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On a class of nonlinear elliptic
equations in Hilbert spaces

by Piotr Fija lkowski ( Lódź)

Abstract. We consider elliptic nonlinear equations in a separable Hilbert space and
their solutions in spaces of Sobolev type.

1. Introduction. We study equations of the form

(1) P (D)u = F (x, (∂αu)) (D = −i∂) ,

with a strongly elliptic polynomial P of n variables, defined for u : Rn → H,
where H is a separable Hilbert space. The equations are understood in a
weak sense (see Definition 2). We make assumptions giving an a priori bound
for solutions in a space of Sobolev type. As an example, we consider assump-
tions of Bernstein type. Assumptions of this kind appear in the papers [1], [5]
concerning equations on a bounded interval, and in [8], [3] and [4] concerning
equations on the half-line, on the line and in Rn, respectively.

2. Spaces of Sobolev type

Definition 1. We denote by Hs = Hs(Rn), for s ∈ R, the Sobolev
space of real tempered distributions u such that

‖u‖2s := (2π)−n
∫
|Fu(ξ)|2(1 + |ξ|2)s dξ <∞

where F stands for the Fourier transform.

R e m a r k 1. Definition 1 may be used for both real and complex Sobolev
spaces, depending on whether we consider real or complex functions and
distributions.
Hs is a Hilbert space with the scalar product

〈u,w〉s := (2π)−n
∫

(Fu)(ξ)(Fw)(ξ)(1 + |ξ|2)s dξ
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in the complex case or

〈u,w〉s := Re (2π)−n
∫

(Fu)(ξ)(Fw)(ξ)(1 + |ξ|2)s dξ

in the real case.
We denote the local Sobolev space by Hsloc = Hsloc(Rn) and treat it as a

Fréchet space in the standard way (see for example [6]).
Note two important lemmas.

Lemma 1. The embedding Hsloc → Hs
′

loc, for s > s′, is completely contin-
uous.

The proof is in [6], Theorem 10.1.27.

Lemma 2. If u ∈ Hs then any ∂αu, for |α| < s − n/2, is a continuous
bounded function and there exists a constant C such that

(2) sup
x∈Rn

sup
|α|<s−n/2

|∂αu(x)| ≤ C‖u‖s .

P r o o f. See [6], Corollary 7.9.4. One can obtain inequality (2) by a stan-
dard calculation.

Assume that (H, 〈·, ·〉H) is a complex Hilbert space. Let L2(Rn, H) be
the Hilbert space of measurable functions u : Rn → H for which

‖u‖2L2(Rn,H) :=
∫
‖u(x)‖2H dx <∞ .

The scalar product in L2(Rn, H) is defined by

〈u,w〉L2(Rn,H) :=
∫
〈u(x), w(x)〉H dx .

Let (eγ)γ∈Γ be a complete orthonormal system in H. For u ∈ L2(Rn, H),
let

uγ(x) := 〈u(x), eγ〉H .
By the Bessel inequality, for any finite set Γ ′ ⊂ Γ , we have

‖u‖2L2(Rn,H) =
∫
‖u(x)‖2H dx ≥

∫ ∑
γ∈Γ ′

|uγ(x)|2 dx

=
∑
γ∈Γ ′

∫
|uγ(x)|2 dx =

∑
γ∈Γ ′

‖uγ‖20 .

Hence at most countable many uγ are nonzero outside a set of measure
zero. From the Lebesgue theorem and the Parseval equality, we have

(3) ‖u‖2L2(Rn,H) =
∑
γ∈Γ
‖uγ‖20 .
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We define the Fourier transform for L2(Rn, H) by means of the Fourier
transform in L2(Rn,C):

(4) Fu :=
∑
γ∈Γ

(Fuγ)eγ .

One can verify that this definition is independent of the choice of a complete
orthonormal system (eγ)γ∈Γ and that F is an isomorphism of L2(Rn, H)
onto itself and, by (3),

(5) ‖u‖2L2(Rn,H) = (2π)−n‖Fu‖2L2(Rn,H)

for any u ∈ L2(Rn, H).
For s ≥ 0, we define the space Hs(Rn, H) to be{

u ∈ L2(Rn, H) : ‖u‖2Hs(Rn,H) := (2π)−n
∫
‖Fu(ξ)‖2H(1 + |ξ|2)s dξ <∞

}
.

