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Injectivity onto a star-shaped set

for local homeomorphisms in n-space

by Gianluca Gorni (Udine) and Gaetano Zampieri (Padova)

Abstract. We provide a number of either necessary and sufficient or only sufficient
conditions on a local homeomorphism defined on an open, connected subset of the n-space
to be actually a homeomorphism onto a star-shaped set. The unifying idea is the existence
of “auxiliary” scalar functions that enjoy special behaviours along the paths that result
from lifting the half-lines that radiate from a point in the codomain space. In our main
result this special behaviour is monotonicity, and the auxiliary function can be seen as a
Lyapunov function for a suitable dynamical system having the lifted paths as trajectories.

1. Introduction. Calculus textbooks teach that a one-variable differen-
tiable function whose derivative never vanishes over an interval cannot take
twice the same value, or at least this wisdom is implicit in Rolle’s theorem.
As one steps into more advanced calculus, the Jacobian matrix replaces the
derivative in its linear approximation meaning, but the fact must be faced
that the invertibility of the Jacobian matrix guarantees injectivity only lo-
cally, with the complex exponential readily given as a counterexample.

It is an interesting and important problem to find useful conditions on
the triple domain/codomain/local homeomorphism that ensure that we are
dealing with a bijection, or, at least, an injection. Quite some work has been
devoted to the case when the topological spaces involved are open subsets
of Banach or finite-dimensional Euclidean spaces. A sample of papers on
the subject is contained in the reference list at the end of this paper, and
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we are not going to comment specifically on many of them. What almost
all of them share is that they explore the local homeomorphism by drawing
a continuous path in the codomain space and then seeing what happens if
we try to patch up a continuous path in the domain space by repeatedly
applying local inverses of the mapping, a procedure called “path-lifting”. We
call “local inverses” of a local homeomorphism the inverses of restrictions of
the mapping to an open subset where the mapping is one-to-one.

In the approach that we follow here we restrict the attention to the lift-
ing of segments of straight lines (“line-lifting”) that radiate from a single
given point of the codomain space. Then we try to derive some a priori

estimate on the lifted paths by postulating the existence of a suitable scalar
“auxiliary” function on the domain space. In this way we are able to pro-
vide either necessary and sufficient or only sufficient conditions for a local
homeomorphism or diffeomorphism to be injective and for the image to be
a star-shaped set. The most general of the results, which makes minimal re-
strictions on the shape of domain and image, can be stated as Theorem 1.1
below.

Theorem 1.1. Let Ω be a nonempty , open and connected subset of R
n,

x0 be a point of Ω, f : Ω → R
n be a local homeomorphism and y0 := f(x0).

Then the following two conditions are equivalent :

(a) f is one-to-one and f(Ω) is star-shaped with respect to y0;
(b) there exists a function k : Ω → R which is continuous, proper and

bounded from below and such that , for any local inverse g of f and any

vector v ∈ R
n, the real function

(1.1) t 7→ k(g(y0 + tv))

is locally weakly increasing at all the t > 0 where it is defined.

The reader who is familiar with dynamical systems will probably no-
tice that the conditions that we impose on the auxiliary function k of this
theorem look very much like the definition of a Lyapunov function. Indeed,
in Proposition 2.6 we will show that the theorem can be reformulated as
a result about global asymptotic stability of the equilibrium for a suitable
dynamical system, whose trajectories are the lifted paths and for which k is
a Lyapunov function. The auxiliary functions that appear in other invert-
ibility results that we will prove do not lend themselves either readily or at
all to a Lyapunov interpretation: namely, Propositions 4.2 and 4.3 on in-
jectivity with star-shaped image and Propositions 2.9 and 4.4 on injectivity
with f(Ω) = R

n.
Theorem 1.1 remains true if both the f in the preamble and the k in

condition (b) are required to be either locally Lipschitz continuous or to
be m times continuously differentiable, 1 ≤ m ≤ ∞. This is because, given
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condition (a), we can obtain a suitable k by composing f with a regular
scalar function defined on f(Ω), as will be shown in Section 3.

Whenever the theorem applies, the composition k ◦ f−1 is weakly in-
creasing along the half-lines departing from y0. Hence, the sets of the family
{x ∈ Ω | k(x) < c}, c > inf k, are all open and connected, and they are
mapped by f onto sets that are star-shaped with respect to y0.

One possible use of the theorem is to verify whether a given local homeo-
morphism is injective by checking condition (b) against promising auxiliary
functions k. If both f−1 and k are smooth, the monotonicity part of (b)
translates, of course, into a pointwise condition involving the first derivatives
of f and k:

Proposition 1.2. Let Ω be a nonempty , open subset of R
n, f : Ω → R

n

be a C1 local diffeomorphism and k : Ω → R be a function which is C1

on Ω \ {x0}. Then the next two conditions are equivalent :

1) the function t 7→ k(g(y0 + tv)) is locally weakly increasing at the t > 0
where it is defined , for any choice of a vector v ∈ R

n and of a local inverse

g of f ;

2) the following relation holds:

(1.2) k′(x)f ′(x)−1(f(x) − f(x0)) ≥ 0 for all x ∈ Ω \ {x0} .

Applying Proposition 1.2 with the particular function k(x) := 1/(r0 −
|x− x0|) on the open ball Br0

(x0) := {x ∈ R
n | |x− x0| < r0}, we can easily

turn the implication (b)⇒(a) of Theorem 1.1 into the following proposition,
which can in particular be used as a sufficient test for injectivity of a smooth
function on a ball:

Proposition 1.3. Let f : Br0
(x0) → R

n be a C1 local diffeomorphism.

Then f is one-to-one and f(Br(x0)) is star-shaped with respect to f(x0) for

any r ≤ r0 if and only if

(1.3) (x − x0) · f ′(x)−1(f(x) − f(x0)) ≥ 0 for all x ∈ Br0
(x0) .

A local C1 diffeomorphism defined in an arbitrary neighbourhood of x0

will be injective with star-shaped image with respect to f(x0) on any open
ball Br(x0) ⊂ Ω where inequality (1.3) holds. Notice that, although the
auxiliary function k used in the proof depends on the radius of the ball,
formula (1.3) does not. This is because k ◦ f−1 is weakly increasing along
the radii departing from f(x0) if and only if the same holds for |f−1|.

Proposition 1.3 can also be obtained, along a somewhat different line
of thought, as a corollary of a result of [26], which states that if (x − x0) ·
f ′(x0)−1(f(x) − f(x0)) ≥ 0 for all x such that |x − x0| = r < r0, then f is
one-to-one on Br(x0) and f(Br(x0)) is star-shaped with respect to f(x0).



174 G. Gorni and G. Zampieri

A weaker version of that result will also be proved in this paper as Propo-
sition 4.2.

The statement of Proposition 1.3 specializes as follows in the case of
holomorphic functions of one complex variable, with the usual identification
of R

2 with C. (The operator R is the real part.)

Proposition 1.4. Let Dr0
= {z ∈ C | |z| < r0} be a disk in C and

f : Dr0
→ C be a holomorphic function with f(0) = 0 and with never

vanishing derivative. Then f is one-to-one on D and f(Dr) is star-shaped

with respect to 0 ∈ C for all r < r0 if and only if

(1.4) R
zf(z)

f ′(z)
≥ 0 for all z ∈ D .

As a result, this is not particularly novel, since it is a variation of a well-
known theorem on “starlike” holomorphic functions (see [8], Theorem 2.10).
What seems notable in Proposition 1.4 is the fact that it is unmistakably
a real variables result. This helps making out that in the proof of [8] only
the following property is genuinely complex-analytic: if a one-to-one holo-
morphic function f : Dr0

→ C has nonvanishing derivative and f(Dr0
) is

star-shaped with respect to f(0), then all the images f(Dr), r ≤ r0, of the
smaller disks are also star-shaped with respect to f(0). Of course C∞ real
diffeomorphisms do not share this feature.

