| \leq n$ for $x \in [0, a]$ and $|\psi(y)|, |\psi'(y)| \leq n$ for $y \in [0, b]$. Note that $\bigcup_{n=1}^{\infty} \mathcal{Z}_n = \mathcal{Z}$. Put

$$\overline{B}_{\lambda}(0,R) = \{ v \in \mathcal{C} : \|v\|_{\lambda} \le R \}.$$

For every $g \in \mathcal{G}$ and $n = 1, 2, \ldots$ define

(6)
$$R(g,n) = (1 - K(g))^{-1} (nK(g) + G_n),$$

where

$$G_n = \sup\{|g(x, y, u, p, q, s)|: x \in [0, a], y \in [0, b], |u| \le 3n, |p|, |q| \le n, s = 0\}.$$

We claim that for $(\phi, \psi) \in \mathcal{Z}_n$,

(7)
$$\widehat{g}^{1}_{\phi,\psi}(\overline{B}_{\lambda(g)}(0,R(g,n)+n)) \subset \overline{B}_{\lambda(g)}(0,R(g,n))$$

In fact, if $||v||_{\lambda(g)} \leq R(g,n) + n$ and $(\phi,\psi) \in \mathcal{Z}_n$, then from (5) and (6) we obtain

$$\begin{aligned} \|\widehat{g}_{\phi,\psi}^{1}(v)\|_{\lambda(g)} &\leq \|\widehat{g}_{\phi,\psi}^{1}(v) - \widehat{g}_{\phi,\psi}^{1}(0)\|_{\lambda(g)} + \|\widehat{g}_{\phi,\psi}^{1}(0)\|_{\lambda(g)} \\ &\leq K(g)\|v\|_{\lambda(g)} + \|\widehat{g}_{\phi,\psi}^{1}(0)\|_{0} \leq K(g)(R(g,n)+n) + G_{n} \\ &= R(g,n) \,. \end{aligned}$$

Since d is the metric of uniform convergence on bounded sets, it is possible to find for every $g \in \mathcal{G}$ and n = 1, 2, ... a positive number $\varepsilon(g, n)$ such that for $f \in \mathcal{F}$, $d(f,g) < \varepsilon(g,n)$ and for $x \in [0,a]$, $y \in [0,b]$,

$$|u| \le ab \exp(\lambda(g)(a+b))(R(g,n)+n) + 3n$$

$$\begin{aligned} p| &\leq b \exp(\lambda(g)(a+b))(R(g,n)+n) + n\\ q| &\leq a \exp(\lambda(g)(a+b))(R(g,n)+n) + n\\ s| &\leq \exp(\lambda(g)(a+b))(R(g,n)+n) \,, \end{aligned}$$

we have

$$\begin{split} |f(x,y,u,p,q,s)-g(x,y,u,p,q,s)| &\leq (3n)^{-1}(1-K(g))\exp(-\lambda(g)(a+b))\,. \end{split}$$
 This means that for $g\in\mathcal{G},\,d(f,g)<\varepsilon(g,n)$ we have

(8)

$$v \in \overline{B}_{\lambda(g)}(0, R(g, n) + n), \ (\phi, \psi) \in \mathcal{Z}_n$$

$$\Rightarrow \|\widehat{f}^1_{\phi, \psi}(v) - \widehat{g}^1_{\phi, \psi}(v)\|_0 \le (3n)^{-1}(1 - K(g)) \exp(-\lambda(g)(a + b)).$$
Now we show that

Now we show that

(9)
$$\bigcap_{n=1}^{\infty} \bigcup_{g \in \mathcal{G}} B(g, \varepsilon(g, n)) \subset \mathcal{F}_0,$$

where $B(g, \varepsilon(g, n))$ denotes the open ball in \mathcal{F} with center g and radius $\varepsilon(g, n)$.

