On a class of nonlinear elliptic equations in Hilbert spaces

by Piotr FijaŁkowski (Łódź)

Abstract

We consider elliptic nonlinear equations in a separable Hilbert space and their solutions in spaces of Sobolev type.

1. Introduction. We study equations of the form

$$
\begin{equation*}
P(D) u=F\left(x,\left(\partial^{\alpha} u\right)\right) \quad(D=-i \partial) \tag{1}
\end{equation*}
$$

with a strongly elliptic polynomial P of n variables, defined for $u: \mathbb{R}^{n} \rightarrow H$, where H is a separable Hilbert space. The equations are understood in a weak sense (see Definition 2). We make assumptions giving an a priori bound for solutions in a space of Sobolev type. As an example, we consider assumptions of Bernstein type. Assumptions of this kind appear in the papers [1], [5] concerning equations on a bounded interval, and in [8], [3] and [4] concerning equations on the half-line, on the line and in \mathbb{R}^{n}, respectively.

2. Spaces of Sobolev type

Definition 1. We denote by $\mathcal{H}^{s}=\mathcal{H}^{s}\left(\mathbb{R}^{n}\right)$, for $s \in \mathbb{R}$, the Sobolev space of real tempered distributions u such that

$$
\|u\|_{s}^{2}:=(2 \pi)^{-n} \int|\mathcal{F} u(\xi)|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi<\infty
$$

where \mathcal{F} stands for the Fourier transform.
Remark1. Definition 1 may be used for both real and complex Sobolev spaces, depending on whether we consider real or complex functions and distributions.
\mathcal{H}^{s} is a Hilbert space with the scalar product

$$
\langle u, w\rangle_{s}:=(2 \pi)^{-n} \int(\mathcal{F} u)(\xi) \overline{(\mathcal{F} w)(\xi)}\left(1+|\xi|^{2}\right)^{s} d \xi
$$

[^0]Key words and phrases: nonlinear elliptic boundary value problems.
in the complex case or

$$
\langle u, w\rangle_{s}:=\operatorname{Re}(2 \pi)^{-n} \int(\mathcal{F} u)(\xi) \overline{(\mathcal{F} w)(\xi)}\left(1+|\xi|^{2}\right)^{s} d \xi
$$

in the real case.
We denote the local Sobolev space by $\mathcal{H}_{\text {loc }}^{s}=\mathcal{H}_{\text {loc }}^{s}\left(\mathbb{R}^{n}\right)$ and treat it as a Fréchet space in the standard way (see for example [6]).

Note two important lemmas.
Lemma 1. The embedding $\mathcal{H}_{\mathrm{loc}}^{s} \rightarrow \mathcal{H}_{\mathrm{loc}}^{s^{\prime}}$, for $s>s^{\prime}$, is completely continuous.

The proof is in [6], Theorem 10.1.27.
Lemma 2. If $u \in \mathcal{H}^{s}$ then any $\partial^{\alpha} u$, for $|\alpha|<s-n / 2$, is a continuous bounded function and there exists a constant C such that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n}} \sup _{|\alpha|<s-n / 2}\left|\partial^{\alpha} u(x)\right| \leq C\|u\|_{s} . \tag{2}
\end{equation*}
$$

Proof. See [6], Corollary 7.9.4. One can obtain inequality (2) by a standard calculation.

Assume that $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ is a complex Hilbert space. Let $L^{2}\left(\mathbb{R}^{n}, H\right)$ be the Hilbert space of measurable functions $u: \mathbb{R}^{n} \rightarrow H$ for which

$$
\|u\|_{L^{2}\left(\mathbb{R}^{n}, H\right)}^{2}:=\int\|u(x)\|_{H}^{2} d x<\infty .
$$

The scalar product in $L^{2}\left(\mathbb{R}^{n}, H\right)$ is defined by

$$
\langle u, w\rangle_{L^{2}\left(\mathbb{R}^{n}, H\right)}:=\int\langle u(x), w(x)\rangle_{H} d x .
$$

Let $\left(e_{\gamma}\right)_{\gamma \in \Gamma}$ be a complete orthonormal system in H. For $u \in L^{2}\left(\mathbb{R}^{n}, H\right)$, let

$$
u_{\gamma}(x):=\left\langle u(x), e_{\gamma}\right\rangle_{H}
$$

By the Bessel inequality, for any finite set $\Gamma^{\prime} \subset \Gamma$, we have

$$
\begin{aligned}
\|u\|_{L^{2}\left(\mathbb{R}^{n}, H\right)}^{2} & =\int\|u(x)\|_{H}^{2} d x \geq \int \sum_{\gamma \in \Gamma^{\prime}}\left|u_{\gamma}(x)\right|^{2} d x \\
& =\sum_{\gamma \in \Gamma^{\prime}} \int\left|u_{\gamma}(x)\right|^{2} d x=\sum_{\gamma \in \Gamma^{\prime}}\left\|u_{\gamma}\right\|_{0}^{2}
\end{aligned}
$$

