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A note on generic chaos

by Gongfu Liao (Changchun)

Abstract. We consider dynamical systems on a separable metric space containing at
least two points. It is proved that weak topological mixing implies generic chaos, but the
converse is false. As an application, some results of Piórek are simply reproved.

1. Definitions and results. By a semigroup of times we mean one of
the following semigroups: Z+ = {0, 1, 2, . . .}, Z = {0,±1,±2, . . .}, R+ (the
nonnegative reals) and R (the reals). Let X be a metric space and let G be
a semigroup of times. By a dynamical system on X relative to G we mean
a continuous map S : X ×G→ X satisfying:

(1) S(x, 0) = x, ∀x ∈ X,
(2) S(S(x, t), s) = S(x, t+ s), ∀x ∈ X, t, s ∈ G.

We call S|Y×G a subsystem of S if Y ⊂ X and S|Y×G : Y ×G→ Y is a
dynamical system.

Let S : X ×G→ X be a dynamical system and let x ∈ X. The set

O+(x) = {Sx(t) = S(x, t) : t ≥ 0, t ∈ G}

is said to be the positive semiorbit of x under S. The positive semiorbit
O+(x) is periodic if there is a T > 0 such that Sx(T ) = Sx(0) = x. It is
easy to see that for each t ∈ G, S induces a continuous map St : X → X by
St(x) = S(x, t) (for simplicity, sometimes St(x) is written Stx). Conversely,
if f : X → X is a continuous map then it induces naturally a dynamical
system f∗ on X relative to the semigroup Z+ in the following sense:

(1) f∗(x, 0) = x, ∀x ∈ X,
(2) f∗(x, 1) = f(x) and inductively f∗(x, n + 1) = f ◦ f∗(x, n) for any

n ∈ Z+.
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In addition, if we define S × S : X ×X ×G→ X ×X by

S × S(x, y, t) = (S(x, t), S(y, t)) , ∀(x, y) ∈ X ×X , t ∈ G ,
then S × S is a dynamical system on X ×X relative to G.

Let S be a dynamical system on X relative to G, where X is a metric
space with metric d and G a semigroup of times. A point (x, y) ∈ X ×X is
said to be chaotic with respect to S if

lim inf
t→+∞

d(Stx, Sty) = 0 and lim sup
t→+∞

d(Stx, Sty) > 0 .

For a continuous map f of an interval I, Li and Yorke [4] proved that if
f has a periodic point of period 3 then there is an uncountable set E such
that all x, y ∈ E with x 6= y form a chaotic point of I × I with respect to
the dynamical system f∗ induced by f . This result was improved by many
authors (e.g., see [1]–[3] and [5]–[6]).

Piórek [8]–[9] developed these ideas and made the following

Definition. Let S be a dynamical system on X relative to G. S is said
to be generically chaotic if there is a residual set E in X×X (i.e., E contains
a countable intersection of everywhere dense sets) such that each point in
E is chaotic with respect to S.

In the present paper, we shall discuss the relations between generic chaos
and mixing in the topological sense.

Let S be a dynamical system on X relative to G. S is said to be transitive
if for any pair of nonempty open sets U and V in X, there is a T > 0 such
that

ST (U) ∩ V 6= ∅ .
S is said to be weakly topologically mixing if S×S : X×X×G→ X×X

is transitive.
S is said to be topologically mixing if for any pair of nonempty open sets

U and V in X, there is a T > 0 such that St(U) ∩ V 6= ∅ for all t ≥ T .
It is clear that a topologically mixing system is weakly topologically

mixing, and a weakly topologically mixing system is transitive.
We shall prove the following

Theorem. Let S be a dynamical system on X relative to G, where X is
a separable metric space containing at least two points and G is a semigroup
of times. If S is weakly topologically mixing , then it is generically chaotic.

From the Theorem, we get immediately

Corollary. Let S be a dynamical system on X relative to G, where X is
a separable metric space containing at least two points and G is a semigroup
of times. If S is topologically mixing , then it is generically chaotic.
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2. Proof of Theorem

Lemma. Let S be a dynamical system on X relative to G, where X
is a metric space and G a semigroup of times. Let S|Y×G be a transitive
subsystem of S and let x ∈ X. If O+(x) is dense in Y , then for each open
set U in Y , the set

{t : Sx(t) ∈ U, t ∈ G}
is not bounded above.