Hs(Rn, H) is a Hilbert space with the scalar product

〈u,w〉Hs(Rn,H) := (2π)−n
∫
〈Fu(ξ),Fw(ξ)〉H(1 + |ξ|2)s dξ .

In the case of a real Hilbert space H, we mean by Hs(Rn, H) the real
Hilbert space

{u ∈ Hs(Rn, H + iH) : u(x) ∈ H for almost every x ∈ Rn} .

We shall use derivatives of Hs(Rn, H) functions in the following weak
sense:

Definition 2. Let u ∈ Hs(Rn, H), α ∈ Nn, |α| ≤ s. We denote by ∂αu
an element of L2(Rn, H) such that

(6) 〈∂αu(·), h〉H = ∂α〈u(·), h〉H for any h ∈ H .

Note that if u(x) =
∑
γ∈Γ uγ(x)eγ , then ∂αu(x) =

∑
γ∈Γ ∂

αuγ(x)eγ .

3. Existence theorem for a single equation. We shall construct
a solution of an equation of the form (1) in the space Ht(Rn, H) by ap-
proximation by a sequence of solutions of adapted problems “with values in
finite-dimensional spaces”. The following lemma plays the basic role in this
construction:

Lemma 3. Every sequence (uk) in Hs(Rn, H) weakly convergent to u ∈
Hs(Rn, H) contains a subsequence (ukl

) for which the sequences (∂αukl
(x))

weakly converge in H to (∂αu)(x) for a.e. x and |α| < s− n/2.

P r o o f. The weak convergence of (uk) implies its boundedness:

(7) ‖uk‖Hs(Rn,H) ≤M
for some constant M .
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The essential ranges of the functions uk, k = 1, 2, . . . (without the values
on a set of measure zero) are contained in a separable subspace of H (see
Section 2). Hence we can assume that H is separable. Let (eγ)γ∈Γ be a
complete orthonormal system in H (at most countable).

The weak convergence of (uk) in Hs(Rn, H) implies that

(8) 〈∂αuk(·), eγ〉H → 〈∂αu(·), eγ〉H weakly in L2

for any |α| ≤ s and γ ∈ Γ .
From (7), we have

(9) ‖〈uk(·), eγ〉H‖s ≤M .

Making use of (9) and Lemma 1, we construct by the diagonal method a
subsequence (ukl

) such that, for any γ ∈ Γ ,

〈ukl
(·), eγ〉H → wγ ∈ Hs−n/2loc in Hs−n/2loc .

For |α| ≤ s− n/2, we have

(10) 〈∂αukl
(·), eγ〉H → ∂αwγ in L2

loc, for any γ ∈ Γ .
Comparing (8) and (10) for α = (0, . . . , 0), we obtain 〈u(x), eγ〉H =

wγ(x) for a.e. x, hence 〈ukl
(·), eγ〉H → 〈u(·), eγ〉H in Hs−n/2loc . By the di-

agonal method, we construct a subsequence (denoted again by (ukl
) for

simplicity of notation) such that

(11) 〈∂αukl
(x), eγ〉H → 〈∂αu(x), eγ〉H for a.e. x ,

for any |α| ≤ s − n/2 and γ ∈ Γ . We shall show that this is the desired
subsequence. By (11), it is sufficient to show that, for |α| < s−n/2, the set
{‖∂αukl

(x)‖} is bounded for a.e. x. From (2) and (7), we have

‖∂αukl
(x)‖2 =

∑
γ∈Γ
|〈∂αukl

(x), eγ〉H |2(12)

≤ C2
∑
γ∈Γ
‖〈ukl

(·), eγ〉H‖2s

= C2‖ukl
‖2Hs(Rn,H) ≤ C

2M2 ,

which ends the proof.

We now formulate and prove the main

Theorem 1. Let H be a real , infinite-dimensional separable Hilbert
space, and (eγ)γ=1,2,... a complete orthonormal system in H. Let Hp de-
note the space generated by {eγ : γ = 1, . . . , p} and let Rp : H → Hp be
the orthonormal projector onto Hp. Let P be a polynomial of n variables
and degree T such that the polynomial P (−i∂) of the variable ∂ has real
coefficients and satisfies the condition

(13) 1 + |ξ|T ≤ CP (ξ) , ξ ∈ Rn .
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Fix t ∈ [0, T [ and set

m :=
∑

0≤l<t−n/2

nl .

Let F : Rn × Rm → H satisfy the Carathéodory condition of the following
form: F (x, ·) is sequentially continuous in the weak topologies of Hm and H
for a.e. x, and F (·, (vα)|α|<t−n/2) is measurable for all (vα)|α|<t−n/2 ∈ Hm.