Hence at most countable many u_{γ} are nonzero outside a set of measure zero. From the Lebesgue theorem and the Parseval equality, we have

$$
\begin{equation*}
\|u\|_{L^{2}\left(\mathbb{R}^{n}, H\right)}^{2}=\sum_{\gamma \in \Gamma}\left\|u_{\gamma}\right\|_{0}^{2} . \tag{3}
\end{equation*}
$$

We define the Fourier transform for $L^{2}\left(\mathbb{R}^{n}, H\right)$ by means of the Fourier transform in $L^{2}\left(\mathbb{R}^{n}, \mathbb{C}\right)$:

$$
\begin{equation*}
\mathcal{F} u:=\sum_{\gamma \in \Gamma}\left(\mathcal{F} u_{\gamma}\right) e_{\gamma} . \tag{4}
\end{equation*}
$$

One can verify that this definition is independent of the choice of a complete orthonormal system $\left(e_{\gamma}\right)_{\gamma \in \Gamma}$ and that \mathcal{F} is an isomorphism of $L^{2}\left(\mathbb{R}^{n}, H\right)$ onto itself and, by (3),

$$
\begin{equation*}
\|u\|_{L^{2}\left(\mathbb{R}^{n}, H\right)}^{2}=(2 \pi)^{-n}\|\mathcal{F} u\|_{L^{2}\left(\mathbb{R}^{n}, H\right)}^{2} \tag{5}
\end{equation*}
$$

for any $u \in L^{2}\left(\mathbb{R}^{n}, H\right)$.
For $s \geq 0$, we define the space $\mathcal{H}^{s}\left(\mathbb{R}^{n}, H\right)$ to be
$\left\{u \in L^{2}\left(\mathbb{R}^{n}, H\right):\|u\|_{\mathcal{H}^{s}\left(\mathbb{R}^{n}, H\right)}^{2}:=(2 \pi)^{-n} \int\|\mathcal{F} u(\xi)\|_{H}^{2}\left(1+|\xi|^{2}\right)^{s} d \xi<\infty\right\}$.
$\mathcal{H}^{s}\left(\mathbb{R}^{n}, H\right)$ is a Hilbert space with the scalar product

$$
\langle u, w\rangle_{\mathcal{H}^{s}\left(\mathbb{R}^{n}, H\right)}:=(2 \pi)^{-n} \int\langle\mathcal{F} u(\xi), \mathcal{F} w(\xi)\rangle_{H}\left(1+|\xi|^{2}\right)^{s} d \xi
$$

In the case of a real Hilbert space H, we mean by $\mathcal{H}^{s}\left(\mathbb{R}^{n}, H\right)$ the real Hilbert space

$$
\left\{u \in \mathcal{H}^{s}\left(\mathbb{R}^{n}, H+i H\right): u(x) \in H \text { for almost every } x \in \mathbb{R}^{n}\right\}
$$

We shall use derivatives of $\mathcal{H}^{s}\left(\mathbb{R}^{n}, H\right)$ functions in the following weak sense:

Definition 2. Let $u \in \mathcal{H}^{s}\left(\mathbb{R}^{n}, H\right), \alpha \in \mathbb{N}^{n},|\alpha| \leq s$. We denote by $\partial^{\alpha} u$ an element of $L^{2}\left(\mathbb{R}^{n}, H\right)$ such that

$$
\begin{equation*}
\left\langle\partial^{\alpha} u(\cdot), h\right\rangle_{H}=\partial^{\alpha}\langle u(\cdot), h\rangle_{H} \quad \text { for any } h \in H . \tag{6}
\end{equation*}
$$

Note that if $u(x)=\sum_{\gamma \in \Gamma} u_{\gamma}(x) e_{\gamma}$, then $\partial^{\alpha} u(x)=\sum_{\gamma \in \Gamma} \partial^{\alpha} u_{\gamma}(x) e_{\gamma}$.
3. Existence theorem for a single equation. We shall construct a solution of an equation of the form (1) in the space $\mathcal{H}^{t}\left(\mathbb{R}^{n}, H\right)$ by approximation by a sequence of solutions of adapted problems "with values in finite-dimensional spaces". The following lemma plays the basic role in this construction:

Lemma 3. Every sequence $\left(u_{k}\right)$ in $\mathcal{H}^{s}\left(\mathbb{R}^{n}, H\right)$ weakly convergent to $u \in$ $\mathcal{H}^{s}\left(\mathbb{R}^{n}, H\right)$ contains a subsequence $\left(u_{k_{l}}\right)$ for which the sequences $\left(\partial^{\alpha} u_{k_{l}}(x)\right)$ weakly converge in H to $\left(\partial^{\alpha} u\right)(x)$ for a.e. x and $|\alpha|<s-n / 2$.