A simple consequence of Proposition 1.3 is the following general property
of C1 local diffeomorphisms.

Proposition 1.5. Let Ω be a nonempty open subset of R
n, x0 be a

point of Ω and f : Ω → R
n be a C1 local diffeomorphism. Then there

exists r0 > 0 such that f(Br(x0)) is star-shaped with respect to f(x0) for

all r ≤ r0.

Just compute

(1.5) (x − x0) · f ′(x)−1(f(x0) − f(x))

= (x − x0) · (f ′(x0)−1 + o(1))(f ′(x0)(x0 − x) + o(|x − x0|))

= −|x − x0|
2 + o(|x − x0|

2) as x → x0

and notice that formula (1.3) is true for r small enough. In the special case of
one-variable holomorphic functions a lot is known about just how large the
r0 of Proposition 1.5 can be (“radius of starlikeness”; see [8]). On the other
hand, except for the trivial one-dimensional case, the mere existence of an r0

is lost if the C1 regularity of f is relaxed to bilipschitz continuity, as we will
show in Example 4.1. Incidentally, the kind of mappings described in that
example arises independently in connection with the topological equivalence
of the flows of linear ordinary differential equations.
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The remainder of the paper is organized as follows. In Section 2, we
will start by introducing a machinery of line-lifting, and then proceed to
reformulate the problem of injectivity with star-shaped image as a problem
of either global liftability or global stability; among the applications we will
prove part (b)⇒(a) of Theorem 1.1. The converse implication will be shown
in Section 3 through a detailed study of the geometry of open, star-shaped
sets. Except for the bilipschitz Example 4.1, Section 4 applies the local
homeomorphism theory of Section 2 to local diffeomorphisms. In particular,
we will obtain some variants of the results on invertibility in the large for
local diffeomorphisms that one of the authors had developed in [26] and [27].
The original proofs had used ideas from the stability theory for ordinary
differential equations.

2.The theory for a local homeomorphism. Throughout this section
Ω will be a connected open set in R

n, x0 a point of Ω, f : Ω → R
n a local

homeomorphism and y0 = f(x0).
Our proof of the implication (b)⇒(a) of Theorem 1.1 will use the concept

of line-lifting, which is the problem of finding continuous paths in Ω which
are mapped into straight lines by f . We will start by stating two preliminary
propositions about existence, uniqueness, dependence on parameters and
asymptotic behaviour. We omit the proofs, which are elementary. Most of
the first proposition would actually hold even if we replaced the right-hand
side f(x) + tv of equation (2.1) with an arbitrary continuous function of the
couple (x, tv).

Proposition 2.1. For every x ∈ Ω and v ∈ R
n there exists one and

only one interval Ix,v containing 0 ∈ R and one and only one continuous

function γx,v : Ix,v → Ω such that

(2.1) γx,v(0) = x and f(γx,v(t)) = f(x) + tv for all t ∈ Ix,v ,

and such that if J is another interval containing 0 and γ̃ : J → Ω is a

continuous function for which f(γ̃(t)) = f(x) + tv for t ∈ J , then J ⊂ I and

γ̃ is the restriction of γx,v to J . Moreover , the set D := {(x, v, t) |x ∈ Ω,
v ∈ R

n, t ∈ Ix,v} is open in Ω × R
n × R, the mapping (x, v, t) 7→ γx,v(t) is

continuous on D and for any fixed x ∈ Ω and t 6= 0 the mapping v 7→ γx,v(t)
is an open mapping on {v ∈ R

n | (x, v, t) ∈ D}. Finally , γx,v(t) depends on

(v, t) only through the product tv, that is, if (x, v, t) ∈ D and tv = t′v′ then

(x, v′, t′) ∈ D and γx,v(t) = γx,v′(t′).

Note that if f is a local C1 diffeomorphism, the implicit function prob-
lem (2.1) is equivalent to the following ordinary differential equation (Wa-
żewski’s equation [25]):

(2.2) γx,v(0) = x and
d

dt
γx,v(t) = f ′(γx,v(t))−1v for all t ∈ Ix,v .
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Next, we exhibit a property that holds because we are lifting lines and
not just arbitrary continuous paths.

Proposition 2.2. Let C be a compact subset of Ω, x ∈ Ω and v ∈ R
n,

v 6= 0. Then there exists t ∈ Ix,v, t ≥ 0, such that γx,v(t) ∈ Ω \ C for all

t ∈ Ix,v, t ≥ t.

The title theme “invertibility and star-shaped image” of this paper has
an obvious affinity with the “line” half of “line-lifting”, because f(Ω) is star-
shaped with respect to y0 if and only if the straight line segment that joins
y0 to any f(x) ∈ f(Ω) is contained in f(Ω). A bit less trivial is the “lifting”
connection, that can be described as follows: whenever f(Ω) is star-shaped
with respect to y0, then f is one-to-one if and only if all those radii shooting
from y0 toward f(x) can be globally lifted to continuous paths radiating
from x0. The next lemma couches this fact in a more technical language.

Lemma 2.3. Let A be a connected subset of Ω containing x0. Then the

following conditions are equivalent :

(a) f is one-to-one on A and f(A) is star-shaped with respect to y0;
(b) 1 ∈ Ix0,f(x)−y0

and γx0,f(x)−y0
(t) ∈ A for all x ∈ A and all t ∈ [0, 1];

(c) 1 ∈ Ix0,f(x)−y0
, γx0,f(x)−y0

(t) ∈ A and γx0,f(x)−y0
(1) = x for all

x ∈ A and all t ∈ [0, 1].

P r o o f. To help understand the formulas, note that the path γx0,f(x)−y0

is the lifting, emanating from x0, of the radius that departs at time t = 0
from y0 and is scheduled to arrive in f(x) at time t = 1. Saying that 1∈
Ix0,f(x)−y0

means that the lifting is successful on the whole segment up to
and including f(x).

(a)⇒(b). If (a) holds and x ∈ A, then y0 + t(f(x) − y0) ∈ f(A) for
all t ∈ [0, 1] because f(A) is star-shaped and γx0,f(x)−y0

(t) = (f |A)−1(y0 +
t(f(x) − y0)) ∈ A for all t ∈ [0, 1] because f |A is invertible with continuous
inverse.

(b)⇒(c). Consider the set B := {x ∈ A | γx0,f(x)−y0
(1) = x}. This set is

nonempty because x0 ∈ B for sure. It is closed in A because it is defined
by an equality between the two continuous functions x 7→ γx0,f(x)−y0

(1)
and x 7→ x, both defined on the whole of A. To see that B is also open
in A, let x ∈ B and let U be an open neighbourhood of x in Ω on which
f is one-to-one. The set V := {x ∈ U ∩ A | γx0,f(x)−y0

(1) ∈ U} is contained
in U ∩A, it is open in A and it contains x. The mapping f is also one-to-one
on V , so that for any x ∈ V we can write

γx0,f(x)−y0
(1) = x ⇔ f(γx0,f(x)−y0

(1)) = f(x)(2.3)

⇔ y0 + 1(f(x) − y0) = f(x)

⇔ f(x) = f(x) ,

and conclude that V ⊂ B.
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(c)⇒(a). Let g(y) := γx0,y−y0
(1) for y ∈ f(A). Then g(f(x)) ≡ x for

all x ∈ A, showing that f |A is invertible with g as its inverse. To see that
f(A) is star-shaped with respect to y0, let x ∈ A, t ∈ [0, 1]. Then y0 +
t(f(x) − y0) = f(γx0,f(x)−y0

(t)) ∈ f(A).

Let A be the subset of Ω spanned by the maximal liftings, starting
from x0, of the radii departing from y0 in all directions. Then A is the
largest set satisfying the conditions of the previous lemma.