Suppose that f belongs to the left side of the inclusion (9). This implies that for every n = 1, 2, ... there exists $g_n \in \mathcal{G}$ satisfying $d(g_n, f) < \varepsilon(g_n, n)$.

First, we prove that the equation (3) for $(\phi, \psi) \in \mathbb{Z}$ has at most one solution in \mathcal{C} . To this end it suffices to check that $I - \hat{f}_{\phi,\psi}^1$ is injective (Idenotes the identity map of \mathcal{C}). For $v, w \in \mathcal{C}$ such that $\|v - w\|_0 \ge 1/n$, $\|v\|_0, \|w\|_0 \le n$ and $(\phi, \psi) \in \mathbb{Z}_n$ from (5) and (8) we obtain

$$\begin{split} \| (I - \widehat{f}_{\phi,\psi}^{1})(v) - (I - \widehat{f}_{\phi,\psi}^{1})(w) \|_{\lambda(g_{n})} \\ &\geq \| v - w \|_{\lambda(g_{n})} - \| \widehat{g}_{n,\phi,\psi}^{1}(v) - \widehat{g}_{n,\phi,\psi}^{1}(w) \|_{\lambda(g_{n})} \\ &- \| \widehat{g}_{n,\phi,\psi}^{1}(v) - \widehat{f}_{\phi,\psi}^{1}(v) \|_{\lambda(g_{n})} - \| \widehat{g}_{n,\phi,\psi}^{1}(w) - \widehat{f}_{\phi,\psi}^{1}(w) \|_{\lambda(g_{n})} \\ &\geq (1 - K(g_{n})) \| v - w \|_{\lambda(g_{n})} - 2(3n)^{-1}(1 - K(g_{n})) \exp(-\lambda(g_{n})(a + b)) \\ &\geq (3n)^{-1}(1 - K(g_{n})) \exp(-\lambda(g_{n})(a + b)) > 0 \,. \end{split}$$

Since n can be chosen arbitrarily large, for $||v - w||_0 > 0$ and $(\phi, \psi) \in \mathbb{Z}$ we get

$$(I - \widehat{f}^{1}_{\phi,\psi})(v) \neq (I - \widehat{f}^{1}_{\phi,\psi})(w),$$

so $I - \widehat{f}^{1}_{\phi,\psi}$ is injective.

Now we prove that the sequence of successive approximations $\widehat{f}^{i}_{\phi,\psi}(v)$ is convergent in \mathcal{C} as $i \to \infty$ for all $v \in \mathcal{C}$ and $(\phi, \psi) \in \mathcal{Z}$. To this end fix ϕ, ψ and v and consider any positive integer n satisfying $(\phi, \psi) \in \mathcal{Z}_n$ and $\|v\|_0 \leq n$. Observe that

(10)
$$\widehat{f}_{\phi,\psi}^1(\overline{B}_{\lambda(g_n)}(0,R(g_n,n)+n) \subset \overline{B}_{\lambda(g_n)}(0,R(g_n,n)+n).$$

In fact, for $||w||_{\lambda(g_n)} \leq R(g_n, n) + n$ from (7) and (8) we obtain

$$\begin{split} \|f_{\phi,\psi}^{1}(w)\|_{\lambda(g_{n})} \\ &\leq \|\widehat{f}_{\phi,\psi}^{1}(w) - \widehat{g}_{n,\phi,\psi}^{1}(w)\|_{\lambda(g_{n})} + \|\widehat{g}_{n,\phi,\psi}^{1}(w)\|_{\lambda(g_{n})} \\ &\leq (3n)^{-1}(1 - K(g_{n}))\exp(-\lambda(g_{n})(a+b)) + R(g_{n},n) < R(g_{n},n) + n \,. \end{split}$$

Since $v \in \overline{B}_0(0,n) \subset \overline{B}_{\lambda(g_n)}(0, R(g_n, n) + n)$, by (10) we see that for every $i = 1, 2, \ldots,$