Proof. The weak convergence of (u_{k}) implies its boundedness:

$$
\begin{equation*}
\left\|u_{k}\right\|_{\mathcal{H}^{s}\left(\mathbb{R}^{n}, H\right)} \leq M \tag{7}
\end{equation*}
$$

for some constant M.

The essential ranges of the functions $u_{k}, k=1,2, \ldots$ (without the values on a set of measure zero) are contained in a separable subspace of H (see Section 2). Hence we can assume that H is separable. Let $\left(e_{\gamma}\right)_{\gamma \in \Gamma}$ be a complete orthonormal system in H (at most countable).

The weak convergence of $\left(u_{k}\right)$ in $\mathcal{H}^{s}\left(\mathbb{R}^{n}, H\right)$ implies that

$$
\begin{equation*}
\left\langle\partial^{\alpha} u_{k}(\cdot), e_{\gamma}\right\rangle_{H} \rightarrow\left\langle\partial^{\alpha} u(\cdot), e_{\gamma}\right\rangle_{H} \quad \text { weakly in } L^{2} \tag{8}
\end{equation*}
$$

for any $|\alpha| \leq s$ and $\gamma \in \Gamma$.
From (7), we have

$$
\begin{equation*}
\left\|\left\langle u_{k}(\cdot), e_{\gamma}\right\rangle_{H}\right\|_{s} \leq M \tag{9}
\end{equation*}
$$

Making use of (9) and Lemma 1, we construct by the diagonal method a subsequence ($u_{k_{l}}$) such that, for any $\gamma \in \Gamma$,

$$
\left\langle u_{k_{l}}(\cdot), e_{\gamma}\right\rangle_{H} \rightarrow w_{\gamma} \in \mathcal{H}_{\mathrm{loc}}^{s-n / 2} \quad \text { in } \mathcal{H}_{\mathrm{loc}}^{s-n / 2}
$$

For $|\alpha| \leq s-n / 2$, we have

$$
\begin{equation*}
\left\langle\partial^{\alpha} u_{k_{l}}(\cdot), e_{\gamma}\right\rangle_{H} \rightarrow \partial^{\alpha} w_{\gamma} \quad \text { in } L_{\text {loc }}^{2}, \text { for any } \gamma \in \Gamma \tag{10}
\end{equation*}
$$

Comparing (8) and (10) for $\alpha=(0, \ldots, 0)$, we obtain $\left\langle u(x), e_{\gamma}\right\rangle_{H}=$ $w_{\gamma}(x)$ for a.e. x, hence $\left\langle u_{k_{l}}(\cdot), e_{\gamma}\right\rangle_{H} \rightarrow\left\langle u(\cdot), e_{\gamma}\right\rangle_{H}$ in $\mathcal{H}_{\text {loc }}^{s-n / 2}$. By the diagonal method, we construct a subsequence (denoted again by $\left(u_{k_{l}}\right)$ for simplicity of notation) such that

$$
\begin{equation*}
\left\langle\partial^{\alpha} u_{k_{l}}(x), e_{\gamma}\right\rangle_{H} \rightarrow\left\langle\partial^{\alpha} u(x), e_{\gamma}\right\rangle_{H} \quad \text { for a.e. } x, \tag{11}
\end{equation*}
$$

for any $|\alpha| \leq s-n / 2$ and $\gamma \in \Gamma$. We shall show that this is the desired subsequence. By (11), it is sufficient to show that, for $|\alpha|<s-n / 2$, the set $\left\{\left\|\partial^{\alpha} u_{k_{l}}(x)\right\|\right\}$ is bounded for a.e. x. From (2) and (7), we have