Proposition 2.4. The set A := {γx0,v(t) | v ∈ R
n, t ∈ Ix0,v} is the

largest of all connected subsets A of Ω, containing x0, for which the re-

striction of f to A is one-to-one and f(A) is star-shaped with respect to y0.

Moreover , A is open in Ω, 1 ∈ Ix0,f(x)−y0
for all x ∈ A and the inverse of

f |A is y 7→ γx0,y−y0
(1).

P r o o f. To start with, note that we can restrict the times t in the def-
inition of A to be > 0, because time 0 corresponds to x0, which can be
recovered as x0 = γx0,0(1), while reversing the sign of v takes care of the
negative times, since γx0,v(−t) = γx0,−v(t). The set A is open because it can
be written as the union of a family of sets,

(2.4) A =
⋃

t>0

{γx,v(t) | v ∈ R
n is such that t ∈ Ix,v} ,

all of which are open because they are the images of the open sets {v ∈
R

n | t ∈ Ix,v} under the open mappings v 7→ γx,v(t) (Proposition 2.1). A is
also connected because any of its points γx,v(t) is joined to x0 by the con-
tinuous path τ 7→ γx,v(τ), τ ∈ [0, t], that lies entirely in A. It is obvious
that f(A) is star-shaped with respect to y0. To see that f is one-to-one
on A just note that if f(γx0,v(t)) = f(γx0,v′(t′)) then y0 + tv = y0 + t′v′

and, by Proposition 2.1, γx0,v(t) = γx0,v′(t′). The fact that 1 ∈ Ix0,f(x)−y0

for all x ∈ A and the formula for the inverse of f |A is a consequence of
Lemma 2.3.

Let A be any other subset of Ω to which the conditions of Lemma 2.3
apply and let x ∈ A. Then 1 ∈ Ix0,f(x)−y0

and x = γx0,f(x)−y0
(1), so that

x ∈ A as well.

The set A has a neat interpretation in terms of dynamical systems theory.
To see this, let us start from the following (global) dynamical system in R

n:

(2.5) Ψ : R
n × R → R

n , Ψ(y, t) := y0 + e−t(y − y0) ,

whose trajectories are the half-lines hinged at y0, but this time they start at y
(Ψ(y, 0) = y) and they shoot towards y0 with a decreasing exponential pa-
rameter instead of a linear one, so that in particular Ψ(y, t) → y0 as t → ∞.
It is indeed a dynamical system, because Ψ(Ψ(y, t1), t2) = Ψ(y, t1 + t2).



178 G. Gorni and G. Zampieri

Through the local homeomorphism f , this Ψ can be “lifted” to a local dy-
namical system on Ω, that is to say, there exists an open subset DΦ of Ω×R

and a continuous function Φ : DΦ → Ω satisfying

(2.6)

• for all x ∈ Ω, the set {t ∈ R | (x, t) ∈ DΦ} is an interval
containing 0,

• Φ(x, 0) = x for all x ∈ Ω,

• (x, t1), (x, t1 + t2) ∈ DΦ ⇒ (Φ(x, t1), t2) ∈ DΦ and

Φ(Φ(x, t1), t2) = Φ(x, t1 + t2) for all x ∈ Ω, t1, t2 ∈ R,

• f(Φ(x, t)) = Ψ(f(x), t) = y0 + e−t(f(x) − y0) for all (x, t) ∈ DΦ.

In terms of the path-lifting notation that we have already introduced, the
maximal dynamical system with such properties is given by

(2.7)
DΦ := {(x, t) ∈ Ω × R | (x, y0 − f(x), 1 − e−t) ∈ D} ,

Φ(x, t) := γx,y0−f(x)(1 − e−t) .

In the particular case when f is a local C1 diffeomorphism, Φ is the flow of
the autonomous ordinary differential system

(2.8) ẋ(t) = −f ′(x(t))−1(f(x(t)) − f(x0)) ,

which was first considered by one of the authors in [26].
The usual nomenclature of dynamical systems theory can now be applied

to translate topological properties of f into dynamical properties of Φ. The
fact that f is a local homeomorphism makes it possible to define Φ, in the
first place, but it implies more.

Proposition 2.5. The set {x0} is asymptotically stable for Φ and A is

its basin of attraction.

P r o o f. Remind that a set is asymptotically stable for a (local) dynami-
cal system if it is an attractor and it is stable. Let U be an open neighbour-
hood of x0 where f is one-to-one and let g := (f |U )−1. For any small r > 0,
the ball Br(y0) is contained in f(U), and for such r let Ur := g−1(Br(y0)).
Then Ur is a neighbourhood of x0, and for all x ∈ Ur the trajectories
t 7→ Φ(x, t) of Φ are defined globally in the future, belong to Ur for all t ≥ 0
and converge to x0 as t → ∞. Then {x0} is an attractor because it attracts
a whole neighbourhood (any Ur will do), and it is stable because any of its
neighbourhoods contains a positively invariant neighbourhood (again Ur,
with small enough r) with global existence in the future. Finally, A is the
basin of attraction of {x0} because it is by definition the set of points of Ω
that are attracted to x0 by Φ.

Here is now the dynamical systems version of Theorem 1.1.

Proposition 2.6. The following conditions are equivalent :
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(α) f is one-to-one and f(Ω) is star-shaped with respect to y0;

(β) the set {x0} is globally asymptotically stable for the local dynamical

system Φ, i.e., A = Ω;

(γ) there exists a global Lyapunov function for Φ, in the following sense: a

continuous function k : Ω → R which is proper and bounded from below and

such that the composition t 7→ k(Φ(x, t)) is weakly decreasing for all x ∈ Ω.

A Lyapunov function k in the sense of (γ) has in general only a weak
minimum at x0 and the monotonicity along the flow is not necessarily strict;
if strict minimum and monotonicity were somehow required, it would be
enough to replace k(x) with k(x) + |f(x) − y0|

2.

We will not insist any further on the dynamical systems interpretation
and in particular we will not try to prove Theorem 1.1 as Proposition 2.6.
One reason is that we are not aware of a published theorem that would
provide the equivalence (β)⇔(γ) in our precise setting without any hassle.
Theorem 2.9 of [4] shows that global asymptotic stability is equivalent to
existence of a global Lyapunov function, but it is stated and proved for
systems which are globally defined in time. We may think of bridging the
gap with a globalizing reparameterization, but that would be a technicality
extraneous to the spirit of the present work, and anyway it does not seem
to be readily available in the literature except for systems that are associ-
ated with autonomous ordinary differential equations (equations (2.8) in our
case). The other reason is that (b)⇒(a) of Theorem 1.1 is already simple
enough to prove directly, while the converse implication gains in geometrical
insight and regularity of k if the proof exploits the star-shaped structure of
the problem at hand.

The next three propositions are of little intrinsic interest and they will
only be used in some proofs in Section 4.

Proposition 2.7. Let C be a compact , connected subset of Ω containing

x0. Then the following two conditions are equivalent :

(a) C ⊂ A and f(C) is star-shaped with respect to y0;

(b) for all v ∈ R
n the set γ−1

x0,v(C) is an interval of R.

P r o o f. (a)⇒(b). Since C ⊂ A, f is one-to-one on C. Let v ∈ R
n. Since

f(C) is star-shaped with respect to y0, the set γ−1
x0,v = {t ∈ R | y0 + tv ∈

f(C)} is an interval.