(11)
$$\widehat{f}^{i}_{\phi,\psi}(v) \in \overline{B}_{\lambda(g_n)}(0, R(g_n, n) + n)$$

Now we show by induction that for every positive integer i we have (12) $\|\widehat{f}_{\phi,\psi}^i(v) - \widehat{g}_{n,\phi,\psi}^i(v)\|_{\lambda(g_n)} \leq (3n)^{-1}(1 - K(g_n)^i) \exp(-\lambda(g_n)(a+b))$. For i = 1, (12) follows from (8). If (12) is true for a fixed i, then by (5), (8) and (11) we have

$$\begin{split} \|\widehat{f}_{\phi,\psi}^{i+1}(v) - \widehat{g}_{n,\phi,\psi}^{i+1}(v)\|_{\lambda(g_n)} \\ &\leq \|\widehat{f}_{\phi,\psi}^1\widehat{f}_{\phi,\psi}^i(v) - \widehat{g}_{n,\phi,\psi}^1\widehat{f}_{\phi,\psi}^i(v)\|_{\lambda(g_n)} \\ &\quad + \|\widehat{g}_{n,\phi,\psi}^1\widehat{f}_{\phi,\psi}^i(v) - \widehat{g}_{n,\phi,\psi}^1\widehat{g}_{n,\phi,\psi}^i(v)\|_{\lambda(g_n)} \\ &\leq ((3n)^{-1}(1 - K(g_n)) + (3n)^{-1}K(g_n)(1 - K(g_n)^i))\exp(-\lambda(g_n)(a+b)) \\ &= (3n)^{-1}(1 - K(g_n)^{i+1})\exp(-\lambda(g_n)(a+b)) \,, \end{split}$$

so (12) is true for i + 1.

From (5) and (12) it follows that

$$\begin{aligned} \|\widehat{f}_{\phi,\psi}^{i}(v) - \widehat{f}_{\phi,\psi}^{i+j}(v)\|_{0} \\ &\leq \exp(\lambda(g_{n})(a+b))\|\widehat{f}_{\phi,\psi}^{i}(v) - \widehat{f}_{\phi,\psi}^{i+j}(v)\|_{\lambda(g_{n})} \\ &\leq \exp(\lambda(g_{n})(a+b))(\|\widehat{f}_{\phi,\psi}^{i}(v) - \widehat{g}_{n,\phi,\psi}^{i}(v)\|_{\lambda(g_{n})} \\ &+ \|\widehat{f}_{\phi,\psi}^{i+j}(v) - \widehat{g}_{n,\phi,\psi}^{i+j}(v)\|_{\lambda(g_{n})} + \|\widehat{g}_{n,\phi,\psi}^{i}(v) - \widehat{g}_{n,\phi,\psi}^{i+j}(v)\|_{\lambda(g_{n})}) \\ &\leq 2(3n)^{-1} + K(g_{n})^{i}(1 - K(g_{n}))^{-1}\|v - \widehat{g}_{n,\phi,\psi}^{1}(v)\|_{\lambda(g_{n})}. \end{aligned}$$

Therefore, for sufficiently large i and every $j \in \mathbb{N}$ we have

$$\|\widehat{f}_{\phi,\psi}^{i}(v) - \widehat{f}_{\phi,\psi}^{i+j}(v)\|_{0} < 1/n$$
.

Since one can choose *n* arbitrarily large, the sequence $\{\widehat{f}^{i}_{\phi,\psi}(v)\}$ is Cauchy in the Banach space \mathcal{C} , so it is convergent. As $\widehat{f}^{1}_{\phi,\psi}: \mathcal{C} \to \mathcal{C}$ is continuous it has at least one fixed point $\lim_{i\to\infty} \widehat{f}^{i}_{\phi,\psi}(v)$.

From (9) it follows that \mathcal{F}_0 contains a dense G_{δ} subset of \mathcal{F} , so \mathcal{F}_0 is a residual subset of \mathcal{F} . This completes the proof.