$$
\begin{align*}
\left\|\partial^{\alpha} u_{k_{l}}(x)\right\|^{2} & =\sum_{\gamma \in \Gamma}\left|\left\langle\partial^{\alpha} u_{k_{l}}(x), e_{\gamma}\right\rangle_{H}\right|^{2} \tag{12}\\
& \leq C^{2} \sum_{\gamma \in \Gamma}\left\|\left\langle u_{k_{l}}(\cdot), e_{\gamma}\right\rangle_{H}\right\|_{s}^{2} \\
& =C^{2}\left\|u_{k_{l}}\right\|_{\mathcal{H}^{s}\left(\mathbb{R}^{n}, H\right)}^{2} \leq C^{2} M^{2},
\end{align*}
$$

which ends the proof.
We now formulate and prove the main
Theorem 1. Let H be a real, infinite-dimensional separable Hilbert space, and $\left(e_{\gamma}\right)_{\gamma=1,2, \ldots}$ a complete orthonormal system in H. Let H_{p} denote the space generated by $\left\{e_{\gamma}: \gamma=1, \ldots, p\right\}$ and let $R_{p}: H \rightarrow H_{p}$ be the orthonormal projector onto H_{p}. Let P be a polynomial of n variables and degree T such that the polynomial $P(-i \partial)$ of the variable ∂ has real coefficients and satisfies the condition

$$
\begin{equation*}
1+|\xi|^{T} \leq C P(\xi), \quad \xi \in \mathbb{R}^{n} \tag{13}
\end{equation*}
$$

Fix $t \in[0, T[$ and set

$$
m:=\sum_{0 \leq l<t-n / 2} n^{l}
$$

Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow H$ satisfy the Carathéodory condition of the following form: $F(x, \cdot)$ is sequentially continuous in the weak topologies of H^{m} and H for a.e. x, and $F\left(\cdot,\left(v_{\alpha}\right)_{|\alpha|<t-n / 2}\right)$ is measurable for all $\left(v_{\alpha}\right)_{|\alpha|<t-n / 2} \in H^{m}$.

Suppose that for any bounded set $K \subset \mathbb{R}^{n} \times H^{m}$ there exists a function $h_{K} \in L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
\left\|F\left(x,\left(v_{\alpha}\right)_{|\alpha|<t-n / 2}\right)\right\| \leq h_{K}(x) \quad \text { for a.e. } x \tag{14}
\end{equation*}
$$

for $\left(x,\left(v_{\alpha}\right)_{|\alpha|<t-n / 2}\right) \in K\left(\|\cdot\|\right.$ denotes the norm in H^{k} for any $\left.k \in \mathbb{N}\right)$. Assume that there is a sequence of open bounded sets $U_{1} \subset U_{2} \subset \ldots$ with $\bigcup U_{j}=\mathbb{R}^{n}$ and a constant M such that no equation
(15) $\quad P(D) u=\lambda R_{p} F_{j}\left(x,\left(\partial^{\alpha} u\right)_{|\alpha|<t-n / 2}\right), \quad j=1,2, \ldots, \lambda \in[0,1]$,
with

$$
F_{j}\left(x,\left(v_{\alpha}\right)_{|\alpha|<t-n / 2}\right):= \begin{cases}F\left(x,\left(v_{\alpha}\right)_{|\alpha|<t-n / 2}\right) & \text { for } x \in U_{j} \\ 0 & \text { for } x \notin U_{j}\end{cases}
$$

has a solution in the set

$$
\left\{u \in \mathcal{H}^{t}\left(\mathbb{R}^{n}, H_{p}\right):\|u\|_{\mathcal{H}^{t}\left(\mathbb{R}^{n}, H\right)}>M\right\}, \quad p=1,2, \ldots
$$

Under these assumptions the equation

$$
\begin{equation*}
P(D) u=F\left(x,\left(\partial^{\alpha} u\right)_{|\alpha|<t-n / 2}\right), \tag{16}
\end{equation*}
$$

understood in the sense of Definition 2, has a solution $u \in \mathcal{H}^{t}\left(\mathbb{R}^{n}, H\right)$ for which

$$
\|u\|_{\mathcal{H}^{t}\left(\mathbb{R}^{n}, H\right)} \leq M
$$

Proof. Consider the equations

$$
\begin{equation*}
P(D) u=R_{p} F\left(x,\left(\partial^{\alpha} u\right)_{|\alpha|<t-n / 2}\right), \quad p=1,2, \ldots \tag{17}
\end{equation*}
$$

Treating H_{p} as \mathbb{R}^{p}, we conclude, from the assumptions of the theorem, that equation (17) has a solution $u_{p} \in \mathcal{H}^{t}\left(\mathbb{R}^{n}, H_{p}\right)$ for any p (see [4], Theorem 2). We have

$$
\left\|u_{p}\right\|_{\mathcal{H}^{t}\left(\mathbb{R}^{n}, H\right)} \leq M, \quad p=1,2, \ldots
$$

By the Eberlein-Shmul'yan theorem, the sequence (u_{p}) contains a subsequence ($u_{p_{k}}$) weakly convergent to some $u \in \mathcal{H}^{t}\left(\mathbb{R}^{n}, H\right)$ and

$$
\|u\|_{\mathcal{H}^{t}\left(\mathbb{R}^{n}, H\right)} \leq M
$$

By Lemma 3, we may assume that the sequences $\left(\partial^{\alpha} u_{p_{k}}(x)\right),|\alpha|<t-n / 2$, weakly converge in H to the corresponding $\partial^{\alpha} u(x)$ for a.e. x.