(b)⇒(a). The set C ∩A is open in C. To prove that it is also closed, let
xn = γx0,f(xn)−y0

(1) be a sequence of points in C ∩A converging to x ∈ C.
Consider the path γx0,f(x)−y0

. Applying Proposition 2.2 to the compact
set C, we find a time t > 0 such that γx0,f(x)−y0

(t) ∈ Ω \C. For all n large
enough, we will have t ∈ Ix0,f(xn)−y0

and also γx0,f(xn)−y0
(t) ∈ Ω \ C. But

the set of times when γx0,f(xn)−y0
lies in C is an interval by assumption (b).
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Hence γx0,f(xn)−y0
(t) ∈ Ω \ C for all t ≥ t and all large n, which implies

that t > 1, because γx0,f(xn)−y0
(1) ∈ C. We can now write

(2.9) C ∋ x = lim
n→∞

xn = lim
n→∞

γx0,f(xn)−y0
(1) = γx0,f(x)−y0

(1) ∈ A ,

which concludes the proof that C ⊂ A. The fact that f(C) is star-shaped
with respect to y0 comes now from Lemma 2.3.

Proposition 2.8. We have f(A) = f(Ω) if and only if A = Ω.

P r o o f. The “if” part is trivial. Also the converse needs very little of
the structure of the problem. Suppose that f(A) = f(Ω). Since A is open,
we will conclude that A = Ω if we prove that A is also closed in Ω. Let
then xn ∈ A be a sequence converging to x ∈ Ω. Since f(A) = f(Ω), there
exists x ∈ A such that f(x) = f(x). Recalling that f |A : A → f(A) is
a homeomorphism, from f(xn) → f(x) we deduce xn → x, whence x =
x ∈ A.

Proposition 2.9. Let Ω be a nonempty , open and connected subset

of R
n, and f : Ω → R

n be a local homeomorphism. The following two

conditions are equivalent :

(a) f is one-to-one and f(Ω) = R
n;

(b) there exist a continuous, proper function k : Ω → R bounded from

below , a locally bounded function ϕ : [0,∞[ → R and a point x0 ∈ Ω such

that

(2.10) k(x) ≤ ϕ(|f(x) − f(x0)|) for all x ∈ A ,

where A = Ax0
is the set defined in Proposition 2.4.

P r o o f. If (a) holds, then for any x0 ∈ Ω we can define k(x) := |f(x) −
f(x0)| and ϕ(r) := r.

Conversely, let y ∈ R
n be arbitrary and y0 := f(x0). Consider the path

γ := γx0,y−y0
, that starts from x0 and whose image through f is a segment

of the straight line originating at y0 and pointing toward y. All of γ is
contained in A, of course. For times t ∈ Ix0,y−y0

∩ [0, 1] we have

k(γ(t)) ≤ ϕ(|f(γ(t)) − y0|) = ϕ(t|y − y0|)(2.11)

≤ sup{ϕ(r) | 0 ≤ r ≤ |y − y0|} ,

so that for all those times the path lies in the compact set C :=
k−1([inf k, sup[0,|y−y0|]

ϕ]). Because of Proposition 2.2, there exists a time
t0 > 0 for which γ(t0) ∈ Ω \ C. Necessarily then t0 > 1, and

(2.12) y = f(γ(1)) ∈ f(A) .

This shows that f(A) = R
n and the conclusion follows from Proposition 2.8.

The following simple consequence when Ω = R
n is well-known:
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Corollary 2.10. A local homeomorphism f : R
n → R

n is one-to-one

and onto R
n if and only if lim|x|→∞ |f(x)| = ∞, that is to say , if and only

if f is a proper map.

P r o o f. For the “if” part, apply Proposition 2.9 above with x0 := 0,
k(x) := |f(x) − f(0)| and ϕ(r) := r.

One more easy lemma before wrapping up the first half of the proof of
Theorem 1.1.

Lemma 2.11. Let k : Ω → R be a function such that , for any local

inverse g of f and any v ∈ R
n the real function t 7→ k(g(y0 + tv)) is

weakly increasing in all the t ≥ 0 where it is defined. Then the function

t 7→ k(γx0,v(t)) is weakly increasing on Ix0,v ∩ {t | t ≥ 0}.

P r o o f o f T h e o r e m 1.1, (b)⇒(a). Assume condition (b) of Theo-
rem 1.1. Verifying condition (a) amounts to proving that A = Ω, where A is
the set defined in Proposition 2.4. Since A is nonempty and open, all we are
left to do is to verify that it is also closed in Ω. Let zn = γx0,f(zn)−y0

(1)
be a sequence of points of A converging to z ∈ Ω. The task is to show
that z ∈ A. Let M be the (finite) supremum of the continuous function k
on the compact set {z} ∪ {zn |n ∈ N}. Since k is also a proper map, the set

(2.13) C := k−1([inf k,M ])

is compact. By Proposition 2.2 the path γx0,f(z)−y0
will be outside C starting

from a certain time t ≥ 0, that is,

(2.14) k(γx0,f(z)−y0
(t)) > M for all t ≥ t .

For all indices n large enough, the paths γx0,f(zn)−y0
will also be defined up

to time t, and, using again the continuity of k,

(2.15) k(γx0,f(zn)−y0
(t)) > M for all large n .

But those paths are also defined up to t = 1, and along them the function k
is weakly increasing (Lemma 2.11) for nonnegative times. Hence

(2.16) k(γx0,f(zn)−y0
(t)) ≤ k(γx0,f(zn)−y0

(1)) = k(zn) ≤ M

for all t ∈ [0, 1] and all large n .

By comparing inequalities (2.15) and (2.16) we see that t is necessarily larger
than 1. In particular, the path γx0,f(z)−y0

is defined at t = 1 and

(2.17) z = lim
n→∞

zn = lim
n→∞

γx0,f(zn)−y0
(1) = γx0,f(z)−y0

(1) ∈ A .

R e m a r k 2.12. Condition (b) of Theorem 1.1 can be relaxed as follows:

(b)
′
there exists a continuous function k̃ : {x ∈ Ω | f(x) 6= y0} → R for

which the set

(2.18) {x ∈ Ω | k̃(x) ≤ a, |f(x) − y0| ≥ ε}
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is compact for any a ∈ R, ε > 0, and such that , for every local inverse g
of f and any vector v ∈ R

n \ {0}, the real function

(2.19) t 7→ k̃(g(y0 + tv))

is locally weakly increasing at all the t > 0 where it is defined.

P r o o f. As in the proof of Theorem 1.1 above, let zn = γx0,f(zn)−y0
(1)

be a sequence of points in A converging to z ∈ Ω. We distinguish two cases
according to whether f(z) = y0 or f(z) 6= y0.

First case: f(z) = y0. Since f |A : A → f(A) is a homeomorphism,
the relation f(zn) → f(x0) = y0 = f(z) implies that zn → x0, so that
z = x0 ∈ A.

Second case: f(z) 6= y0. Then we can assume that |f(zn) − y0| ≥ ε for
some ε > 0 and all n. From this point on we can proceed exactly as in the
proof of Theorem 1.1, with the only provision of setting

(2.20) C := {x ∈ Ω | k̃(x) ≤ M, |f(x) − y0| ≥ ε}

instead of (2.13).

3. Proof of Theorem 1.1, (a)⇒(b). Suppose that a homeomorphism
f : Ω → ∆ is given between two nonempty, open subsets of R

n, of which
∆ is star-shaped with respect to one of its points y0. The problem is to
prove the existence of a continuous, proper function k : Ω → R bounded
from below such that the composite function k ◦ f−1 : ∆ → R is weakly
increasing along the radii departing from y0.