R e m a r k. Theorem 1 is not true when the metric d is replaced by the metric \tilde{d} of uniform convergence given as follows:

$$\widetilde{d}(f,g) = \sup \left\{ \frac{|f(x,y,u,p,q,s) - g(x,y,u,p,q,s)|}{1 + |f(x,y,u,p,q,s) - g(x,y,u,p,q,s)|} : x \in [0,a], \ y \in [0,b], \ u,p,q,s \in \mathbb{R} \right\}.$$

In fact, consider the open ball $B(f_0, 1/2)$ in (\mathcal{F}, \tilde{d}) , where $f_0(x, y, u, p, q, s) = s + 1$. One can check that for every $f \in B(f_0, 1/2)$ there is no solution of the equation (3).

Now consider the Banach space $(\widetilde{\mathcal{F}}, \|\cdot\|_{\infty})$ of all bounded $f \in \mathcal{F}$ with the norm of uniform convergence

$$||f||_{\infty} = \sup\{|f(x, y, u, p, q, s)| : x \in [0, a], y \in [0, b], u, p, q, s \in \mathbb{R}\}.$$

THEOREM 2. Let $\widetilde{\mathcal{F}}_0$ be the subset of all $f \in \widetilde{\mathcal{F}}$ such that (i) for every $(\phi, \psi) \in \mathcal{Z}$ the problem (1) (or (3)) has exactly one solution; (ii) for every $v \in \mathcal{C}$ and $(\phi, \psi) \in \mathcal{Z}$ the sequence $\widehat{f}^{i}_{\phi,\psi}(v)$ is convergent in \mathcal{C} as $i \to \infty$. Then $\widetilde{\mathcal{F}}_0$ is a residual set in the Banach space $(\widetilde{\mathcal{F}}, \|\cdot\|_{\infty})$.

Proof. Let $\widetilde{\mathcal{G}}$ be the subset of all $g \in \widetilde{\mathcal{F}}$ satisfying, on every bounded subset of $[0, a] \times [0, b] \times \mathbb{R}^4$, the Lipschitz condition (4) with some constants k < 1, L, M, N. We show that $\widetilde{\mathcal{G}}$ is dense in $\widetilde{\mathcal{F}}$. Suppose that $f \in \widetilde{\mathcal{F}}$ and $\varepsilon > 0$. As we have seen in the proof of Theorem 1, for every positive integer n there exists $f_n \in \mathcal{G}$ such that

$$\sup\{|f_n(x, y, u, p, q, s) - f(x, y, u, p, q, s)|: \\ x \in [0, a], \ y \in [0, b], \ |u|, |p|, |q|, |s| \le n\} < 2^{-n}\varepsilon$$

Let us find continuously differentiable $\beta_m : \mathbb{R}^3 \to [0, \infty)$ such that $\operatorname{supp}(\beta_1) \subset B(0, 1)$, $\operatorname{supp}(\beta_m) \subset B(0, m) - \overline{B}(0, m-2)$ for $m \ge 2$ and $\sum_{m=1}^{\infty} \beta_m(z) = 1$ for $z \in \mathbb{R}^3$. Define $h_n : [0, a] \times [0, b] \times \mathbb{R}^4 \to \mathbb{R}$ $(n = 1, 2, \ldots)$ by

$$h_n(x, y, u, p, q, s) = \sum_{m=1}^{\infty} \beta_m(u, p, q) f_{n+m}(x, y, u, p, q, s)$$

Note that for $n = 1, 2, \ldots$,

$$\sup\{|h_n(x, y, u, p, q, s) - f(x, y, u, p, q, s)|: x \in [0, a], y \in [0, b], u, p, q \in \mathbb{R}, |s| \le n\} \le 2^{-n-1}\varepsilon.$$

A function $g \in \widetilde{\mathcal{G}}$ such that $||f - g||_{\infty} < \varepsilon$ may be given by

D. Bielawski

$$g(x, y, u, p, q, s) = h_{[|s|]+1}(x, y, u, p, q, s) + \sum_{i=1}^{[|s|]} (h_i(x, y, u, p, q, i \operatorname{sgn}(s))) - h_{i+1}(x, y, u, p, q, i \operatorname{sgn}(s)))$$

(we assume that the sum $\sum_{i=1}^{[|s|]} \dots$ vanishes for $s \in (-1, 1)$).