We shall prove that u is a solution of equation (16). We have to show that

$$
\begin{equation*}
P(D)\langle u(\cdot), h\rangle_{H}=\left\langle F\left(\cdot,\left(\partial^{\alpha} u(\cdot)\right)_{|\alpha|<t-n / 2}\right), h\right\rangle_{H} \tag{18}
\end{equation*}
$$

in \mathcal{D}^{\prime} for any $h \in H$. We know that

$$
\begin{equation*}
P(D)\left\langle u_{p_{k}}(\cdot), h\right\rangle_{H}=\left\langle R_{p_{k}} F\left(\cdot,\left(\partial^{\alpha} u_{p_{k}}(\cdot)\right)_{|\alpha|<t-n / 2}\right), h\right\rangle_{H} \tag{19}
\end{equation*}
$$

in \mathcal{D}^{\prime}. We shall prove that (17) follows from (19) by passing to the limit in \mathcal{D}^{\prime} as $k \rightarrow \infty$.

Let $\varphi \in \mathcal{C}_{0}^{\infty}$. We have

$$
\begin{aligned}
\int \varphi(x)\left\langle u_{p_{k}}(x), h\right\rangle_{H} d x & =\int\left\langle u_{p_{k}}(x), \varphi(x) h\right\rangle_{H} d x \\
& \rightarrow \int\langle u(x), \varphi(x) h\rangle_{H} d x,
\end{aligned}
$$

because $\int\langle\cdot(x), \varphi(x) h\rangle_{H} d x$ is a continuous linear functional on $\mathcal{H}^{t}\left(\mathbb{R}^{n}, H\right)$. Now, from the sequential continuity of $P(D)$ in \mathcal{D}^{\prime}, we conclude that the left-hand side of (19) converges to the left-hand side of (18) in \mathcal{D}^{\prime}. We shall prove the same for the right-hand sides, which means that

$$
\begin{align*}
& \int \varphi(x)\left\langle R_{p_{k}} F\left(x,\left(\partial^{\alpha} u_{p_{k}}(x)\right)_{|\alpha|<t-n / 2}\right), h\right\rangle_{H} d x \tag{20}\\
& \rightarrow \int \varphi(x)\left\langle F\left(x,\left(\partial^{\alpha} u(x)\right)_{|\alpha|<t-n / 2}\right), h\right\rangle_{H} d x
\end{align*}
$$

for any $\varphi \in \mathcal{C}_{0}^{\infty}$.
We show first that

$$
\begin{align*}
\left\langle R_{p_{k}} F\left(x,\left(\partial^{\alpha} u_{p_{k}}(x)\right)_{|\alpha|<t-n / 2}\right), h\right\rangle_{H} & \tag{21}\\
& \rightarrow\left\langle F\left(x,\left(\partial^{\alpha} u(x)\right)_{|\alpha|<t-n / 2}\right), h\right\rangle_{H} \quad \text { for a.e. } x
\end{align*}
$$

Assume that $h \in H_{l}$ for some l. Then, for large k,

$$
\left\langle R_{p_{k}} F\left(x,\left(\partial^{\alpha} u_{p_{k}}(x)\right)_{|\alpha|<t-n / 2}\right), h\right\rangle_{H}=\left\langle F\left(x,\left(\partial^{\alpha} u_{p_{k}}(x)\right)_{|\alpha|<t-n / 2}\right), h\right\rangle_{H},
$$

hence (21) is true by the Carathéodory condition.
From (12) and (14), we have

$$
\begin{equation*}
\left\|F\left(x,\left(\partial^{\alpha} u_{p_{k}}(x)\right)_{|\alpha|<t-n / 2}\right)\right\| \leq C(x)<\infty \quad \text { for a.e. } x . \tag{22}
\end{equation*}
$$

This implies (21) for all $h \in H$ (see [9], p. 121, Theorem 3). By the Lebesgue convergence theorem, formulas (12), (14) and (21) imply the convergence (20). The proof is complete.

