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Remarks concerning Driver’s equation

by Gerd Herzog and Roland Lemmert (Karlsruhe)

Abstract. We consider uniqueness for the initial value problem x′ = 1 + f(x)− f(t),
x(0) = 0. Several uniqueness criteria are given as well as an example of non-uniqueness.

Let f : R→ R be continuous. We consider the initial value problem

(1)
{
x′(t) = 1 + f(x(t))− f(t) , t ≥ 0 ,
x(0) = 0 ,

which has x(t) = t as a solution. Driver [1] asks whether this is in general
the only one and proves [2]:

Proposition 1. There is no solution x with x(t) < t (t > 0) and x′(t)
decreasing and no solution x(t) > t (t > 0) with x′(t) increasing (in the
wider sense).

(f is to be substituted by −g in Driver’s terminology.)
Nowak [3] remarks that Driver’s question is not completely answered yet.
We will sharpen Proposition 1 in several ways and give examples of

continuous functions f such that (1) is not uniquely solvable. We also provide
conditions on f such that (1) is uniquely solvable.

We begin with

Proposition 2. For each solution x of (1) we have x(t) ≤ t, t ≥ 0.

P r o o f. We rewrite the differential equation as

exp(x′(t)− 1) = exp(f(x(t))) · exp(−f(t)) ,

and because exp(s− 1) ≥ s (s ∈ R) we get

x′(t) exp(−f(x(t))) ≤ exp(−f(t))
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and by integration
x(t)∫
0

exp(−f(s)) ds ≤
t∫

0

exp(−f(s)) ds ,

which gives x(t) ≤ t, t ≥ 0.
Another way of looking at this problem is the following:
The initial value problem

(2)
{
y′(t) = exp(f(y(t))) · exp(−f(t)),
y(0) = 0

is uniquely solvable, since it has separated variables with exp(f(0)) 6= 0; its
solution is y(t) = t, and any solution of (1) is a subsolution to (2), hence
x(t) ≤ t.

We next give a necessary condition which solutions of (1) have to satisfy.

Proposition 3. Let d(t) = t − x(t), x any solution of (1), denote by
σf (t) the oscillation of f over the interval [0, t], and let (·)+ be the positive
part of a function. Then

(3) 0 ≤ d(t) ≤ σf (t)
t∫

0

(d′(s))+ ds , t ≥ 0 .

P r o o f. Let t > 0 and c a constant which will be determined later. Then
d satisfies

d′(t) = −(f(x(t))− c)d′(t) + f(t)− c− (f(x(t))− c)x′(t) .
By integration we get

t∫
x(t)

(1− (f(s)− c)) ds =
t∫

0

(f(x(s))− c)(x′(s)− 1) ds .

(This relation is most easily verified by differentiation.)
Now setting c = min{f(s) : 0 ≤ s ≤ t} we have

σf (t) ≥ f(s)− c ≥ 0 , σf (t) ≥ f(x(s))− c ≥ 0

and therefore

(t− x(t))(1− σf (t)) ≤ σf (t)
t∫

0

(−d′(s))+ ds ,

from which (3) easily follows by using t− x(t) =
∫ t

0
d′(s)ds.

Proposition 3 shows that (1) cannot have a solution different from t
near 0 such that x′(t) ≤ 1 (which in particular holds if x′ decreases since
x′(0) = 1): In this case (d′(s))+ = d′(s), which implies d ≡ 0 for small t > 0
(i.e., for those t with σf (t) < 1).
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Now fix t0 > 0 and assume there is a solution of (1) such that x(t0) = t0.
Then z(t) = x(t+ t0)− t0 satisfies{

z′(t) = 1 + g(z(t))− g(t) ,
z(0) = 0 ,

where g is defined by g(s) = f(s+ t0)− t0. By Proposition 3 we have

0 ≤ t− z(t) ≤ σg(t)
t∫

0

(1− z′(s))+ ds , t ≥ 0 ,

from which we get

0 ≤ t− x(t) ≤ σf (t0, t)
t∫

t0

(1− x′(s))+ ds , t ≥ t0 ,

where σf (t0, t) denotes the oscillation of f over the interval [t0, t]. This shows
that no solution can leave the diagonal at a time t0 > 0 if x′(t) ≤ 1.