P r o o f. For z ∈ X, T > 0, we write

Az(T ) = {Sz(t) : 0 ≤ t ≤ T, t ∈ G} .

Suppose U is an open set in Y and suppose T0 > 0 is given. We must show
that there is a t > T0 such that Sx(t) ∈ U .

For this we first assume Y 6⊂ Ax(T0). Let

V = Y −Ax(T0) .

Thus V 6= ∅. Since Ax(T0) is closed in X, V is open in Y . So by transitivity
of S|Y×G there exist v ∈ V and tv > 0 such that S(v, tv) ∈ U . If v ∈ O+(x),
then there exists t0> T0 such that v = S(x, t0). Let t = t0 + tv. Then t>T0

and we have

Sx(t) = S(x, t0 + tv) = S(S(x, t0), tv) = S(v, tv) ∈ U .

If v 6∈ O+(x), then Sx(ti)→ v for some ti → +∞, which implies that

Stv (Sx(ti))→ Stv (v) ,

i.e., for S(v, tv) ∈ U and tv + ti → +∞,

Sx(tv + ti)→ S(v, tv) .

Hence we also have Sx(t) ∈ U for some t > T0.
Assume now Y ⊂ Ax(T0). Let y ∈ U . Then y ∈ O+(x), i.e., there is a

ty > 0 such that y = Sx(ty). Since S maps Y × G into Y , Sy(t) ∈ Y for
each t > T0. It follows from Y ⊂ Ax(T0) that there exists a periodic positive
semiorbit P such that Sy(t) ∈ P for some t ≥ 0. We write

t = min{t ≥ 0 : Sy(t) ∈ P, t ∈ G}

and define

By(t/2) = {Sy(t) : t ≥ t/2, t ∈ G} .
Let

V1 = Y −Ax(t/2 + ty) , V2 = Y −By(t/2) .
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If t > 0, then V1, V2 are both nonempty open sets of Y . For any q ∈ V1,
there exists tq > t/2 such that q = Sy(tq). Then for any t > 0,

St(q) = S(q, t) = S(S(y, tq), t)
= S(y, tq + t) = Sy(tq + t) ∈ By(t/2) ,

since tq + t > t/2. By the definition of V2, we have St(q) 6∈ V2. So for each
t > 0, St(V1) ∩ V2 = ∅, which contradicts the transitivity of S|Y×G. Thus
the only possibility is t = 0; that is to say, Sy(0) = y ∈ P . And clearly there
is a t > T0 such that Sx(t) = y ∈ U .

The proof of the Lemma is complete.

P r o o f o f T h e o r e m. Put

E = {(x, y) ∈ X ×X : {(Stx, Sty) : t ≥ 0, t ∈ G} is dense} .
Since X being a separable metric space implies the same for X × X, we
know that X×X has a countable base {U1, U2, . . .}. It is easy to check that

E =
∞⋂
n=1

⋃
t≥0

(S−t × S−t)(Un) .

For each n > 0,
⋃
t≥0(S−t × S−t)(Un) is clearly open in X ×X and by the

transitivity of S × S, it is dense in X ×X. So E is a residual set in X ×X.
Select x0, y0 ∈ X with x0 6= y0. Let (x, y) ∈ E. By the Lemma, there are

increasing sequences ti → +∞ and tj → +∞ in G such that

lim
i→+∞

(Stix, Stiy) = (x0, x0) and lim
j→+∞

(Stjx, Stjy) = (x0, y0) .

Clearly, (x, y) is chaotic with respect to S, and hence the proof is complete.

3. Examples. In this section, we give three examples. The first two
examples are applications of our results. The last one shows that the converse
of the Theorem is false.