Example 1. We define a class of equations satisfying the assumptions of Theorem 1.

Let P be a polynomial of n variables and degree T such that the polynomial $P(-i \partial)$ of the variable ∂ has real coefficients and satisfies (13). Let $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow H$ satisfy (14) and the Carathéodory condition in the sense of Theorem 1. Assume that there exist constants $0<a<2, L>0$ and
nonnegative functions $f \in L^{2 / a}$ and $g \in L^{2 /(2-a)}$ such that
(23) $\left\langle v_{(0, \ldots, 0)}, F\left(x,\left(v_{\alpha}\right)_{|\alpha|<t-n / 2}\right)\right\rangle_{H} \leq 0$

$$
\text { for }\left\|v_{(0, \ldots, 0)}\right\| \geq g(x) \text { and a.e. } x
$$

and

$$
\begin{align*}
& \left\|F\left(x,\left(v_{\alpha}\right)_{|\alpha|<t-n / 2}\right)\right\| \leq f(x)+L\left\|\left(v_{\alpha}\right)_{|\alpha|<t-n / 2}\right\|^{a} \tag{24}\\
& \text { for }\left\|v_{(0, \ldots, 0)}\right\| \leq g(x) \text { and a.e. } x .
\end{align*}
$$

Treating H_{p} as \mathbb{R}^{p}, we obtain the necessary a priori bounds for solutions of equations (15) as in [4], Example 2.

Example 2. We now describe a more concrete example of the class described above.

Let $n=1, T=2, a=1, P(\xi)=\xi^{2}+b, b>0$, and $A: H \rightarrow H$ a linear, continuous, invertible operator. Suppose that $B: \mathbb{R} \times H \rightarrow H$ satisfies the Carathéodory condition in the sense of Theorem 1 and

$$
\|B(x, v)\| \leq h(x), \quad h \in L^{2}(\mathbb{R})
$$

Let $F(x, v)=-A^{*} A v+B(x, v)$. We have

$$
\begin{aligned}
\langle v, F(x, v)\rangle_{H} & =-\left\langle v, A^{*} A v\right\rangle+\langle v, B(x, v)\rangle \\
& =-\langle A v, A v\rangle+\langle v, B(x, v)\rangle \\
& \leq-C\|v\|^{2}+\|v\| h(x) \leq 0
\end{aligned}
$$

for $\|v\| \geq g(x):=h(x) / C$ with some constant $C>0$. Then condition (23) is satisfied. Condition (24) is satisfied for $L=0$ and

$$
f(x)=\left(\left\|A^{*} A\right\| / C+1\right) h(x) .
$$

Consider, for example, the following problem:

$$
-\frac{d^{2} u(x, t)}{d x^{2}}+u(x, t)=-u(x, t)+\psi\left(x, \int_{0}^{1} K(x, t, \tau) u(x, \tau) d \tau\right),
$$

where K is measurable, $K(x, \cdot, \cdot) \in L^{2}([0,1] \times[0,1])$ for a.e. $x, \psi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous and

$$
\begin{equation*}
|\psi(x, y)| \leq h(x), \quad h \in L^{2}(x) . \tag{25}
\end{equation*}
$$

We look for $u \in \mathcal{H}^{1}\left(\mathbb{R}, L^{2}([0,1])\right.$) (we treat u as the mapping $\left.x \mapsto u(x, \cdot)\right)$.
We have

$$
P(\xi)=\xi^{2}+1
$$

and

$$
F(x, v)=-v+\psi\left(x, \int_{0}^{1} K(x, \cdot, \tau) v(\tau) d \tau\right)
$$

The function F satisfies the Carathéodory condition. In fact, the map

$$
L^{2}([0,1]) \ni v \mapsto \int_{0}^{1} K(x, \cdot, \tau) d \tau \in L^{2}([0,1])
$$

is linear and completely continuous (for almost all x), hence it transforms weakly convergent sequences to strongly convergent ones. The Nemytskiĭ operator

$$
L^{2}([0,1]) \ni v \mapsto \psi(x, v(\cdot)) \in L^{2}([0,1])
$$

is continuous by (25) (see for example [2], Proposition 1).
Remark 2. Note that a Hammerstein operator does not have so good properties as the operator F defined in Example 2. Consider the operator

$$
G(v)=\int_{0}^{1} K(\cdot, \tau) \psi(\tau, v(\tau)) d \tau
$$

where

$$
K \in L^{2}([0,1] \times[0,1]), \quad|\psi(t, y)| \leq h(t)+|y|, \quad h \in L^{2}([0,1])
$$

Suppose that $G: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ is sequentially continuous in the sense of the weak topology in $L^{2}([0,1])$. Then, for any $w \in L^{2}([0,1])$, the map

$$
G_{w}: v \mapsto\langle G(v), w\rangle_{L^{2}([0,1])}
$$

transforms weakly convergent sequences in $L^{2}([0,1])$ to convergent numerical ones.