An easy special case, to start with: the function

(3.1) k : x 7→ |f(x) − y0|

is trivially continuous, bounded from below and its composition with f−1 is
weakly increasing along the radii departing from y0. Unfortunately, it solves
the problem (i.e., it is proper) if and only if ∆ = R

n: in fact, for any r ≥ 0,
the closed ball Br(y0) := {y ∈ R

n | |y − y0| ≤ r} is compact and connected,
so that its open subset f({x ∈ Ω | 0 ≤ k(x) ≤ r}) = ∆ ∩ Br(y0) is compact
if and only if it is closed, that is to say, if and only if it coincides with the
whole of Br(y0). Other particular shapes of ∆ (open balls, for example)
can be tackled with ad hoc auxiliary functions k. In the rest of this section
we will treat the most general case, except for the somewhat simplifying
assumption that ∆ 6= R

n.
A few more simplifications of the problem come cheaply. The first one

is to suppose y0 to be the origin of R
n. In the rest of this section all sets

that will be described as star-shaped will be meant to be so with respect
to the origin. Next, we see that it suffices to assign a continuous, proper,
bounded below and radially weakly increasing function K∆ : ∆ → R to
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any open, star-shaped subset ∆ of R
n, i.e., a solution to the special case

when f is the identity mapping on Ω ≡ ∆: in fact, the solution of the
general case can be recovered as k := K∆ ◦f . Moreover, we can concentrate
the search on the functions K∆ whose radial monotonicity is strict, because
from any solution K∆ we can define the radially strictly increasing K̃∆(y) :=
K∆(y) + |y|, which is easily seen to be also continuous, proper and bounded
from below. Finally, it does no harm to require that K∆ vanish in the origin
(whence K∆(y) > 0 for y ∈ ∆ \ {0}).

A function K∆ that happened to comply with all the above rules will
also provide a solution to the well-known (see [24], Vol. 1, p. 322) problem
of proving that an open, star-shaped subset ∆ of R

n is homeomorphic to
the whole of R

n, since the mapping

(3.2) y 7→





0 if y = 0,
K∆(y)

|y|
y if y ∈ ∆ \ {0}

will do the job. An arbitrary homeomorphism ϕ : ∆ → R
n will not return

us a suitable function K∆, though, unless ϕ leaves the half-lines radiating
from the origin invariant. Since the reference [24] gives no existence proofs
of homeomorphisms, much the less of ones with the additional properties
that we need here, we feel we can not exempt ourselves from providing the
reader with a very detailed construction of the function K∆.

The level sets {y ∈ ∆ |K∆(y) = c}, c > 0, of our function K∆ are
far from being arbitrary subsets of ∆: they are compact and they are the
boundaries of open, star-shaped sets, namely, of {y ∈ ∆ |K∆(y) < c}. This
geometric property of the level sets of K∆ is what underlies our construction:
we will define a nested, increasing family ∆c, c > 0, of bounded subsets of ∆,
in such a way that their boundaries ∂∆c will be a partition of ∆ \ {0} and
that the function defined as

(3.3) K∆(y) :=

{
0 if y = 0,
c if c > 0 and y ∈ ∂∆c

will be what we need.
Let S := {u ∈ R

n | |u| = 1} be the unit sphere of R
n, viewed, case

by case, either as the set of directions in R
n, or as a topological or metric

subspace of R
n. With an arbitrary subset Σ of R

n we can associate the
following extended-real-valued function on S:

(3.4) ̺Σ : S → [0,∞] , ̺Σ(u) := sup{λ ≥ 0 |λu ∈ Σ} ,

that assigns to any u ∈ S the minimum distance beyond which no more
points of Σ can be found in the direction u. The set {̺Σ(u)u |u∈S, ̺Σ(u)<
∞} is always contained in the boundary of Σ. Of course, the function ̺Σ

is specially well-suited to handle star-shaped sets, in which case it deserves
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the name of radial function. Σ is star-shaped if and only if Σ ⊃ {λu |u ∈ S,
0 ≤ λ < ̺Σ(u)}. Some relationships between topological properties of Σ
and ̺Σ are stated in the proposition below. We denote by int A the interior
of a subset A of R

n and talk of continuity or semicontinuity of ̺Σ in the
extended-real-valued function sense.

Proposition 3.1. Let Σ be a star-shaped subset of R
n and let u ∈ S.

Then

1. {λu | 0 < λ < ̺Σ(u)} ⊂ int Σ if and only if ̺Σ is lower semicontinu-

ous at u;

2. {λu | ̺Σ(u) < λ < ∞} ⊂ int(Rn \ Σ) if and only if ̺Σ is upper

semicontinuous at u;

3. {λu | 0 < λ = ̺Σ(u) < ∞} = ∂Σ ∩ {λu | λ > 0} if and only if ̺Σ is

continuous at u.

P r o o f. Suppose {λu | 0 < λ < ̺Σ(u)} ⊂ int Σ. If ̺Σ(u) = 0 it is
obvious that ̺Σ is lower semicontinuous at u, because ̺Σ ≥ 0. If ̺Σ(u) > 0
then let 0 < M < ̺Σ(u) ≤ ∞. Since Mu ∈ Σ, there exists ε > 0 such that

(3.5) ∀y ∈ R
n |y − Mu| < ε ⇒ y ∈ Σ .

With the change of variable Mx = y we can write

(3.6) ∀x ∈ R
n |x − u| < ε/M ⇒ Mx ∈ Σ ,

whence, restricting to x = u ∈ S and recalling the definition of the radial
function,

(3.7) ∀u ∈ S |u − u| < ε/M ⇒ ̺Σ(u) ≥ M ,

which shows that ̺Σ is lower semicontinuous at u.

Conversely, suppose that ̺Σ is lower semicontinuous at u. If ̺Σ(u) = 0
then the inclusion {λu | 0 < λ < ̺Σ(u)} = ∅ ⊂ int Σ is obvious. If ̺Σ(u) >
0 then the function

(3.8) x 7→ ̺Σ(x/|x|) − |x| , R
n \ {0} → R ∪ {∞} ,

is lower semicontinuous and takes the strictly positive value ̺Σ(u) − λ at
any point of the form λu with 0 < λ < ̺Σ(u). Hence it is positive in a whole
neighbourhood of each of these points. But, for x 6= 0, ̺Σ(x/|x|) − |x| > 0
implies x ∈ Σ because Σ is star-shaped. Hence the inclusion {λu | 0 < λ <
̺Σ(u)} ⊂ int Σ holds as desired.

Part 2 is analogous and part 3 is simply the conjunction of parts 1 and 2.

Corollary 3.2. For a star-shaped subset Σ of R
n, the following two

conditions are equivalent :

I. Σ is open;
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II. ̺Σ is lower semicontinuous on S, inf ̺Σ > 0 and Σ = {λu | u ∈
S, λ ∈ R, 0 ≤ λ < ̺Σ(u)}.

Corollary 3.3. For a star-shaped subset Σ of R
n, the following two

conditions are equivalent :

III. ∂Σ = {̺Σ(u)u | u ∈ S, ̺Σ(u) < ∞};

IV. ̺Σ is continuous (as an extended-real-valued function on S).

The radial function of an open, star-shaped set need not be continuous,
as can be seen from the example R

2 \ {(λ, 0) | λ ≥ 1}.

Let us turn back to the open, star-shaped set ∆ where we started from.
This is completely determined by its radial function ̺∆. It is just natural
to expect that any other function defined on ∆ that only depends on the
geometry of ∆ in its quality of star-shaped set will be best obtained by
manipulating ̺∆.

A family ∆c, c > 0, of star-shaped sets defines the function

(3.9) ̺ : ]0,∞[ × S → [0,∞] , ̺(c, u) := ̺∆c
(u) .

If the sets ∆c are open, then they are contained in ∆ if and only if ̺(c, u) ≤
̺∆(u) for all c, u. The nesting ∆c1 ⊂ ∆c2 translates into the inequality
̺(c1, ·) ≤ ̺(c2, ·) and a necessary condition for ∂∆c1 to be disjoint from ∂∆c2

is for the inequality to be strict, a condition that becomes sufficient if ̺(c, u)
is continuous in u for every fixed c, because of Proposition 3.1. If we assume
̺(c, u) to be strictly increasing in c and continuous in u, then the boundaries
∂∆c will cover ∆\{0} if and only if ̺(·, u) spans the whole interval ]0, ̺∆(u)[,
i.e., if it is continuous, inf ̺( · , u) = 0 and sup ̺( · , u) = ̺∆(u) for all fixed
u ∈ S.