(1) Let k be an integer greater than one. We denote by Yk the set of
symbols {1, 2, . . . , k} with the discrete topology, and by Σk the product
space (Yk)Z equipped with the product topology. The shift σ : Σk → Σk is
defined by (σ(x))i = xi+1, where x = (. . . x−2x−1x0x1x2 . . .). The product
topology on Σk is induced by the metric

d(x, y) =
+∞∑

n=−∞
2−(2|n|+1)δn(x, y) ,

where δn(x, y) is 0 if xn=yn, and 1 otherwise. Since Σk is compact, it follows
that (Σk, d) is a separable metric space. As is well known, σ : Σk → Σk
is continuous and the dynamical system σ∗ induced by σ is topologically
mixing (see [7]). Therefore σ∗ is generically chaotic by the Corollary.
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(2) We use R to denote the space of all reals, Rm to denote the
m-dimensional Euclidean space. Let M = Cr(R,Rm); for r > 0, this is
the set of all r times continuously differentiable maps from R into Rm, and
for r = 0, the set of all continuous maps from R into Rm.

For f, g ∈M , we put

%rn(f, g) =
m∑
j=1

r∑
i=0

max
x∈[−n,n]

|f (i)
j (x)− g(i)

j (x)| ,

%r(f, g) =
+∞∑
n=1

2−nh(%rn(f, g)) ,

where f = (f1, . . . , fm), g = (g1, . . . , gm) and h : R→ R is defined by h(t) =
t/(t+ 1). Then (M,%r) is a separable metric space and the convergence in
%r is the uniform convergence with derivatives up to order r on compact
subsets of R.

For f ∈M and t ∈ R, let S(f, t)x = f(x− t) for x ∈ R. It is not difficult
to check that S : M ×R→M is continuous and therefore it is a dynamical
system on M relative to R. We prove S is topologically mixing.

Suppose U , V are open sets, f ∈ U and g ∈ V . Then there is an ε > 0
such that Nr(f, ε) ⊂ U and Nr(g, ε) ⊂ V , where

Nr(f, ε) = {f ′ ∈M : %r(f, f ′) < ε} .

Furthermore, for some N > 0,
+∞∑
n=N

2−n < ε .

We define f ∈M by

f(x) =
{
f(x), |x| ≤ N ,
g(x), |x| ≥ N + 1.

Such a map exists by using a partition of unity. Clearly, f ∈ Nr(f, ε). Let
T = 2N + 1. If t ≥ T , then

%r(Stf, g) =
+∞∑
n=N

2−nh(%rn(Stf, g)) ≤
+∞∑
n=N

2−n < ε .

Thus St(U)∩V 6= ∅ and so S is topologically mixing. By the Corollary, S is
generically chaotic.

Indeed, we have thus given a new simple proof to some results of Piórek
in [9].

(3) Let p : R → S1 be defined by x 7→ p(x) = e2πix, and define f :
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S1 → S1 by
f(e2πix) = e4πix for e2πix ∈ S1 .

It is easy to verify that f is a continuous open map and the dynamical
system f∗ induced by f is topologically mixing. So by the Corollary, f∗ is
generically chaotic.

Now let C be another circle in the complex plane so that C ∩ S1 = ∅.
Let X denote the topological sum of S1 and C. Define F : X → X by

F (x) =
{
f(x), x ∈ S1,
g(x), x ∈ C,

where g : C → S1 is a homeomorphism. Then F is a continuous open map.
Since C is open in X and for any positive integer n, Fn∗ (C)∩C = ∅, it follows
that the dynamical system F∗ induced by F is not weakly topologically
mixing.

However,F∗ is generically chaotic. Indeed, let {V1, V2, . . .} be a countable
base of S1 × S1. If W is a nonempty open subset of S1 × S1, then for any
V ∈ {V1, V2, . . .}, there is an n > 1 such that

(∗) (F∗ × F∗)n(W ) ∩ V 6= ∅ ,
since F∗|S1×Z+ being topologically mixing implies the same for
(F∗ × F∗)|S1×S1×Z+ . Now suppose U is open in X ×X. Then (F × F )(U)
is open in S1 × S1, since F : X → S1 being open implies the same for
F × F : X ×X → S1 × S1. Therefore for each n ≥ 1, by (∗), the set

+∞⋃
m=1

(F∗ × F∗)−m(Vn)

is dense in X ×X. Put

E =
+∞⋂
n=1

+∞⋃
m=1

(F∗ × F∗)−m(Vn) .

Then E is residual in X ×X and equals

{(x, y) ∈ X ×X : {(Fn∗ x, Fn∗ y) : n ∈ Z+} is dense in S1 × S1} .
By repeating the argument used in the proof of the Theorem, we see that
each point of E is chaotic with respect to F∗. So F∗ is generically chaotic.
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