Suppose that ψ is differentiable with respect to the second variable and that $G_{w}: L^{2}([0,1]) \rightarrow \mathbb{R}$ satisfies the assumptions of the following theorem of Palmer (see [7]):

Let X be a reflexive Banach space, Y a Banach space and let $F: X \rightarrow Y$ be uniformly Fréchet differentiable on any ball in X. Then F is sequentially continuous with the weak topology in X and the strong topology in Y if and only if the following two conditions are satisfied:
(i) for any $v \in X$ the Fréchet derivative $F^{\prime}(v)$ is a completely continuous linear operator,
(ii) the Fréchet derivative $F^{\prime}: X \rightarrow L(X, Y)$ (the space of linear continuous operators from X into Y) is completely continuous.

We have

$$
G_{w}(v)=\int_{0}^{1} \int_{0}^{1} K(t, \tau) \psi(\tau, v(\tau)) w(t) d \tau d t=\int_{0}^{1} K_{w}(\tau) \psi(\tau, v(\tau)) d \tau
$$

where

$$
K_{w}(\tau):=\int_{0}^{1} K(t, \tau) w(t) d t
$$

Compute the derivative

$$
G_{w}^{\prime}(v) \cdot h=\int_{0}^{1} K_{w}(\tau) \partial_{2} \psi(\tau, v(\tau)) h(\tau) d \tau
$$

By the isomorphism $L\left(L^{2}([0,1]) ; \mathbb{R}\right) \cong L^{2}([0,1])$, we have

$$
G_{w}^{\prime}(v)=K_{w}(\cdot) \partial_{2} \psi(\cdot, v(\cdot))
$$

We conclude that the condition (ii) will not be satisfied if G_{w}^{\prime} is not constant. In fact, any nonconstant superposition operator

$$
L^{2}([0,1]) \ni v \mapsto N(v):=\varphi(\cdot, v(\cdot)) \in L^{2}([0,1])
$$

does not transform bounded sets onto precompact ones. In fact, let $N\left(u_{1}\right) \neq$ $N\left(u_{2}\right)$ for some $u_{1}, u_{2} \in L^{2}([0,1])$. Let

$$
v_{k}(x):= \begin{cases}u_{1}(x) & \text { for } x \in\left[2^{-k} 2 p, 2^{-k}(2 p+1)[,\right. \\ u_{2}(x) & \text { for } x \in\left[2^{-k}(2 p+1), 2^{-k}(2 p+2)[,\right. \\ 0 & \text { for } x=1, p=0,1, \ldots, 2^{k-2}\end{cases}
$$

The sequence $\left(v_{k}\right)$ is bounded in $L^{2}([0,1])$ but $N\left(v_{k}\right)$ has no subsequence which converges in $L^{2}([0,1])$.
4. Existence theorem for a system of equations. We formulate a theorem similar to Theorem 1 for systems of equations.

Theorem 2. Let H be a real infinite-dimensional separable Hilbert space, and $\left(e_{\gamma}\right)_{\gamma=1,2, \ldots}$ a complete orthonormal system in H. Let H_{p} denote the space generated by the system $\left\{e_{\gamma}: \gamma=1, \ldots, p\right\}$ and let $R_{p}: H \rightarrow H_{p}$ be the orthonormal projector onto H_{p}. Let P_{r} be polynomials of n variables and degrees T_{r} such that the polynomials $P_{r}(-i \partial)$ of the variable ∂ have real coefficients and satisfy

$$
1+|\xi|^{T_{r}} \leq C P_{r}(\xi), \quad \xi \in \mathbb{R}^{n}, r=1, \ldots, k,
$$