A function ̺(c, u) that fulfills all these wishes is easy to define under the
additional hypothesis that ̺∆ be continuous and bounded. In fact, we may
simply set

(3.10) ̺(c, u) :=
c

c + 1
̺∆(u) for c > 0, u ∈ S .

The function K∆ corresponding to this choice of ̺, according to our pro-
gram, is, outside the origin:

K∆(y) = c ⇔ y ∈ ∂∆c ⇔ (y = ̺(c, u)u with u ∈ S)(3.11)

⇔ |y| = ̺(c, y/|y|) =
c

c + 1
̺∆(y/|y|)

⇔ K∆(y) =
|y|

̺∆(y/|y|) − |y|
.

It is easy to verify that this K∆ is indeed continuous, proper, nonnegative,
vanishing at the origin and radially strictly increasing. When ∆ is convex,
then this K∆ is also a convex function.
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The construction that we are going to provide for the general case when
̺∆ is not assumed to be continuous and bounded is more elaborate but will
have the side advantage of showing that more regularity can be asked of K∆

than simple continuity.

The function ˜̺ defined as

(3.12) ˜̺ : ]0,∞[ × S → [0,∞[ , ˜̺(c, u) := inf
v∈S

(̺∆(v) + c|u − v|) ,

is nonnegative and finite because ̺∆ is nonnegative and not identically ∞
(this is the single spot where we use the assumption that ∆ 6= R

n). The
following inequalities are immediate, taking into account that |u − v| ≤ 2
for u, v ∈ S:

(3.13)
0 < inf ̺∆ ≤ ˜̺(c, u) ≤ inf ̺∆ + 2c < ∞ ,

˜̺(c, u) ≤ ̺∆(u) for all c > 0, u ∈ S .

The function ˜̺ can be described as the pointwise infimum of the family
of functions (c, u) 7→ ̺∆(v) + c|u − v|, indexed by those v ∈ S for which
̺∆(v) < ∞. Each function in the family is Lipschitz continuous with respect
to c with constant 2, and it is also weakly increasing in c, for every fixed u ∈
S; with respect to u it is Lipschitz continuous with constant c (here S is seen
as a metric subspace of R

n). These are the kind of properties that transfer
without trouble to the pointwise infimum, if only it is finite, as is the case
right here:

(3.14)
|˜̺(c1, u1) − ˜̺(c2, u2)| ≤ 2|c1 − c2| + max{c1, c2}|u1 − u2| ,

0 < c1 < c2 ⇒ ˜̺(c1, u) ≤ ˜̺(c2, u) for all c1, c2 > 0, u, u1, u2 ∈ S .

The function ˜̺(c, · ) could be characterized as the largest Lipschitz function
on S with constant c which is ≤ ̺∆.

To prove the next property of ˜̺ we will need to exploit the fact that ∆
is open.

Proposition 3.3. supc>0 ˜̺(c, u) = limc→∞ ˜̺(c, u) = ̺∆(u) for all u ∈ S.

P r o o f. Note that there would be no hope to prove the relationship if ∆
were not open, because the pointwise supremum of a family of continuous
functions is necessarily lower semicontinuous. Now, given any u ∈ S and
M < ̺∆(u) we can find an ε > 0 such that

(3.15) |v − u| < ε ⇒ ̺∆(u) ≥ M for any v ∈ S .

Then, for all v ∈ S we can write

(3.16)
|v − u| < ε ⇒ ̺∆(v) + c|v − u| ≥ M ,

|v − u| ≥ ε ⇒ ̺∆(v) + c|v − u| ≥ cε ,
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so that

(3.17) ˜̺(c, u) = inf
v∈S

(̺∆(v) + c|v − u|) ≥ M for c ≥ M/ε ,

which concludes the proof.

The function ˜̺ is not yet exactly what we wanted, because as a function
of c for fixed u it is not strictly increasing (it is constant, for example, at
the minimum points of ̺∆) and its infimum is inf ̺∆, which is > 0:

(3.18) inf ̺∆ ≤ inf
c>0

˜̺(c, u) = lim
cց0

˜̺(c, u) ≤ lim
cց0

(inf ̺∆ + 2c) = inf ̺∆ .

These drawbacks can be easily corrected, however, by adding a suitable
continuous and strictly increasing function of c that spans ]− inf ̺∆, 0[ for
c > 0. Our particular choice is

(3.19) ̺ : ]0,∞[ → R , ̺(c, u) := ˜̺(c, u) −
inf ̺∆

1 + c
.

For each u the function ̺(·, u) now spans ]0, ̺∆(u)[ and not only it is strictly
increasing but

0 < c1 < c2 ⇒ ̺(c2, u) − ̺(c1, u) ≥

(
−

1

1 + c2
+

1

1 + c1

)
inf ̺∆(3.20)

≥
inf ̺∆

(1 + c2)2
|c2 − c1| .

Since the function c 7→ −(inf ̺∆)/(1 + c) is Lipschitz continuous with con-
stant inf ̺∆ for c > 0, the first of the formulas (3.14) becomes

(3.21) |̺(c1, u1)− ̺(c2, u2)| ≤ (2 + inf ̺∆)|c1 − c2|+ max{c1, c2}|u1 − u2|

for all c1, c2 > 0, u1, u2 ∈ S .

For any c > 0 the set ∆c := {λu | u ∈ S, 0 ≤ λ < ̺(c, u)} is open,
star-shaped and bounded and the boundaries ∂∆c = {̺(c, u)u | u ∈ S} are
a partition of ∆ \ {0}. We can indeed define K∆ as in our program:

(3.22)

K∆(0) := 0 ,

K∆(y) = c ⇔ y ∈ ∂∆c ⇔ (y = ̺(c, u)u with u ∈ S)

⇔ |y| = ̺(c, y/|y|) if y ∈ ∆ \ {0} .

Since

(3.23) ̺(c, u) = ˜̺(c, u) −
inf ̺∆

1 + c





≥ inf ̺∆ −
inf ̺∆

1 + c
=

c

1 + c
inf ̺∆ ,

≤ inf ̺∆ + 2c −
inf ̺∆

1 + c
≤ (2 + inf ̺∆)c ,
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we have

(3.24) K∆(y)





≤
|y|

inf ̺∆ − |y|
if y ∈ ∆, 0 < |y| < inf ̺∆,

≥
|y|

2 + inf ̺∆
if y ∈ ∆,

which shows in particular that K∆ is continuous at y = 0. As for the
continuity elsewhere, we can write the inequality, for y, y′ ∈ ∆c0 \ {0},
K∆(y) = c < c0, K∆(y′) = c′ < c0,

|y − y′| ≥ ||y| − |y′|| =

∣∣∣∣˜̺
(

c,
y

|y|

)
− ˜̺

(
c′,

y′

|y′|

)∣∣∣∣(3.25)

≥

∣∣∣∣˜̺
(

c,
y

|y|

)
− ˜̺

(
c′,

y

|y|

)∣∣∣∣ −
∣∣∣∣˜̺

(
c′,

y

|y|

)
− ˜̺

(
c′,

y′

|y′|

)∣∣∣∣

≥
inf ̺∆

(1 + c0)2
|c − c′| − c′

∣∣∣∣
y

|y|
−

y′

|y′|

∣∣∣∣ ,

whence

(3.26) |K∆(y) − K∆(y′)| = |c − c′| ≤
(1 + c0)2

inf ̺∆

(
|y − y′| + c′

∣∣∣∣
y

|y|
−

y′

|y′|

∣∣∣∣
)

.