Of course, if f is decreasing, (1) is uniquely solvable by standard unique-
ness theorems. On the other hand, Proposition 3 implies uniqueness if f is
increasing; for in this case we have the inequality x′(t) ≤ 1, t ≥ 0, because
of x(t) ≤ t (t ≥ 0). Remarkably enough, from the above considerations we
see that if f is locally of bounded variation, then (1) is uniquely solvable:
We write f = f1 − f2, f1, f2 increasing, and get

x′(t) ≥ 1 + f1(x(t))− f1(t) , t ≥ 0 ,

so x(t) ≥ t, and finally x(t) = t, t ≥ 0.

Proposition 4. Let f ′(s) exist for s > 0 and let there exist c < c < 1
such that

f ′(s) ≤ c

s
+ 1− c , s ∈ (0, 1] .

Then problem (1) is uniquely solvable in [0, 1].

P r o o f. From 1− x′(t) = −f(x(t)) + f(t) we get for t, x(t) > 0,

1− x′(t) =
t∫

x(t)

f ′(s) ds ≤ (1− c)(t− x(t)) + c(log t− log x(t))

or

(4) x′(t) ≥ 1 + c log x(t)− c log t+ (1− c)(x(t)− t) .
If (1) is not uniquely solvable, we may assume by Kneser’s theorem that there
is a solution x : [0, 1] → R, positive in (0, 1], such that 1 > x(1) > d > 0,
with d to be determined in a moment.

We now consider the initial value problem

(5)
{
z′(t) = 1 + c log z(t)− c log t+ (1− c)(z(t)− t) ,
z(1) = x(1) .



200 G. Herzog and R. Lemmert

By (4), x is a subsolution to the left for (5) in (0, 1]. Now, because of c<
c < 1, there is 1 > d > 0 such that

c(s− 1) ≤ c log s , d ≤ s ≤ 1 ,

so that y(t) = x(1) · t satisfies

y′(t) ≤ 1 + c log y(t)− c log t+ (1− c)(y(t)− t) , 0 < t ≤ 1 .

Therefore y is a supersolution of (5) to the left and by standard comparison
theorems we get

(6) x(t) ≤ y(t) , t ∈ (0, 1] .

But then x cannot be a solution of (1), since (6) implies x′(0) ≤ x(1) < 1.

Proposition 5. If f satisfies

f(t)− f(x) ≤ 1
t
(t− x) , 0 ≤ x < t ≤ 1 ,

then (1) is uniquely solvable in [0, 1].

P r o o f. The proof follows the same ideas as the proof of Proposition 4.
In this case we write

1− x′(t) = f(t)− f(x(t)) ≤ 1
t
(t− x(t)) , 0 < t ≤ 1 .

Then x is a subsolution to the left for

z′(t) =
1
t
z(t), z(1) = x(1) .

Standard comparison theorems [4] give x(t) ≤ x(1) · t, 0 < t ≤ 1, since
z(t) = x(1)·t is the solution to this latter problem. Hence again x′(0) ≤ x(1),
which is impossible if x(1) < 1.

We finally construct an example of a bounded continuous function f :
R→ R such that (1) is not uniquely solvable.

To this end we define by induction a sequence b1 = 1, a1, b2, a2, b3, . . . of
numbers which tends strictly monotonically to zero; f will be zero outside
(0, 1) and on any interval [bn+1, an] (n ≥ 1), and positive elsewhere.