for some constant C. Let $t_{r} \in\left[0, T_{r}[, r=1, \ldots, k\right.$, and

$$
m:=\sum_{r=1}^{k} \sum_{0 \leq l<t_{r}-n / 2} n^{l} .
$$

Assume that $F: \mathbb{R}^{n} \times H^{m} \rightarrow H^{k}$ satisfies the Carathéodory condition of the following form: $F(x, \cdot)$ is sequentially continuous in the weak topologies of H^{m} and H^{k} for a.e. x and $F\left(\cdot,\left(v_{\alpha}^{r}\right)_{\left.|\alpha|<t_{r}-n / 2, r=1, \ldots, k\right)}\right.$ is measurable for
all $\left(v_{\alpha}^{r}\right)_{|\alpha|<t_{r}-n / 2, r=1, \ldots, k} \in H^{m}$. Assume that for any bounded set $K \subset$ $\mathbb{R}^{n} \times H^{m}$ there exists a function $h_{K} \in L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
\left\|F\left(x,\left(v_{\alpha}^{r}\right)_{|\alpha|<t_{r}-n / 2, r=1, \ldots, k}\right)\right\| \leq h_{K}(x)
$$

for $\left(x,\left(v_{\alpha}^{r}\right)_{|\alpha|<t_{r}-n / 2, r=1, \ldots, k}\right) \in K$ a.e. x. Assume that there is a sequence of open bounded sets $U_{1} \subset U_{2} \subset \ldots$ with $\bigcup U_{j}=\mathbb{R}^{n}$ and a constant M such that no system

$$
\begin{aligned}
& P_{l}(D) u^{l}=\lambda R_{p} F_{j}^{l}\left(x,\left(\partial^{\alpha} u^{r}\right)_{|\alpha|<t_{r}-n / 2, r=1, \ldots, k}\right) \\
& \qquad l=1, \ldots, k\left(F=\left(F^{1}, \ldots, F^{k}\right)\right),
\end{aligned}
$$

has a solution in the set
for $j=1,2, \ldots, \lambda \in[0,1], p=1,2, \ldots$ (The functions F_{j}^{l} are defined as

$$
\begin{aligned}
& F_{j}^{l}\left(x,\left(v_{\alpha}^{r}\right)_{|\alpha|<t_{r}-n / 2, r=1, \ldots, k}\right) \\
&:= \begin{cases}F^{l}\left(x,\left(v_{\alpha}^{r}\right)_{|\alpha|<t_{r}-n / 2, r=1, \ldots, k}\right) & \text { for } x \in U_{j} \\
0 & \text { for } x \notin U_{j} .\end{cases}
\end{aligned}
$$

Under these assumptions the system

$$
P_{l}(D) u^{l}=F^{l}\left(x,\left(\partial^{\alpha} u^{r}\right)_{|\alpha|<t_{r}-n / 2, r=1, \ldots, k}\right), \quad l=1, \ldots, k,
$$

has a solution $u \in X_{r=1}^{k} \mathcal{H}^{t_{r}}\left(\mathbb{R}^{n}, H\right)$ for which

$$
\sum_{r=1}^{k}\left\|u^{r}\right\|_{\mathcal{H}^{t}\left(\mathbb{R}^{n}, H\right)} \leq M
$$

Proof. Similar to the proof of Theorem 1.
Example 3. One can construct an example analogous to Example 1 with the condition

$$
\begin{aligned}
\left\langle v_{(0, \ldots, 0)}, F\left(x,\left(v_{\alpha}^{r}\right)_{|\alpha|<t_{r}-n / 2, r=1, \ldots, k}\right)\right\rangle_{H^{k}} & \leq 0 \\
& \text { for }\left\|v_{(0, \ldots, 0)}\right\| \geq g(x) \text { for a.e. } x
\end{aligned}
$$

instead of (23).

References

[1] S. N. Bernstein, Sur les équations du calcul des variations, Ann. Sci. École Norm. Sup. 29 (1912), 431-485.
[2] F. E. Browder, Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, in: Contributions to Nonlinear Functional Analysis, Acad. Press, New York, 1971, 425-500.
[3] P. Fijałkowski, On the equation $x^{\prime \prime}(t)=F(t, x(t))$ in the Sobolev space $H^{1}(\mathbb{R})$, Ann. Polon. Math. 53 (1991), 29-34.
[4] -, On the solvability of nonlinear elliptic systems in Sobolev spaces, ibid. 56 (1992), 149-156.
[5] A. Granas, R. Guenther and J. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. 244 (1985).
[6] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer, Berlin, 1983.
[7] K. J. Palmer, On the complete continuity of differentiable mappings, J. Austral. Math. Soc. 9 (1969), 3-4.
[8] B. Przeradzki, On the solvability of singular BVP's for second-order ordinary differential equations, Ann. Polon. Math. 50 (1990), 279-289.
[9] K. Yosida, Functional Analysis, Springer, Berlin, 1980.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF ŁÓDŹ
S. BANACHA 22

90-238 LÓDŹ, POLAND

[^0]: 1991 Mathematics Subject Classification: Primary 35J65.