Suppose that for any bounded set K ⊂ Rn ×Hm there exists a function
hK ∈ L2(Rn) such that

(14) ‖F (x, (vα)|α|<t−n/2)‖ ≤ hK(x) for a.e. x

for (x, (vα)|α|<t−n/2) ∈ K (‖ · ‖ denotes the norm in Hk for any k ∈ N).
Assume that there is a sequence of open bounded sets U1 ⊂ U2 ⊂ . . . with⋃
Uj = Rn and a constant M such that no equation

(15) P (D)u = λRpFj(x, (∂αu)|α|<t−n/2) , j = 1, 2, . . . , λ ∈ [0, 1] ,

with

Fj(x, (vα)|α|<t−n/2) :=
{
F (x, (vα)|α|<t−n/2) for x ∈ Uj ,
0 for x 6∈ Uj

has a solution in the set

{u ∈ Ht(Rn, Hp) : ‖u‖Ht(Rn,H) > M} , p = 1, 2, . . .

Under these assumptions the equation

(16) P (D)u = F (x, (∂αu)|α|<t−n/2) ,

understood in the sense of Definition 2, has a solution u ∈ Ht(Rn, H) for
which

‖u‖Ht(Rn,H) ≤M .

P r o o f. Consider the equations

(17) P (D)u = RpF (x, (∂αu)|α|<t−n/2) , p = 1, 2, . . .

Treating Hp as Rp, we conclude, from the assumptions of the theorem, that
equation (17) has a solution up ∈ Ht(Rn, Hp) for any p (see [4], Theorem 2).
We have

‖up‖Ht(Rn,H) ≤M , p = 1, 2, . . .

By the Eberlein–Shmul’yan theorem, the sequence (up) contains a subse-
quence (upk

) weakly convergent to some u ∈ Ht(Rn, H) and

‖u‖Ht(Rn,H) ≤M .

By Lemma 3, we may assume that the sequences (∂αupk
(x)), |α| < t−n/2,

weakly converge in H to the corresponding ∂αu(x) for a.e. x.
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We shall prove that u is a solution of equation (16). We have to show
that

(18) P (D)〈u(·), h〉H = 〈F (·, (∂αu(·))|α|<t−n/2), h〉H
in D′ for any h ∈ H. We know that

(19) P (D)〈upk
(·), h〉H = 〈Rpk

F (·, (∂αupk
(·))|α|<t−n/2), h〉H

in D′. We shall prove that (17) follows from (19) by passing to the limit in
D′ as k →∞.

Let ϕ ∈ C∞0 . We have∫
ϕ(x)〈upk

(x), h〉H dx =
∫
〈upk

(x), ϕ(x)h〉H dx

→
∫
〈u(x), ϕ(x)h〉H dx ,

because
∫
〈·(x), ϕ(x)h〉H dx is a continuous linear functional on Ht(Rn, H).

Now, from the sequential continuity of P (D) in D′, we conclude that the
left-hand side of (19) converges to the left-hand side of (18) in D′. We shall
prove the same for the right-hand sides, which means that

(20)
∫
ϕ(x)〈Rpk

F (x, (∂αupk
(x))|α|<t−n/2), h〉H dx

→
∫
ϕ(x)〈F (x, (∂αu(x))|α|<t−n/2), h〉H dx

for any ϕ ∈ C∞0 .
We show first that

(21) 〈Rpk
F (x, (∂αupk

(x))|α|<t−n/2), h〉H
→ 〈F (x, (∂αu(x))|α|<t−n/2), h〉H for a.e. x .

Assume that h ∈ Hl for some l. Then, for large k,

〈Rpk
F (x, (∂αupk

(x))|α|<t−n/2), h〉H = 〈F (x, (∂αupk
(x))|α|<t−n/2), h〉H ,

hence (21) is true by the Carathéodory condition.
From (12) and (14), we have

(22) ‖F (x, (∂αupk
(x))|α|<t−n/2)‖ ≤ C(x) <∞ for a.e. x .

This implies (21) for all h∈H (see [9], p. 121, Theorem 3). By the Lebesgue
convergence theorem, formulas (12), (14) and (21) imply the conver-
gence (20). The proof is complete.

Example 1. We define a class of equations satisfying the assumptions
of Theorem 1.