For every $g \in \widetilde{\mathcal{G}}$ define

$$R(g) = \sup\{|g(x, y, u, p, q, s)| : x \in [0, a], y \in [0, b], u, p, q, s \in \mathbb{R}\}.$$

Notice that for $(\phi, \psi) \in \mathcal{Z}$ we have

$$\widehat{g}^{1}_{\phi,\psi}(\mathcal{F}) \subset \overline{B}_{0}(0,R(g)).$$

Let k < 1, L, M, N be such that (4) is satisfied for every $x \in [0, a], y \in [0, b]$, and $|u|, |\overline{u}| \le ab(R(g) + n) + 3n, |p|, |\overline{p}| \le b(R(g) + n) + n, |q|, |\overline{q}| \le a(R(g) + n) + n, |s|, |\overline{s}| \le R(g) + n$. This means that there exist constants $\widetilde{K}(g) < 1$ and $\widetilde{\lambda}(g) \ge 0$ such that for $(\phi, \psi) \in \mathcal{Z}_n$ and $v, w \in \overline{B}_0(0, R(g) + n)$ we have

$$\|\widehat{g}^{1}_{\phi,\psi}(v) - \widehat{g}^{1}_{\phi,\psi}(w)\|_{\widetilde{\lambda}(g)} \leq \widetilde{K}(g)\|v - w\|_{\widetilde{\lambda}(g)}.$$

We set

$$\widetilde{\varepsilon}(g,n) = (3n)^{-1}(1 - \widetilde{K}(g)) \exp(-\widetilde{\lambda}(g)(a+b))$$

Now as in the proof of Theorem 1 one can show that

$$\bigcap_{n=1}^{\infty} \bigcup_{g \in \tilde{\mathcal{G}}} B(g, \tilde{\varepsilon}(g, n)) \subset \tilde{\mathcal{F}}_0,$$

where $B(g, \tilde{\varepsilon}(g, n)) = \{f \in \tilde{\mathcal{F}} : \|f\|_{\infty} \leq \tilde{\varepsilon}(g, n)\}$. This completes the proof.

References

- [1] A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of hyperbolic equations $z_{xy} = f(x, y, z, z_x, z_y)$, Studia Math. 15 (1956), 201–215.
- [2] A. Bielecki, Une remarque sur l'application de la méthode de Banach-Caccioppoli-Tikhonov dans la théorie de l'équation s = f(x, y, z, p, q), Bull. Acad. Polon. Sci. Cl. III 4 (1956), 265–268.
- [3] T. Costello, Generic properties of differential equations, SIAM J. Math. Anal. 4 (1973), 245-249.
- G. Darbo, Punti uniti in transformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.
- [5] F. S. De Blasi and J. Myjak, Generic properties of hyperbolic partial differential equations, J. London Math. Soc. (2) 15 (1977), 113-118.
- [6] K. Goebel, Thickness of sets in metric spaces and its application in fixed point theory, habilitation thesis, Lublin, 1970 (in Polish).

- P. Hartman and A. Wintner, On hyperbolic partial differential equations, Amer. J. Math., 74 (1952), 834-864.
- [8] A. Lasota and J. Yorke, The generic property of existence of solutions of differential equations in Banach space, J. Differential Equations 13 (1973), 1-12.

INSTITUTE OF MATHEMATICS UNIVERSITY OF GDAŃSK WITA STWOSZA 57 80-952 GDAŃSK, POLAND

> Reçu par la Rédaction le 3.3.1993 Révisé le 27.12.1993