But ∣∣∣∣
y

|y|
−

y′

|y′|

∣∣∣∣ ≤
∣∣∣∣

y

|y|
−

y

|y′|

∣∣∣∣ +

∣∣∣∣
y

|y′|
−

y′

|y′|

∣∣∣∣(3.27)

=
||y′| − |y||

|y′|
+

|y − y′|

|y′|
≤

2

|y′|
|y − y′| ,

and, from (3.24),

c′

|y′|
=

K∆(y′)

|y′|
(3.28)

≤





2c0

inf ̺∆
if y′ ∈ ∆c0 , |y′| ≥ inf ̺∆/2,

1

inf ̺∆ − |y′|
≤

2

inf ̺∆
if y′ ∈ ∆c0 , 0 < |y0| < inf ̺∆/2 ,

so that

(3.29) c′
∣∣∣∣

y

|y|
−

y′

|y′|

∣∣∣∣ ≤
2c′

|y′|
|y − y′| ≤

4(1 + c0)

inf ̺∆
|y − y′| ,

and K∆ is Lipschitz continuous on ∆c0 (the origin is recovered by continu-
ity):

(3.30) |K∆(y) − K∆(y′)| ≤
4(1 + c0)2(4 + 4c0 + inf ̺∆)

(inf ̺∆)2
|y − y′|

for all y, y′ ∈ ∆c0 .



Injectivity onto a star-shaped set 189

Since the sets ∆c invade ∆, we can say that K∆ is Lipschitz continuous on
compact subsets of ∆; in particular, it is locally Lipschitz continuous.

The last thing to verify is that K∆ is a proper map: this is easy because
the set

K−1
∆ ([0, c]) = {0} ∪ {y ∈ ∆ \ {0} | |y| ≤ ̺(c, y/|y|)}

= {λu |u ∈ S, 0 ≤ λ ≤ ̺(c, u)} = ∆c ∪ ∂∆c

is closed and bounded in R
n for any c > 0.

One may wonder whether K∆ can be made C∞ differentiable. This is in-
deed the case: it suffices to discretize the parameter c of the function ̺(c, u)
to integer values n ∈ N, then to approximate each ̺(n, · ) : S → R by a
C∞ function by using the Stone–Weierstraß theorem, only taking care of
retaining the strict monotonicity and the value of the limit as c = n → ∞,
and finally to restore the real value to c by some kind of C∞ interpola-
tion between the regularized c-discretized functions. More pictorially, this
amounts to smoothing out the boundaries of the sets ∆n and then interpo-
lating between each consecutive pair. We will not provide the details of the
construction here.

4. Results for smoother transformations

P r o o f o f P r o p o s i t i o n 1.2. Suppose that equation (1.2) holds. Let
v ∈ R

n and g be a local inverse of f whose domain intersects the half-line
{y0 + tv | t ≥ 0}. We want to prove that the function t 7→ k(g(y0 + tv)) is
locally weakly increasing for the t ≥ 0 where it is defined. The case v = 0
is trivial and we can suppose v 6= 0. Moreover, since t 7→ k(g(y0 + tv)) is
continuous and defined on an open subset of R, it will be pointwise weakly
increasing for t ≥ 0 if and only if it is for t > 0. Now, for t0 > 0 we have
g(y0 + t0v) 6= x0, so that k is differentiable at x1 := g(y0 + t0v) and we can
compute

d

dt
k(g(y0 + tv))

∣∣∣∣
t=t0

= k′(x1)g′(x1)v = k′(x1)f ′(x1)−1v(4.1)

= k′(x1)f ′(x1)−1 f(x1) − f(x0)

t0
for t0 > 0 .

Comparison with formula (1.2) shows that this derivative is nonnegative,
and the function t 7→k(g(y0+tv)) is indeed locally weakly increasing for t≥0.

Conversely, suppose that t 7→ k(g(y0 + tv)) is weakly increasing for t ≥ 0
for any choice of v and g. Let x ∈ Ω \ {x0}, U be a neighbourhood of x0

where f is one-to-one and let g := (f |U )−1. Let also v := f(x) − y0. Since
the function t 7→ k(g(y0 + tv)) is defined and weakly increasing at t = 1, the
derivative must be nonnegative, that is to say,
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0 ≤ k′(g(y0 + v))f ′(g(y0 + v))−1 f(g(y0 + v)) − f(x0)

1
(4.2)

= k′(x)f ′(x)−1(f(x) − f(x0)) ,

which is precisely equation (1.2).

P r o o f o f P r o p o s i t i o n 1.3. It is obvious that the function k(x) :=
1/(r0 − |x−x0|) is continuous, proper and bounded from below on Br0

(x0).
It is also differentiable outside x0 and its differential k′(x) applied to the
vector v ∈ R

n is

(4.3) k′(x)v =
1

(r0 − |x − x0|)2
x − x0

|x − x0|
· v .

To conclude we only have to substitute f ′(x)−1(f(x) − f(x0)) for v and
apply Proposition 1.2 and Theorem 1.1.

Example 4.1. A bilipschitz homeomorphism of the plane R
2 onto itself

that leaves the origin fixed but maps no ball centred at the origin onto a
star-shaped set is not hard to describe. (In the following arguments, “star-
shapedness” will be always understood with respect to the origin.) The balls
will first be elongated by a linear transformation g:

(4.4) g(x1, x2) := (x1, cx2) for (x1, x2) ∈ R
2, with c = eπ/2 ,

and then twisted around by a second mapping h into a non-star-shaped set.
This h is best written in polar coordinates:

(4.5) (̺, θ) 7→ (̺, θ − ln ̺) .

Figure 1 shows the effect of the composition f := h◦g, which is a bilipschitz
homeomorphism of the plane onto itself, on a few of the balls Br. Indeed,
these images appear not to be star-shaped and it is not difficult to prove it
analytically.

It is interesting to note that the mappings g, h, f that we have described
are special cases of the homeomorphisms that are used to classify the flows
of linear ordinary differential equations up to topological equivalence. For
example, h transforms the solutions of the two-dimensional diagonal system

(4.6)

(
ẋ1

ẋ2

)
=

(
1 0
0 1

)(
x1

x2

)

into the solutions of

(4.7)

(
ẋ1

ẋ2

)
=

(
1 1
−1 1

)(
x1

x2

)
.

See, e.g., [2], Ch. 3, §§21–22.

The following three propositions are variants of invertibility criteria
found in [26], [10] and [27]. The original results are not contained in the
ones below because more smoothness is asked of the function k here, but this
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Fig. 1

is only to avoid some uninteresting formal complications in the statement
and in the proof. Moreover, everything here is finite-dimensional. However,
Propositions 4.3 and 4.4 do generalize the old results in that the ω’s, that
here are functions, used to be constants in [27].

Proposition 4.2. Let Ω be a nonempty , open and connected subset of

R
n, f : Ω → R

n be a local C1 diffeomorphism and k : Ω → R be a C1

function. Suppose that the set C := {x ∈ Ω | k(x) ≤ c}, for a given constant

c ∈ R, is compact and connected and that there exists x0 ∈ C such that

(4.8) k′(x)f ′(x)−1(f(x) − f(x0)) > 0 for all x ∈ Ω such that k(x) = c .

Then f is one-to-one on C and f(C) is star-shaped with respect to f(x0).

P r o o f. Inequality (4.8) implies in particular that k′(x) 6= 0 for all x
such that k(x) = c and that k(x0) 6= c. Then the set {x ∈ Ω | k(x) < c}
contains x0 and its boundary is the C1 manifold {x ∈ Ω | k(x) = c}.

We are going to verify that condition (b) of Proposition 2.7 holds. Let
v ∈ R be an arbitrary vector and consider the path γx0,v. Proposition 2.1
assures us that the path will eventually leave the compact set C. Let t > 0 be
the instant when the trajectory first hits the boundary ∂C, at x = γx0,v(t).
The derivative of k along γx0,v at t is positive by assumption (4.8):

(4.9)
d

dt
k(γx0,v(t))

∣∣∣∣
t=t

= k′(x)f ′(x)−1(f(x) − f(x0)) > 0 .