Let P be a polynomial of n variables and degree T such that the poly-
nomial P (−i∂) of the variable ∂ has real coefficients and satisfies (13). Let
F : Rn×Rm → H satisfy (14) and the Carathéodory condition in the sense
of Theorem 1. Assume that there exist constants 0 < a < 2, L > 0 and
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nonnegative functions f ∈ L2/a and g ∈ L2/(2−a) such that

(23) 〈v(0,...,0), F (x, (vα)|α|<t−n/2)〉H ≤ 0
for ‖v(0,...,0)‖ ≥ g(x) and a.e. x ,

and

(24) ‖F (x, (vα)|α|<t−n/2)‖ ≤ f(x) + L‖(vα)|α|<t−n/2‖a

for ‖v(0,...,0)‖ ≤ g(x) and a.e. x .

Treating Hp as Rp, we obtain the necessary a priori bounds for solutions of
equations (15) as in [4], Example 2.

Example 2. We now describe a more concrete example of the class
described above.

Let n = 1, T = 2, a = 1, P (ξ) = ξ2 + b, b > 0, and A : H → H a linear,
continuous, invertible operator. Suppose that B : R×H → H satisfies the
Carathéodory condition in the sense of Theorem 1 and

‖B(x, v)‖ ≤ h(x) , h ∈ L2(R) .

Let F (x, v) = −A∗Av +B(x, v). We have

〈v, F (x, v)〉H = − 〈v,A∗Av〉+ 〈v,B(x, v)〉
= − 〈Av,Av〉+ 〈v,B(x, v)〉
≤ − C‖v‖2 + ‖v‖h(x) ≤ 0

for ‖v‖ ≥ g(x) := h(x)/C with some constant C > 0. Then condition (23)
is satisfied. Condition (24) is satisfied for L = 0 and

f(x) = (‖A∗A‖/C + 1)h(x) .

Consider, for example, the following problem:

−d
2u(x, t)
dx2

+ u(x, t) = −u(x, t) + ψ
(
x,

1∫
0

K(x, t, τ)u(x, τ) dτ
)
,

where K is measurable, K(x, ·, ·) ∈ L2([0, 1]× [0, 1]) for a.e. x, ψ : R2 → R
is continuous and

(25) |ψ(x, y)| ≤ h(x) , h ∈ L2(x) .

We look for u ∈ H1(R, L2([0, 1])) (we treat u as the mapping x 7→ u(x, ·)).
We have

P (ξ) = ξ2 + 1
and

F (x, v) = −v + ψ
(
x,

1∫
0

K(x, ·, τ)v(τ) dτ
)
.
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The function F satisfies the Carathéodory condition. In fact, the map

L2([0, 1]) 3 v 7→
1∫

0

K(x, ·, τ) dτ ∈ L2([0, 1])

is linear and completely continuous (for almost all x), hence it transforms
weakly convergent sequences to strongly convergent ones. The Nemytskĭı
operator

L2([0, 1]) 3 v 7→ ψ(x, v(·)) ∈ L2([0, 1])

is continuous by (25) (see for example [2], Proposition 1).

R e m a r k 2. Note that a Hammerstein operator does not have so good
properties as the operator F defined in Example 2. Consider the operator

G(v) =
1∫

0

K(·, τ)ψ(τ, v(τ)) dτ ,

where

K ∈ L2([0, 1]× [0, 1]), |ψ(t, y)| ≤ h(t) + |y| , h ∈ L2([0, 1]) .

Suppose that G : L2([0, 1]) → L2([0, 1]) is sequentially continuous in the
sense of the weak topology in L2([0, 1]). Then, for any w ∈ L2([0, 1]), the
map

Gw : v 7→ 〈G(v), w〉L2([0,1])

transforms weakly convergent sequences in L2([0, 1]) to convergent numerical
ones.

Suppose that ψ is differentiable with respect to the second variable and
that Gw : L2([0, 1])→ R satisfies the assumptions of the following theorem
of Palmer (see [7]):

Let X be a reflexive Banach space, Y a Banach space and let F : X → Y
be uniformly Fréchet differentiable on any ball in X. Then F is sequentially
continuous with the weak topology in X and the strong topology in Y if
and only if the following two conditions are satisfied:

(i) for any v ∈ X the Fréchet derivative F ′(v) is a completely continuous
linear operator,

(ii) the Fréchet derivative F ′ : X → L(X,Y ) (the space of linear contin-
uous operators from X into Y ) is completely continuous.