Let b1 = 1 > a1 > 0 (the value of a1 will be fixed later), γ : [0, 1] →
[0, 1] continuous, γ(0) = γ(1) = 0 and m =

∫ 1

0
γ(s)ds > 0. We define

γ1(s) = γ((s − a1)/(1 − a1)), m1 = (1/(b1 − a1))
∫ b1

a1
γ1(s)ds and remark

that m1 = m.
By I(µ) we denote

∫ 1

0
ds/(1 +µγ(s)). Let (µn) be a sequence of positive

numbers tending to zero, µ1 = 1, µn ≤ 1.
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In [a1, b1] we solve x′(t) = 1−γ1(t), x(b1) = a1 and set b2 = x(a1), which
gives

a1 − b2 = b1 − a1 −
b1∫

a1

γ1(s) ds

or
a1 − b2 = (1−m)(1− a1) .

Therefore b2 < a1, and we define f = γ1 in [a1, b1], f ≡ 0 in [b2, a1].
Next we choose a2 such that

b2 − a2 = (a1 − b2) · 1
I(µ2)

= (1−m)(1− a1) · 1
I(µ2)

and solve x′(t) = 1 + γ2(x(t)), x(a1) = b2, where

f(s) := γ2(s) := µ2γ1

(
b1 − a1

b2 − a2
(s− a2) + a1

)
, a2 ≤ s ≤ b2 .

Since the differential equation for x has separated variables, an easy calcu-
lation shows a2 = x(b2).

Up to now f is defined on [a2, 1], and x satisfies the differential equation
from (1) on [a2, 1], x being increasing with values in [a2, 1].

To proceed by induction, let an < bn be defined,

f(t) := γn(t) = µnγ

(
1

bn − an
(t− an)

)
, an ≤ t ≤ bn .

We solve x′(t) = 1− γn(t), t ∈ [an, bn], x(bn) = an, set bn+1 = x(an) < an,
define f ≡ 0 in [bn+1, an] and an+1 by

I(µn+1)(bn+1 − an+1) = an − bn+1 ,

so bn+1 > an+1. Now we solve x′(t) = 1 + γn+1(x(t)), x(an) = bn+1 on
[an+1, bn+1], the solution of which satisfies x(bn+1) = an+1, f is defined on
[an+1, 1] and x satisfies the differential equation in (1).

By our construction we have, for n ≥ 1,

an − bn+1 = (1− µnm)(bn − an) ,

bn+1 − an+1 = (1− µnm)(bn − an) · 1
I(µn+1)

,

so for n ≥ 2,

bn − an = (1− a1)(1−m) ·
n−1∏
k=2

(1− µkm) ·
n∏

k=2

1
I(µk)

,

an−1 − bn = (1− a1)(1−m) ·
n−1∏
k=2

(1− µkm) ·
n−1∏
k=2

1
I(µk)

.
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From Jensen’s inequality, applied to the convex functions h(x) = 1/(1+µx)
(µ ≥ 0, x ≥ 0), we have

I(µ) =
1

b1 − a1

b1∫
a1

ds

1 + µγ1(s)
≥ 1

1 + µm
;

therefore the sequence b1, a1, b2, a2, b3, a3, . . . is convergent if
∞∑

n=3

n−1∏
k=2

(1− µ2
km

2)

converges, which is the case, for example, for µk = 1/ 4
√
k, k ∈ N, as is easily

verified using Raabe’s test for convergence. For suitable a1 < 1 we finally
get limn→∞ an = limn→∞ bn = 0. So f is defined everywhere, continuous,
bounded, and the solution x solves (1) with x(t) < t, t ∈ (0, 1].

R e m a r k s. 1) For a suitable choice of γ, the function f is C∞ in R\{0}.
2) If we define F (t, x) = 1 + f(x)− f(t), Kamke’s or related uniqueness

theorems are of course applicable if f satisfies an appropriate condition.
Our condition in Proposition 4 cannot be subsumed under this, since, for an
autonomous equation x′ = g(x), the condition g′(x) ≤ c/x does not imply
uniqueness, as g(x) =

√
x shows.

3) It would be interesting to know whether the condition f ′(t) ≤ 1/t+1,
0 < t ≤ 1, implies uniqueness for (1). This condition would contain the
conditions of Propositions 4 and 5.
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Reçu par la Rédaction le 29.7.1993
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