Hence k(γx0,v(t)) > c for any time t slightly later than t. Actually, at no later
time can the value of k return to c, because at the earliest time t̃ the path
happened to hit again the boundary ∂C, the value c ought to be approached
from above, which is incompatible with the derivative condition (4.8). This
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shows that γ−1
x0,v(C) ∩ [0,∞[ is a (compact) interval containing 0. The rea-

soning is perfectly symmetrical for the negative times.

Proposition 4.3. Let Ω be a nonempty , open and connected subset of

R
n, f : Ω → R

n be a local C1 diffeomorphism. Suppose that there exist a

proper , bounded below C1 function k : Ω → R, a locally integrable function

ω : [0,∞[ → [0,∞[ and a point x0 ∈ Ω such that

(4.10) k′(x)f ′(x)−1(f(x) − f(x0)) ≥ −ω(|f(x) − f(x0)|) for all x ∈ Ω .

Then f is one-to-one on Ω and f(Ω) is star-shaped with respect to f(x0).

P r o o f. Let us verify that condition (b)′ of Remark 2.12 holds for the
following function:

(4.11) k̃(x) := k(x) +

|f(x)−y0|∫

1

ω(s)

s
ds

for the x ∈ Ω such that f(x) 6= y0 ,

where y0 := f(x0). It is easily checked that k̃ is continuous. The set

(4.12) {x ∈ Ω | k̃(x) ≤ a, |f(x) − y0| ≥ ε}

is compact because it is a closed subset of the compact set

(4.13)

{
x ∈ Ω

∣∣∣∣ inf k ≤ k(x) ≤ a −
ε∫

1

ω(s)

s
ds

}
.

Let g be a local inverse of f whose domain intersects the half-line {y0 + tv |
t > 0} for a given vector v ∈ R

n \ {0}. Then the function

(4.14) t 7→ k̃(g(y0 + tv))

is absolutely continuous and its derivative is

(4.15) k′(g(y0 + tv))f ′(g(y0 + tv))−1v +
ω(t|v|)

t|v|
|v|

= k′(g(y0 + tv))f ′(g(y0 + tv))−1(f(g(y0 + tv)) − y0) ·
1

t

+ ω(|f(g(y0 + tv)) − y0|) ·
1

t
≥ 0

for almost every t > 0 where it is defined. Hence it is pointwise weakly
increasing on its (open) domain and we are done.

Proposition 4.4. Let Ω be a nonempty , open and connected subset of

R
n, and f : Ω → R

n be a local C1 diffeomorphism. Then the following two

conditions are equivalent :
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(a) f is one-to-one and f(Ω) = R
n;

(b) there exist a proper C1 function k : Ω → R bounded from below , a

locally integrable function ω : [0,∞[ → [0,∞[ and a point x0 ∈ Ω such that

(4.16) k′(x)f ′(x)−1(f(x) − f(x0)) ≤ ω(|f(x) − f(x0)|) for all x ∈ Ω .

P r o o f. If (a) holds, then we can set x0 ∈ Ω arbitrary, k(x) := |f(x) −
f(x0)|2, ω(r) := 2r2. For the converse, we are going to build a function ϕ so
that Proposition 2.9 can be applied. As usual, y0 will denote f(x0).

Let ε > 0 be the radius of a closed ball centred at x0 and contained
in A and let δ > 0 be such that Bδ(y0) ⊂ f(Bε(x0)). In particular, f is
one-to-one on Bε(x0). Define

(4.17) ϕ0(r) := sup{k(x) | |x − x0| ≤ ε, |f(x) − y0| ≤ r} for r ≥ 0 .

It is obvious that this ϕ0 is continuous and weakly increasing and that

(4.18) k(x) ≤ ϕ0(|f(x) − y0|) for x ∈ Bε(x0) .

Let now x ∈ A \ Bε(x0) and let γ := γx0,f(x)−y0
. We have

(4.19) γ(t) ∈ Bε(x0), f(γ(t)) = y0 + t(f(x) − y0) ∈ Bδ(y0)

whenever |t| ≤
δ

|f(x) − y0|
=: t0 .

We can write

k(x) = k(γ(1)) = k(γ(t0)) + (k(γ(1)) − k(γ(t0)))(4.20)

= k(γ(t0)) +
1∫

t0

d

dt
k(γ(t)) dt

= k(γ(t0)) +
1∫

t0

k′(γ(t))f ′(γ(t))−1(f(x) − y0) dt

= k(γ(t0)) +
1∫

t0

k′(γ(t))f ′(γ(t))−1(f(γ(t)) − y0)
1

t
dt

≤ ϕ0(δ) +
1∫

t0

ω(|f(γ(t)) − y0|)
1

t
dt

= ϕ0(δ) +
1∫

δ/|f(x)−y0|

ω(t|f(x) − y0|)
1

t
dt

= ϕ0(δ) +

|f(x)−y0|∫

δ

ω(s)

s
ds .
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If we define

(4.21) ϕ(r) := ϕ0(r) +

max{r,δ}∫

δ

ω(s)

s
ds for r ≥ 0 ,

we easily see that the resulting ϕ is locally bounded (actually, it is continuous
and weakly increasing) and that

(4.22) k(x) ≤ ϕ(|f(x) − y0|) for all x ∈ A .

As announced, the conclusion follows from Proposition 2.9. Note that we
did not use formula (4.16) at x = x0, so that we actually did not need to
assume k to be differentiable at x0.

Corollary 4.5. Let f : R
n→R

n be a local C1 diffeomorphism. Suppose

that there exist a point x0 ∈ R
n and two functions α, ω : [0,∞[ → [0,∞[, of

which ω is locally integrable and α is also continuous, strictly positive and

satisfying the integral condition

(4.23)
∞∫

0

r

α(r)
dr = ∞ ,

in such a way that

(4.24) (x − x0) · f ′(x)−1(f(x) − f(x0))

≤ α(|x − x0|)ω(|f(x) − f(x0)|) for all x ∈ R
n .

Then f is one-to-one and f(Rn) = R
n.

P r o o f. Define

(4.25) k(x) :=

|x−x0|∫

0

r

α(r)
dr for x ∈ R

n .

This function k is C1 on all of R
n (even at x0, although we may find the

way not to use this fact); it is obviously bounded from below and it is also
proper as a function from R

n to R because of assumption (4.23). Then we
can apply Proposition 4.4:

k′(x)f ′(x)−1(f(x) − f(x0))

=
|x − x0|

α(|x − x0|)

x − x0

|x − x0|
· f(x)−1(f(x) − f(x0))

≤ ω(|f(x) − f(x0)|) for all x ∈ R
n \ {x0}

(the inequality also holds for x = x0).

Corollary 4.6 (Hadamard). Let f : R
n → R

n be a C1 local diffeomor-

phism. Suppose that there exists a continuous function β : [0,∞[ → ]0,∞[
satisfying the integral condition
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(4.27)
∞∫

0

1

β(r)
dr = ∞ ,

and such that

(4.28) ‖f ′(x)−1‖ ≤ β(|x|) for all x ∈ R
n .

Then f is one-to-one and f(Rn) = R
n.

P r o o f. Apply Corollary 4.5 above with x0 := 0, α(r) := (1+r)β(r) and
ω(r) := r.

It is easy to verify that, if the last corollary above can be applied to a
mapping f , then the function

(4.29) k(x) :=

|x|∫

0

1

β(r)
dr + |f(x) − f(x0)| for x ∈ R

n

is nonnegative, continuous and proper as a mapping from R
n to R and

satisfies

(4.30) k′(x)f ′(x)−1(f(x) − f(x0)) ≥ 0 for x 6= x0 ,

so that it is an auxiliary function for f in the sense of Theorem 1.1. In
particular, for example, f maps every set of the form {x ∈ R

n | k(x) ≤ c}
onto a set which is star-shaped with respect to f(x0).
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