We have

Gw(v) =
1∫

0

1∫
0

K(t, τ)ψ(τ, v(τ))w(t) dτ dt =
1∫

0

Kw(τ)ψ(τ, v(τ)) dτ ,
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where

Kw(τ) :=
1∫

0

K(t, τ)w(t) dt .

Compute the derivative

G′w(v) · h =
1∫

0

Kw(τ)∂2ψ(τ, v(τ))h(τ) dτ .

By the isomorphism L(L2([0, 1]); R) ∼= L2([0, 1]), we have

G′w(v) = Kw(·)∂2ψ(·, v(·)) .

We conclude that the condition (ii) will not be satisfied if G′w is not
constant. In fact, any nonconstant superposition operator

L2([0, 1]) 3 v 7→ N(v) := ϕ(·, v(·)) ∈ L2([0, 1])

does not transform bounded sets onto precompact ones. In fact, let N(u1) 6=
N(u2) for some u1, u2 ∈ L2([0, 1]). Let

vk(x) :=

u1(x) for x ∈ [2−k2p, 2−k(2p+ 1)[,
u2(x) for x ∈ [2−k(2p+ 1), 2−k(2p+ 2)[,
0 for x = 1, p = 0, 1, . . . , 2k−2.

The sequence (vk) is bounded in L2([0, 1]) but N(vk) has no subsequence
which converges in L2([0, 1]).

4. Existence theorem for a system of equations. We formulate a
theorem similar to Theorem 1 for systems of equations.

Theorem 2. Let H be a real infinite-dimensional separable Hilbert space,
and (eγ)γ=1,2,... a complete orthonormal system in H. Let Hp denote the
space generated by the system {eγ : γ = 1, . . . , p} and let Rp : H → Hp be
the orthonormal projector onto Hp. Let Pr be polynomials of n variables
and degrees Tr such that the polynomials Pr(−i∂) of the variable ∂ have real
coefficients and satisfy

1 + |ξ|Tr ≤ CPr(ξ) , ξ ∈ Rn , r = 1, . . . , k ,

for some constant C. Let tr ∈ [0, Tr[, r = 1, . . . , k, and

m :=
k∑
r=1

∑
0≤l<tr−n/2

nl .

Assume that F : Rn×Hm → Hk satisfies the Carathéodory condition of
the following form: F (x, ·) is sequentially continuous in the weak topologies
of Hm and Hk for a.e. x and F (·, (vrα)|α|<tr−n/2,r=1,...,k) is measurable for
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all (vrα)|α|<tr−n/2,r=1,...,k ∈ Hm. Assume that for any bounded set K ⊂
Rn ×Hm there exists a function hK ∈ L2(Rn) such that

‖F (x, (vrα)|α|<tr−n/2,r=1,...,k)‖ ≤ hK(x)

for (x, (vrα)|α|<tr−n/2,r=1,...,k) ∈ K a.e. x. Assume that there is a sequence
of open bounded sets U1 ⊂ U2 ⊂ . . . with

⋃
Uj = Rn and a constant M such

that no system

Pl(D)ul = λRpF
l
j(x, (∂

αur)|α|<tr−n/2,r=1,...,k) ,

l = 1, . . . , k (F = (F 1, . . . , F k)) ,

has a solution in the set{
u = (u1, . . . , uk) ∈

k×
r=1

Htr (Rn, Hp) :
k∑
r=1

‖ur‖2Htr (Rn,H) > M2
}

for j = 1, 2, . . . , λ ∈ [0, 1], p = 1, 2, . . . (The functions F lj are defined as

F lj(x, (v
r
α)|α|<tr−n/2,r=1,...,k)

:=
{
F l(x, (vrα)|α|<tr−n/2,r=1,...,k) for x ∈ Uj ,
0 for x 6∈ Uj.)

Under these assumptions the system

Pl(D)ul = F l(x, (∂αur)|α|<tr−n/2,r=1,...,k) , l = 1, . . . , k ,

has a solution u ∈×k

r=1
Htr (Rn, H) for which

k∑
r=1

‖ur‖Htr (Rn,H) ≤M .

P r o o f. Similar to the proof of Theorem 1.

Example 3. One can construct an example analogous to Example 1 with
the condition

〈v(0,...,0), F (x, (vrα)|α|<tr−n/2,r=1,...,k)〉Hk ≤ 0
for ‖v(0,...,0)‖ ≥ g(x) for a.e. x

instead of (23).
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